

## **Executive summary**

The South Australian Country Fire Service (CFS) engaged GHD Pty Ltd (GHD) to undertake an on-site and off-site environmental investigation in the vicinity of the CFS State Training Centre located at Pyrites Road, Brukunga (the site). The investigation assessed the nature and extent of per- and poly-fluoroakyl substances (PFAS); on-site in soil, concrete and groundwater; and off-site in groundwater, sludge stockpiles within the former Brukunga Mine and in the surface water and sediment of the adjacent Dawesley Creek.

This report documents the scope of work, methodology and findings of the additional on-site and off-site environmental investigations carried out by GHD between May and December 2020. The works were undertaken in accordance with the Sampling and Analysis Quality Plan (SAQP) prepared by GHD for the Brukunga CFS State Training Centre and surrounding area, dated 24 April 2020. The site location and site layout are illustrated in Figure 1 and Figure 2 at the end of this report, respectively.

Previous investigations reported PFAS concentrations in Dawesley Creek that were considered to potentially threaten groundwater and the South Australian Environment Protection Authority (SA EPA) was notified in 2019. The CFS commissioned Dr Ruth Keogh, an SA EPA accredited auditor of Fyfe Pty Ltd, on 3 December 2019 as the site contamination auditor. A voluntary site contamination assessment proposal (VSCAP) was prepared by GHD for the CFS Brukunga State Training Centre, pursuant to Section 103I of the Environment Protection Act, 1993 (SA) (EP Act). The SA EPA approved the VSCAP and provided a VSCAP acceptance letter on 21 January 2020.

The objectives of this investigation were to:

- Assess the nature and extent of PFAS impacts associated with historical site activities; onsite in groundwater, surface water, soil and on-site infrastructure (e.g. concrete slabs) as well as off-site in groundwater, surface water, sediment and sludge stockpiles.
- Identify and assess any potential risks to human health and the environment from PFAS site contamination arising from historical site activities, in the context of continued industrial use of the site and for relevant land uses for any affected off-site properties.
- Provide appropriate information to revise the conceptual site model (CSM) and to prepare a
  Remediation Options Assessment and Site Remediation Plans, to enable a site
  contamination auditor to prepare a site contamination audit report as part of the EPA
  accepted VSCAP..

Based on the results of this investigation, the following conclusions have been made:

#### Flux tests, soil and concrete

• The results of concrete, soil, flux and concrete core leachability testing confirmed that Hotpad B and to a lesser extent Hotpad A as well as the concrete walls of on-site water storage tanks, especially Tank 1 and Tank 4, continue to represent an ongoing source of PFAS to the environment. PFAS concentrations in leachates from 16 out of 21 samples concrete core samples were above the adopted assessment criteria for freshwater, with 13 samples (HPA1, HPB1-PPB5, all Tank 1 and all Tank 4 samples) exceeding the criteria for drinking water and four samples exceeding the criteria for recreational water (HPB1-HPB4). During a simulated rainfall event, PFAS concentrations up to two orders of magnitude above the adopted catchment specific WQG for freshwater were reported for surface run-off from Hotpad B. These high concentrations reflected high PFAS

- concentrations in concrete core samples, leachates and to a lesser extent in soil samples from Hotpad B.
- Soil samples taken to the west of Hotpad A and B, between the CFS site and Dawesley
  Creek, reported elevated PFAS concentrations exceeding either the ecological direct and/or
  indirect exposure criteria for PFOS. These impacts have not been vertically or laterally
  delineated towards Dawesley Creek.
- All on-site soil sampling locations reported elevated PFAS concentrations. All locations reported PFOS above the adopted interim criteria for ecological indirect exposure, except for SB02 in the main store building.

#### Storage tank water

• PFAS concentrations in all seven water storage tanks at the south-western corner of the CFS STC site exceeded the adopted catchment specific WQG for PFOS and PFHxS in freshwater as well as the health screening level for drinking water. The water in the storage tanks is considered a potential PFAS source as it could infiltrate the subsurface or run off into the surface water of Dawesley Creek during high rainfall events where excess water is discharged from the tanks. There is also the potential for the PFAS to be absorbed by the tank wall as shown by the concrete leaching test results for Tank 4.

#### Sludge, seepage water and leachability test

- PFAS were detected in 51 out of 61 sludge samples that were analysed and five of these samples exceeded the adopted PFOS interim criterion for ecological indirect exposure. Low level PFAS concentrations below the assessment criteria were reported for all sludge stockpile and disposal areas. Leach testing of sludge indicates that this material is acting as a source of PFAS to surface water and groundwater above the catchment specific WQG for PFOS and PFHxS.
- PFAS concentrations in five seepage water samples collected from the Brukunga mine
  waste rock dump to the west of Dawesley Creek exceeded the adopted catchment specific
  WQG, with two of these samples also exceeding the adopted health screening level for
  drinking water. The source of PFAS in the seepage water is likely from the sludge waste
  stockpiles. PFAS contaminated seepage water is potentially impacting Dawesley Creek
  surface water and groundwater.
- PFAS were found to readily leach from sludge and concrete cores samples with PFAS
  concentrations in the leachates being proportional to the PFAS concentrations in the solid
  sample.

#### **Diversion drain**

PFAS concentrations in the diversion drain were below the LOR. As surface water samples
collected above the inlet to the diversion drain reported PFOS and PFHxS concentrations
below the catchment specific WQG, it is considered unlikely that PFAS concentrations in
water within the diversion drain exceed these criteria.

#### Groundwater

 Groundwater flow in February and June 2020 was inferred to flow from higher elevated areas to the east and west of the CFS STC site towards Dawesley Creek, and in a generally southerly direction from the CFS STC site. Dawesley Creek generally flows towards the south and discharges into Mt Barker Creek located over 10 km south of the CFS STC site.

- An assessment of groundwater salinity indicated fresh to hyper-saline groundwater in the
  vicinity of the CFS STC site, the fresher of which may be suitable for potable use, irrigation,
  recreation and aesthetics, primary industries, livestock drinking water and aquaculture
  purposes (Gov SA 2019a).
- Groundwater PFHxS and PFOS concentrations exceeded the drinking water screening
  criterion in 7 out of a total of 26 tested groundwater monitoring wells in the vicinity of
  Brukunga Mine and in two out of five residential bores. The highest PFAS concentrations
  were reported in February 2020 for well H02, located adjacent the southern (down hydraulic
  gradient) boundary of the CFS STC site.
- Based on the February 2020 and June 2020 groundwater monitoring rounds results, PFAS
  in groundwater has been delineated in all directions against the drinking water screening
  criteria. However, based on surface water results it is considered likely that PFAS impacts
  in groundwater, associated with surface water bodies, are localised to impacted creek
  alignments.
- A Section 83A notification was submitted for the residential property on 296 Pyrites Road, Brukunga, SA (CT6053/276) in accordance with the Environmental Protection Act 1993 to the South Australian Protection Authority via email on 14 September 2020.

#### **Surface water**

- Background PFOS concentrations reported for Nairne Creek and upstream reaches of Mt Barker Creek and Bremer River, which were not impacted by Dawesley Creek, exceeded the PFAS NEMP fresh water 99% species protection level, indicating widespread PFAS impacts independent of the CFS STC site. Background concentrations in individual samples collected from upstream locations in Bremer River exceeded the PFAS NEMP drinking water guideline level.
- Catchment specific WQG for PFOS and PFHxS were derived in accordance with ANZG
  (2018) using data from Mt Barker Creek as reference sites. The catchment specific WQG
  for slightly to moderately and highly disturbed systems were calculated using the 80th and
  90th percentile of the PFOS and PFHxS concentrations in Mt Barker Creek, respectively,
  and were adopted in lieu of the PFAS NEMP fresh water 99% species protection level for
  PFOS.
- PFAS impacts associated with the CFS STC site, above the catchment specific WQG, were
  observed to extend beyond the South Eastern Freeway and beyond Jaensch Road in
  Hartley SA 5255 (between Callington Road and North Bremer Road), approximately
  37.4 km, downstream from the CFS STC site to the south and have not yet been
  delineated. It is noted that Nairne Creek, Bremer River and Mt Barker Creek are also
  contributing to PFAS in surface waters.
- The available flow data indicates that Dawesley Creek typically only contributes ≤ 20% to the flow in the downstream sections of Bremer River. However, the substantially higher PFOS and PFHxS concentrations measured in Dawesley Creek, relative to the upstream reaches of Mt Barker Creek, suggest that the majority of PFOS and PFHxS found downstream of the confluence of Mt Barker Creek and Bremer River is likely to be related to the CFS STC site.

#### Sediment

 Sediment within Dawesley Creek downstream of the CFS STC site exceeded the adopted assessment criteria for interim ecological indirect exposure and the health screening level for residential land use with access to soil.  Impacts of PFAS concentrations in sediment have been delineated upstream of the CFS STC site at sampling location DC-UP01 and downstream of the CFS STC site at sampling location DC17A in Mt Barker Creek. The sediment impacts were confined to Dawesley Creek between the CFS STC site and the confluence of Dawesley Creek with Mt Barker Creek.

#### Risk assessment

- Incidental ingestion of sediment within Dawesley Creek by land owners and occupants of and visitors to properties located in the vicinity of Dawesley Creek downstream of the CFS STC site was the only identified potential SPR linkage where human receptors are exposed to PFAS concentrations above the adopted human health criteria. However, it is considered unlikely that human receptors will come into contact with PFAS quantities detrimental to their health. As a precaution, potential human receptors should be advised to avoid contact with identified PFAS sources.
- The risk to human receptors from consumption of fruit, vegetables and meat from livestock grown in the vicinity of Dawesley Creek downstream of the CFS STC site using contaminated surface water or groundwater could not be conclusively assessed due to lack of data.
- The risk to human receptors from consumption of fish and yabbies caught in PFASimpacted surface water could not be assessed due to lack of data.
- For ecological receptors, four potentially complete SPR linkages where ecosystems are exposed to PFAS concentrations above the adopted criteria have been identified. These include (1) ecosystems at the CFS STC site and the area between Dawesley Creek and the CFS STC site with access to / in contact with contaminated soil, (2) ecosystems within Dawesley Creek and the downstream reaches of Mt Barker Creek and Bremer River exposed to contaminated surface water and sediment (Dawesley Creek only), (3) ecosystems at locations where contaminated sludge originating from the water treatment plant has been or is being placed and (4) ecosystems at locations exposed to seepage water impacted with PFAS.

#### Recommendations

Based on the results of the PFAS investigations completed to date, the following recommendations were provided:

- Undertake community information sessions on the results of PFAS investigations in the Brukunga area in accordance with the VSCAP milestone; advise stakeholders (landowners / occupants of properties located in the vicinity of Dawesley Creek downstream of the CFS STC) of PFAS impact in surface water and sediment in Dawesley Creek.
- Conduct an Environmental Risk Assessment (ERA) to assess the potential risks to the environment that may be associated with the presence of PFAS in soil, sediment, biota, surface water, concrete, sludge and groundwater, both on-site and off-site within the wider Investigation Area. If data collected as part of the ERA indicates PFAS has bioaccumulated in biota that is being caught and/or consumed by the public such as fish, yabbies, eggs, meat, poultry etc; a Human Health Risk Assessment (HHRA) may also be warranted depending on the concentrations detected. The results of the ERA (and HHRA if required) will inform the development of Remediation Options Assessments (ROA) and Site Remediation Plans (SRP).
- Prepare a remediation options assessment (ROA) to address mass flux from PFAS impacted infrastructure, soils and sludge.

- Prepare a SRP to execute the selected remedial technologies to address PFAS mass flux from the site causing environmental harm and harm to human health (if warranted).
- Undertake on-going monitoring of the CFS STC PFAS water filtration system in accordance with the developed SRP.
- Further sampling of surface water and sediment downstream of the CFS State Training
  Centre site in Dawesley Creek, Mt Barker Creek and Bremer River to delineate PFAS
  impacts; as well as upstream reference locations to develop a temporal robust data set, to
  determine seasonal trends and to derive reliable catchment specific assessment criteria.
  Further sampling will be undertaken in accordance with the SAQP to be reviewed and
  endorsed by the CFS and the auditor.
- Undertake "fingerprint" analysis of future surface water samples for the full "long" PFAS
  analytical suite to distinguish between different PFAS sources and to identify the relative
  contribution of the various PFAS sources to the PFAS load in Bremer River down gradient
  of its confluence with Mt Barker Creek.
- Undertake on-going monitoring of the CFS STC PFAS water filtration system in accordance with the SRP.
- Develop and instigate of a Construction Environment Management Plan (CEMP) if any intrusive works proposed in areas of the site where PFAS-impacted soils have been identified.

This report is subject to, and must be read in conjunction with, the limitations set out in Section 12 and the assumptions and qualifications contained throughout the Report.

# **Table of Abbreviations**

| Abbreviation | Full form                                                                                 |
|--------------|-------------------------------------------------------------------------------------------|
| AHD          | Australian Height Datum                                                                   |
| AMD          | Acid mine drainage                                                                        |
| ARD          | Acid rock drainage                                                                        |
| ASC NEPM     | National Environment Protection (Assessment of Site Contamination) Measure 1999           |
| ASLP         | Australian Standard Leaching Procedure as per<br>Australian Standard<br>AS 4439.3-1997    |
| ASP          | Acid seepage pond                                                                         |
| ATP          | AMD treatment plant                                                                       |
| CFS          | South Australian Country Fire Service                                                     |
| COC          | Chain of custody                                                                          |
| CSM          | Conceptual site model                                                                     |
| DEM          | Department of Energy and Mining                                                           |
| DEW          | Department for Environment and Water                                                      |
| DQOs         | Data quality objectives                                                                   |
| DSI          | Detailed Site Investigation                                                               |
| GAR          | South Australian Guidelines for the Assessment and Remediation of Site Contamination 2019 |
| GHD          | GHD Pty Ltd                                                                               |
| GME          | Groundwater monitoring event                                                              |
| HDPE         | High-Density Polyethylene                                                                 |
| HEPA         | Heads of Environment Protection Authorities Australia                                     |
| JSEA         | Job safety and environment analysis                                                       |
| LDPE         | Low-Density Polyethylene                                                                  |
| LOR          | Limit of reporting                                                                        |
| m bgl        | Metres below ground level                                                                 |
| mg/L         | milligrams / Litre                                                                        |
| NATA         | National Association of Testing Authorities                                               |
| NEMP         | PFAS National Environmental Management Plan 2020                                          |
| NEPC         | National Environmental Protection Council                                                 |
| NHMRC        | National Health and Medical Research Council                                              |
| NRMMC        | Natural Resource Management Ministerial Council                                           |
| PFAS         | Per- and poly-fluoroalkyl substances                                                      |
| PFHxS        | Perfluorohexane sulfonate                                                                 |

| Abbreviation | Full form                                         |
|--------------|---------------------------------------------------|
| PFOA         | Perfluorooctanoic acid                            |
| PFOS         | Perfluorooctane sulfonate                         |
| PVC          | Polyvinyl chloride                                |
| QA/QC        | Quality assurance and quality control             |
| SA EPA       | South Australian Environment Protection Authority |
| SAQP         | Sampling and analysis quality plan                |
| SPR          | Source-pathway-receptor                           |
| STC          | State Training Centre                             |
| SWL          | Standing water level                              |
| TDS          | Total dissolved solids                            |
| TOC          | Top of casing                                     |
| TOPA         | Total oxidisable precursor assay                  |
| TSF          | Tailings storage facility                         |
| VSCAP        | Voluntary site contamination assessment proposal  |
| WRD          | Waste rock dump                                   |
| μg/L         | micrograms / Litre                                |

# **Table of contents**

| Execu | utive s | ummary                                              |    |
|-------|---------|-----------------------------------------------------|----|
| Table | of Ab   | breviations                                         | V  |
| 1.    | Introd  | luction                                             | 1  |
|       | 1.1     | Background                                          | 1  |
|       | 1.2     | Objectives                                          | 2  |
| 2.    | Site I  | nformation                                          | 3  |
|       | 2.1     | Site Identification                                 | 3  |
|       | 2.2     | Off-site investigation area                         | 3  |
|       | 2.3     | Historical Site Use                                 | 5  |
|       | 2.4     | Surrounding Land Uses                               | 6  |
|       | 2.5     | Previous investigations                             | 6  |
|       | 2.6     | Summary of previous works                           | 7  |
| 3.    | Scope   | e of Work                                           | 13 |
|       | 3.1     | Investigation Rationale                             | 13 |
|       | 3.2     | Variations to SAQP                                  | 17 |
| 4.    | Geolo   | ogy and Hydrogeology                                | 24 |
|       | 4.1     | Topography                                          |    |
|       | 4.2     | Geology                                             |    |
|       | 4.3     | Hydrogeology                                        |    |
|       | 4.4     | Hydrology and Drainage                              | 28 |
|       | 4.5     | Conceptual Hydrogeological Model                    | 30 |
| 5.    | Asses   | ssment Criteria                                     | 31 |
|       | 5.1     | General                                             |    |
|       | 5.2     | Soil, sediment, sludge and concrete                 |    |
|       | 5.3     | Groundwater                                         | 32 |
|       | 5.4     | Flux Test                                           | 34 |
|       | 5.5     | Surface water, seepage water and storage tank water | 34 |
| 6.    | Metho   | odology                                             | 36 |
|       | 6.1     | General                                             | 36 |
|       | 6.2     | Concrete dust sampling                              |    |
|       | 6.3     | Concrete core sampling                              | 37 |
|       | 6.4     | Flux testing                                        |    |
|       | 6.5     | Storage tank water sampling                         | 38 |
|       | 6.6     | Soil sampling                                       |    |
|       | 6.7     | Sludge sampling                                     |    |
|       | 6.8     | Seepage water sampling                              |    |
|       | 6.9     | Groundwater Well Installation and Sampling          |    |
|       | 6.10    | Surface water sampling                              | 43 |

|       | 6.11     | Sediment sampling                                              | 43 |
|-------|----------|----------------------------------------------------------------|----|
|       | 6.12     | Sample collection, handling and preservation                   | 44 |
|       | 6.13     | Laboratory analysis                                            | 45 |
|       | 6.14     | Community engagement                                           | 45 |
| 7.    | Resu     | ılts                                                           | 47 |
|       | 7.1      | Concrete                                                       | 47 |
|       | 7.2      | Flux test results                                              | 47 |
|       | 7.3      | Storage tank water                                             | 49 |
|       | 7.4      | Soil                                                           | 50 |
|       | 7.5      | Sludge                                                         | 50 |
|       | 7.6      | Leachability tests                                             | 51 |
|       | 7.7      | Seepage water                                                  |    |
|       | 7.8      | Brukunga Mine Diversion Drain                                  |    |
|       | 7.9      | Groundwater                                                    |    |
|       | 7.10     |                                                                |    |
|       | 7.11     | Sediment                                                       | 64 |
| 8.    | Quali    | ity Assurance and Quality Control                              | 67 |
| 9.    | Discu    | ussion                                                         | 68 |
|       | 9.1      | Distribution of PFAS                                           | 68 |
|       | 9.2      | Conceptual Site Model (CSM)                                    | 74 |
| 10.   | Conc     | lusions                                                        | 85 |
| 11.   | Reco     | mmendations                                                    | 88 |
| 12.   | Limita   | ations                                                         | 89 |
| 13.   | Refe     | rences                                                         | 90 |
| Anal  | ytical F | Results Tables                                                 | 93 |
| Fiaur | res      |                                                                | 94 |
| 9     |          |                                                                |    |
|       | _        |                                                                |    |
| bl    | e II     | ndex (in text)                                                 |    |
| Table | e 2-1    | Summary of site identification information                     | 3  |
| Table | e 2-2    | Summary of surrounding land uses and zoning                    | 6  |
| Table | e 3-1    | Concrete dust sampling rationale                               | 13 |
| Table | e 3-2    | Flux testing rationale                                         | 14 |
| Table | e 3-3    | Soil sampling rationale                                        | 14 |
| Table | e 3-4    | Sludge waste pile sampling rationale                           | 15 |
| Table | e 3-5    | Brukunga mine diversion drain surface water sampling rationale | 15 |
| Γable | e 3-6    | Groundwater Investigation rationale                            | 16 |
| Γable | e 3-7    | Surface water and sediment sampling rationale                  | 17 |
|       |          | . •                                                            |    |

| Table 3-8  | Additional Sample Locations                                                       | 18 |
|------------|-----------------------------------------------------------------------------------|----|
| Table 3-9  | Exclusions from the SAQP                                                          | 22 |
| Table 4-1  | Summary of site specific hydrogeology                                             | 27 |
| Table 5-1  | Adopted PFAS Interim Screening Criteria (sediment, soil, sludge and concrete)     | 32 |
| Table 5-2  | Four-step process for determining harm to groundwater                             | 32 |
| Table 5-3  | Adopted PFAS Interim Screening Criteria (Groundwater)                             | 33 |
| Table 5-4  | Catchment specific water quality guideline values                                 | 34 |
| Table 6-1  | Concrete dust sampling methodology                                                | 36 |
| Table 6-2  | Concrete core sampling methodology                                                | 37 |
| Table 6-3  | Flux testing methodology                                                          | 38 |
| Table 6-4  | Storage tank water sampling methodology                                           | 38 |
| Table 6-5  | Soil sampling methodology                                                         | 39 |
| Table 6-6  | Sludge sampling methodology                                                       | 40 |
| Table 6-7  | Seepage water sampling methodology                                                | 40 |
| Table-6-8  | Groundwater Well Installation Methodology                                         | 41 |
| Table 6-9  | Groundwater sampling methodology                                                  | 42 |
| Table 6-10 | Surface water sampling methodology                                                | 43 |
| Table 6-11 | Sediment sampling methodology                                                     | 43 |
| Table 6-12 | Summary of mitigation practices                                                   | 44 |
| Table 7-1  | Concrete analytical exceedances May and July 2020                                 | 47 |
| Table 7-2  | BOM rainfall observations at Nairne (weather station 023739)                      | 48 |
| Table 7-3  | PFAS mass flux off hotpads in a simulated 5 mm rainfall event                     | 48 |
| Table 7-4  | Storage tank water analytical exceedances October 2020                            | 49 |
| Table 7-5  | Soil analytical exceedances May / September 2020                                  | 50 |
| Table 7-6  | Sludge analytical exceedances May 2020                                            | 51 |
| Table 7-7  | Summary of leachate exceedances                                                   | 51 |
| Table 7-8  | Seepage water analytical exceedances July 2020                                    | 53 |
| Table 7-9  | Summary of groundwater parameters 2020                                            | 54 |
| Table 7-10 | Summary of groundwater analytical results 2020                                    | 55 |
| Table 7-11 | Summary of background surface water quality parameters in July and September 2020 | 57 |
| Table 7-12 | Summary of surface water quality parameters May to August 2020                    | 58 |
| Table 7-13 | Summary of background surface water analytical exceedances July / September 2020  | 58 |
| Table 7-14 | Surface water analytical exceedances 2020                                         | 60 |
| Table 7-15 | Sediment analytical exceedances 2020                                              | 65 |
| Tahle 0₋1  | Concentual Site Model                                                             | 78 |

# **Table index (attached)**

| l able 1 – Concrete Analytical Results                      |
|-------------------------------------------------------------|
| Table 2 – Flux Analytical Results                           |
| Table 3 – Water Storage Tank Analytical Results             |
| Table 4 – Soil Analytical Results                           |
| Table 5 – Sludge Analytical Results                         |
| Table 6a – Sludge Leaching Test Analytical Results          |
| Table 6b – Concrete Core Leaching Test Analytical Results   |
| Table 7 – Seepage Water Analytical Results                  |
| Table 8 – Surface Water Field Parameters                    |
| Table 9 – Surface Water Analytical Results                  |
| Table 10 – Groundwater Gauging Data                         |
| Table 11 – Groundwater Field Parameters                     |
| Table 12 – Groundwater Analytical Results                   |
| Table 13 – Sediment Analytical Results                      |
| Table 14 – Pre and Post TOPA Groundwater Analytical Results |
| Table 15 – Biota Analytical Results                         |
| Table 16 – Blank Analytical Results                         |
| Table 17 – Water RPD Results                                |
| Table 18 – Sediment RPD Results                             |

# Figure index (in text)

Table 19 - Soil RPD Results

| Figure 4-1 | Well Yield Contours (L/s) (from GHD 2009)                                                                        | 26 |
|------------|------------------------------------------------------------------------------------------------------------------|----|
| Figure 7-1 | Sum of total PFAS and PFOS in runoff from hotpads over time (note the different scale for Hotpad A and Hotpad B) | 49 |
| Figure 7-2 | PFAS "fingerprint" in Dawesley Creek and Mt Barker Creek                                                         | 63 |
| Figure 7-3 | PFAS "fingerprint" in Bremer River                                                                               | 64 |

## Figure index (attached)

- Figure 1 Site Location Plan
- Figure 2 Site Layout Plan and PFAS Source Areas
- Figure 3 Previous Groundwater and Surface Water Results (Feb/Mar 2020)
- Figure 4 Bremer River Catchment and Subcatchments
- Figure 5 CFS State Training Centre Runoff Collection System and Brukunga Mine AMD Treatment System
- Figure 6a Soil Bore, Concrete Dust and Flux Test Sampling Location Plan
- Figure 6b Off-site Residential Soil Sampling Location Plan: 296 Pyrites Road
- Figure 6c Concrete Core Sampling Location Plan
- Figure 7 Sludge Sampling Location Plan
- Figure 8 Groundwater Sampling Location Plan
- Figure 9a Surface Water / Sediment Sampling Locations
- Figure 9b Additional Surface Water / Sediment Sampling Locations (8 July 2020)
- Figure 9c Surface Water / Sediment Sampling Locations (July October 2020 sampling)
- Figure 9d Surface Water Reference Site Sampling Locations
- Figure 10 Seepage Water Sampling Location Plan
- Figure 11a Groundwater Contour Plan (February 2020)
- Figure 11b Groundwater Contour Plan (June 2020)
- Figure 12 Community Survey Plan
- Figure 13 Soil and Concrete PFAS Concentrations Plan
- Figure 14a Northern Bench Sludge PFAS Concentrations Plan
- Figure 14b Southern Waste Pile Sludge PFAS Concentrations Plan
- Figure 14c South Extension Sludge PFAS Concentrations Plan
- Figure 14d Emergency Overflow Pond & Drying Ponds Sludge PFAS Concentrations Plan
- Figure 15 Seepage Water PFAS Concentrations Plan
- Figure 16a Groundwater PFAS Concentrations Plan
- Figure 16b Groundwater PFAS Concentrations Contour Plan
- Figure 17 Surface Water PFAS Concentrations Plan
- Figure 18 Sediment PFAS Concentrations Plan
- Figure 19 Conceptual Site Model (West East)
- EES (2019) Figure 3 Features of Brukunga Pyrite Mine, SA

## **Appendices**

Appendix A – Community Engagement

Appendix B – Borehole Logs

Appendix C - Registered Bore Search

Appendix D – Conceptual Hydrogeological Model (GHD 2009)

Appendix E – Surface Water Flow Data

Appendix F – Derivation of Catchment Specific Water Quality Guideline Values

Appendix G - Well Permits

Appendix H – Groundwater Well Survey Results

Appendix I - Field Sheets

Appendix J – Calibration Certificates

Appendix K – Laboratory Reports and Chain of Custody Documentation

Appendix L – Photo Log

Appendix M - Climate Data

Appendix N – Section 83A Notification

Appendix O – Quality Assurance and Quality Control

### 1. Introduction

The South Australian Country Fire Service (CFS) engaged GHD Pty Ltd (GHD) to undertake a detailed site investigation (DSI) in the vicinity of the CFS State Training Centre (STC) located at Pyrites Road, Brukunga (the site). The investigation assessed the nature and extent of per- and poly-fluoroakyl substances (PFAS); on-site in soil, concrete, stored tank water and groundwater; and off-site in groundwater, sludge stockpiles within the former Brukunga Mine and in the surface water and sediment of the adjacent Dawesley Creek. This report is subject to, and must be read in conjunction with, the limitations set out in Section 12 and the assumptions and qualifications contained throughout the Report.

This report documents the scope of work, methodology and findings of the additional on-site and off-site environmental investigations carried out by GHD between May and October 2020. The works were undertaken in accordance with the Sampling and Analysis Quality Plan (SAQP) prepared by GHD for the Brukunga CFS STC and surrounding area, dated 24 April 2020. The site location and site layout are illustrated in Figure 1 and Figure 2 at the end of this report, respectively.

#### 1.1 Background

Historically, the CFS used firefighting foam containing PFAS at the site during testing of delivery systems on firefighting appliances. PFAS foam has not been used at the site since 2001.

In addition to on-site PFAS use, it is understood that:

- Water within Dawesley Creek has been impacted by acid mine drainage (AMD) from the adjacent Brukunga Mine.
- Downstream of the CFS STC the Department of Energy and Mining (DEM) diverts water from Dawesley Creek through an acid treatment plant to raise the pH of the water prior to discharging back into Dawesley Creek.
- The South Australian Environment Protection Authority (SA EPA) identified elevated levels
  of PFAS within Dawesley Creek.

Following the SA EPA's findings, GHD was commissioned by the CFS to conduct an environmental assessment of the site to determine the source/s of PFAS contamination within Dawesley Creek.

The GHD investigation presented in our report dated 7 November 2019, identified PFAS on-site in soil, concrete and a water storage tank; and off-site in surface water of Dawesley Creek, the acid seepage pond (ASP), the acid treatment plant discharge channel (ATP), Pond 4 near where treated water is discharged into the underground diversion drain and sludge from the treatment plant (Figure 3). The concentrations of PFAS in the creek were considered to potentially threaten groundwater and the SA EPA was notified through a Section 83A Notification of site contamination of tank stored water dated 21 October 2019.

Based on the information provided, the SA EPA deemed the site a Level 1 regulatory priority in accordance with SA EPA (2017) Site Contamination Regulatory and Orphan Site Management Framework, and stated a voluntary site contamination assessment proposal (VSCAP) is necessary for effective regulation of the site. The SA EPA additionally requested a site contamination auditor is engaged to prepare a site contamination audit report as part of the VSCAP. The CFS commissioned Dr Ruth Keogh, an SA EPA accredited auditor of Fyfe Pty Ltd, on 3 December 2019 as the site contamination auditor.

The VSCAP was prepared by GHD for the CFS Brukunga State Training Centre, pursuant to Section 103I of the Environment Protection Act, 1993 (SA) (EP Act) and submitted to the SA EPA on 7 January 2020, following review and endorsement by the auditor. The SA EPA approved the VSCAP and provided a VSCAP acceptance letter on 21 January 2020.

GHD undertook an off-site investigation of groundwater, surface water and sediment in February 2020, where elevated levels of PFAS were found in groundwater across the former Brukunga Mine, the tailings storage facility and the southernmost extent of Dawesley Creek within the Brukunga Mine. PFAS concentrations exceeding adopted screening criteria were also found in a private residential bore, approximately 1.7 km south of the site. The findings of this investigation are summarised in Figure 3.

#### 1.2 Objectives

The objectives of this DSI were to:

- Assess the nature and extent of PFAS impacts associated with historical site activities; onsite in groundwater, surface water, soil and on-site infrastructure (e.g. concrete slabs) as well as off-site in groundwater, surface water, sediment and sludge stockpiles.
- Identify and assess any potential risks to human health and the environment from PFAS
  site contamination arising from historical site activities, in the context of continued industrial
  use of the site and for relevant land uses for any affected off-site properties.
- Provide appropriate information to revise the conceptual site model (CSM) and to prepare a
  Remediation Options Assessment and Site Remediation Plans, to enable a site
  contamination auditor to prepare a site contamination audit report as part of the EPA
  accepted VSCAP.

### 2. Site Information

#### 2.1 Site Identification

Site identification information for the CFS STC is summarised in Table 2-1.

**Table 2-1 Summary of site identification information** 

| Item                       | Description                                                                       |
|----------------------------|-----------------------------------------------------------------------------------|
| Site Address               | 28 Pyrites Road, Brukunga, SA 5252                                                |
| Certificate of Title       | CT 5825/147                                                                       |
| Legal Description          | Allotment 6 in Filed Plan 102110 in the Area named Brukunga, Hundred of Kanmantoo |
| Local Government Authority | Mt Barker District Council                                                        |
| Current Zoning             | Brukunga Mine                                                                     |
| Property Owner             | South Australian Country Fire Service                                             |
| Land Use                   | Continuing use as CFS training centre                                             |
| Area                       | 4.25 ha                                                                           |
| Site Elevation             | Approximately 345 m AHD to 355 m AHD (Australian Height Datum)                    |

The Site Location Plan for the CFS Brukunga Training Centre is shown on Figure 1. The site is located adjacent the former Brukunga Pyrite Mine in the township of Brukunga. The nearest surface water receptor is Dawesley Creek, which is located immediately to the west of the CFS STC site, flows north to south and forms a subcatchment of the Bremer River (Figure 4).

Relevant on-site features are shown in Figure 2. Historically, PFAS containing AFFF was used during firefighting training until 2001, especially on Hotpad A (refer to Section 2.3 Historical Site Use). Runoff from rainfall events and training activities off both hotpads is collected in a central gutter, which delivers all water via a gross pollutant trap (GPT) and a 300 mm gravity-fed stormwater pipe into a series of seven concrete water storage tanks in the south-western corner of the CFS STC site. Excess water flows from Tank 7 via an overflow pipe into the underground diversion drain, which was commissioned in June 2003 (Figure 5).

#### 2.2 Off-site investigation area

The off-site investigation area included the former Brukunga Pyrite Mine, groundwater beneath private land to the west and to the south of the Brukunga Mine and surface water / sediment in Dawesley Creek, Nairne Creek, Mt Barker Creek and Bremer River to the south and south-east of the CFS STC site. Relevant features of the Brukunga Mine for this investigation (as shown in Figure 5 and EES (2019) Figure 3 attached at the end of the report) included:

- The north waste rock dump (WRD) to the north-west of the CFS STC site
- The northern, central and southern highwall sheer cliff faces marking the western boundary of the Mine
- The northern, central and southern bench at the foot of the highwall to the west of Dawesley Creek and the CFS STC site
- Sludge and biosolids stockpiles used for revegetation trials at the southern bench
- The central works area adjacent to and to the west of Dawesley Creek and the CFS STC site
- The north cut located between the northern and the central bench
- The south cut located between the central and the southern bench

- The south WRD and the south extension WRD to the south-west of the CFS STC site and west of Dawesley Creek
- The east WRD east of Dawesley Creek and to the south of the CFS STC site
- The north and south collection pond for acid rock drainage (ARD), referred to as acid seepage ponds, to the south-east of the CFS STC site
- The former tailings storage facility (TSF) to the east of the CFS STC site
- A water treatment plant for the neutralisation of AMD off Watts Road to the east of the CFS STC site, referred to as (acid) treatment plant
- Six sludge ponds near the eastern boundary of the Mine used for drying the sludge generated by the acid treatment plant
- An emergency sludge overflow pond located to the south-east of the water treatment plant and to the north of the sludge drying ponds
- An underground diversion drain and open diversion channels diverting Dawesley Creek past the majority of the Mine
- Sections of the old creek alignment labelled as Pond 0, Pond 2, Pond 3 and Pond 4, which
  are used for AMD collection. The former Pond 1 is now defunct.

The Brukunga Mine is impacted by AMD. The DEM has implemented measures to reduce off-site impacts in Dawesley Creek. At a weir just north of Peggy Buxton Road, Dawesley Creek is diverted into an underground diversion drain, which passes underneath the CFS STC site before it discharges into an open diversion channel, approximately 40 m west of Pond 4 (Figure 5). The open diversion channel flows north to south and returns the water to the natural Dawesley Creek bed approximately 15 m east of Pond 2.

AMD generated within the mine is intercepted via constructed open channels and pipes and held in several collection ponds located in the former creek alignment (Pond 2, Pond 3 and Pond 4). The AMD is then pumped into the northern acid seepage pond (ASP) located at the foot of the tailings dam, east of Pyrites Road, and from there to the acid treatment plant (ATP) off Watts Road (Figure 5).

In the treatment plant, the AMD is chemically neutralised by mixing with a locally available waste lime slurry (calcium hydroxide) as the neutralising agent. The lime slurry, a by-product of the manufacture of acetylene, is delivered by truck to and stored in the lime delivery and storage area, approximately 20 m to the west of the ATP (Figure 5). The complex mixing of the neutralising agent and the acid water occurs in three successive tanks. The mixed liquor and a flocculent are then pumped to a sludge thickening tank, where the waste sludge settles to the bottom leaving the clean water to decant off the top of the tank into an open channel (sampling location ATP\_1 in 2019). The treated water flows via the open channel into the clarifying pond, approximately 75 m south-west of the ATP, where it undergoes a final clarification step. After approximately 24 hours detention in the clarifying pond the treated water is pumped to and discharged into the underground diversion drain near Pond 4 (Figure 5).

The average pH value of the AMD treated at the plant is 2.5 and the pH value of the water returned to the underground diversion drain is 8.5 (alkaline). During the treatment process the pH value of water is raised to approximately 9.5, to enable the precipitation of Manganese. Other metals that are removed from the raw water, mainly as hydroxides, include iron, aluminium, zinc, nickel, cobalt, copper and cadmium. In 1998, the capacity of the AMD treatment plant was increased from 20 to 30 kilolitres per hour. The annual volume of acid water treated varies, reaching up to 150 megalitres.

The waste sludge is collected from the bottom of the thickening tank and pumped to the six sludge drying ponds or the emergency sludge overflow pond south-east of the ATP. Twice a year, the clarifying pond is drained, and the accumulated sludge is removed and transported by truck to the sludge drying ponds or the emergency sludge overflow pond. The dried sludge is transported from the drying ponds to the sludge waste pile areas at the foot of the highwall in the western part of the Brukunga Mine (Figure 5).

Under normal operating conditions of the AMD treatment system, the AMD impacted water in the old Dawesley Creek alignment between Peggy Buxton Road and Pond 2 is mostly stagnant. During strong rainfall events that exceed the capacity of the storage Ponds 2, 3 and 4, however, water may flow from Pond 2 via an overflow into Dawesley Creek, immediately downstream of the southern end of the open diversion channel.

Before the commissioning of the underground diversion drain in June 2003, runoff from the CFS STC hotpads containing PFAS and / or the tank overflow would have flown into Dawesley Creek and on into Pond 4, where PFAS was detected (GHD 2019a). The PFAS containing acidic creek water was pumped from Pond 4 into the ASP north and from the ASP to the acid treatment plant. While the ATP neutralises the AMD, it is not designed to remove PFAS. Some PFAS remained in the treated water and some PFAS was contained in the sludge waste generated at the ATP (GHD 2019a). The PFAS in the treated water reached Dawesley Creek via the open diversion channel. The PFAS in the sludge is likely to have leached from the sludge waste piles into the AMD collection system. As such PFAS has been cycling form the ATP via the sludge, the AMD collection system and back to the ATP.

#### 2.3 Historical Site Use

The CFS State Training Centre at Brukunga begun operations in 1989 and has been developed into a training facility where specialised fire training courses are held for CFS volunteers and to provide for the growing demands of industry and commerce in fire safety training. The training centre has accommodation facilities, classrooms, Hotpad A (concrete slab) and Hotpad B (concrete pavers) where practical firefighting training, road crash rescue and HAZMAT training is conducted. Based on CFS anecdotal information the use of Hotpad A commenced in 1993 prior to the construction of Hotpad B in 2002. Reportedly Hotpad A has been used more often than Hotpad B.

In January 2018, South Australia was the first state to ban the use of fluorinated firefighting foams, with the amendment of the Environment Protection (Water Quality) Policy 2015 (Gov SA 2015) under the Environment Protection Act 1993, with full legislative requirements coming into effect on 30 January 2020 after a two-year transition period. The CFS did not use fluorinated firefighting foams during the transition period.

Historically, most of the water used during fire-fighting training activities and rainwater have been collected as surface runoff from the hotpads and transferred into a series of seven concrete water storage tanks for re-use in training activities. However, some of the water may also have infiltrated the soil beneath and surrounding the hotpads.

Deep Exploration Technologies Cooperative Research Centre (DET CRC) operated a Drilling Research and Training Facility at the disused Brukunga Mine (neighbouring the CFS training centre) from October 2011 – October 2017. At times it utilised some facilities at the CFS Training Centre such as accommodation and classrooms. They provided real world environment opportunities for field testing of new drilling and logging technologies and vocational education and training for the drilling industry.

The Brukunga Drilling Research and Training Facility was packed down by October 2017 in anticipation of the closure of Deep Exploration Technologies CRC due to the end of Government funding in 2018.

#### 2.4 Surrounding Land Uses

Current surrounding land uses bordering the CFS STC site are summarised in Table 2-2 below:

Table 2-2 Summary of surrounding land uses and zoning

| Orientation                     | Description of<br>Surrounding Land Use                                                                              | Zoning (Municipal council)              |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| East and north east             | Brukunga town centre, residential properties, vacant / grazing land beyond                                          | Residential and Primary Production      |
| North west, west and south west | Dawesley Creek, former<br>Brukunga Mine,<br>vacant / grazing land<br>beyond                                         | Brukunga Mine and Primary<br>Production |
| South, south-east and east      | Pyrites Road, vacant land, a tailings facility including dam and acid treatment plant, vacant / grazing land beyond | Brukunga Mine and Primary<br>Production |

Land use along Dawesley Creek was summarised in the Rural Solutions (2009) Rural Lands Investigations Report – Land Use and Economics, District Council of Mt Barker report as constituting grazing on modified pastures (96%), mining (2%) and residential (2%). The creek and river system of the surrounding area is described in Section 4.4.

#### 2.5 Previous investigations

The following environmental investigations have been reviewed for this investigation:

- DEM 2014, PIRSA Mining Operations Unit, Summary of Brukunga Groundwater Results (Excel spreadsheet file), Department of Energy and Mining, South Australia, 2014
- EES (2019), Site Contamination Audit Report (Restricted Scope): Brukunga Mine Site, Environmental Earth Sciences, October 2019.
- GHD (2019a) CFS Brukanga State Training Centre Environmental Investigation, Report for SA Country Fire Service, November 2019
- GHD (2020a) CFS Brukunga State Training Centre Preliminary Site Investigation, Report for SA Country Fire Service, 27 March 2020
- GHD (2020b) CFS Brukunga State Training Centre Off-site Groundwater Investigation, Report for SA Country Fire Service, 23 April 2020

The EES (2019) Audit Report was based on the following previous investigations reports:

- GHD (2010) Post Remediation Solute Transport Modelling, Report for Brukunga Mine Remediation
- ERM (2012), Hydrogeology summary Brukunga: TAG, Final. Report to DMITRE, November 2012
- URS (2013), Brukunga Phase 2 contaminated land investigation. Prepared for DMITRE, February 2013
- O'Kane Consultants Pty Ltd (2013), Brukunga pre-mine water quality determination, Prepared for DMITRE, March 2013
- SKM (2013) Brukunga Mine Remediation Program BR01-05. Technical Note 2C: Catchment Hydrological Modelling

- SKM (2013) Brukunga Mine Remediation Program BR01-06. Technical Note 2E: Embankment Design
- TAG (2015) Detailed design of the days Creek domain- Stage 1 of the progressive remediation of the Brukunga Mine Site. Prepared for DSD November 2015. Updated February 2018 (V08)
- URS (2015) Preliminary Remediation Action Plan, Former Brukunga Mine Site, Prepared for Department of State Development, 4 May 2015
- Jacobs (2015a) Brukunga Mine Remediation BR01-06 Days Creek Domain. Detailed Design, Draft Construction Management Plan, 22 June 2015
- Jacobs (2015b) Brukunga Mine Remediation BR01-06 Days Creek Domain. Detailed Design Development Report, 22 June 2015
- Golder Associates (2016), Three dimensional regional groundwater flow modelling Brukunga Mine Remediation Program. Report to DSD, February 2016.

#### 2.6 Summary of previous works

#### 2.6.1 DEM (2014) PIRSA Mining Operations Unit

Information obtained from the DEM, PIRSA Mining Operations Unit (2014) Summary of Brukunga Groundwater Results (Excel spreadsheet file) indicated that in August 2014 groundwater samples obtained from four wells BH33, BH34, H02 and BH19 were analysed for PFAS compounds.

The reported PFAS results were below the limit of reporting (LOR), except for elevated perfluorooctanoic acid (PFOA) concentrations identified in two groundwater monitoring wells located to the west of the CFS STC site

- BH33 (0.07 μg/L) located to the south-west of the CFS STC site; and
- BH34 (0.03 µg/L) located to the west of the CFS STC site.

These wells were originally installed with temporary polyvinyl chloride (PVC) casing, according to SKM borelogs presented in the Golder (2016) report, and their current status is unknown.

# 2.6.2 EES (2019) Site Contamination Audit Report for former Brukunga Pyrite Mine

In 2013, the Department of Primary Industries and Resources South Australia (now Department of Energy and Mining) commissioned the accredited Site Contamination Auditor Mr. Philip Mulvey to provide a site contamination audit report and statement for the Brukunga Pyrite Mine, which was issued in October 2019. The CFS STC site was outside of the audit site boundary. The audit objective was to determine the nature and extent of any site contamination remaining on or below the Mine and to determine the suitability of proposed mine remediation.

The scope of Environmental Earth Sciences (2019) audit report included:

- Review of historic information pertaining to the whole Brukunga mine with regard to the EPA SA Audit Guidance issued in support of the Environment Protection Act 1993. The intention of this was to give an opinion on the suitability of the proposed remedial options for the Mine.
- Audit the investigations pertaining to the Brukunga mine that relate to the issues under guidance and regulations to the Act (except for surface water discharge).

 Provide an opinion on what further delineation of extent and restoration of acid generation and its causes was necessary.

#### The findings included:

- Based on the review of available reports and auditor observations the main contamination issue related to discharge of acid mine drainage (AMD) to nearby watercourses, resulting from remnant pyritic materials from historic mining operations being exposed to moisture and oxygen.
- Pyrite and pyrrhotite bands occur naturally in the area, such that remedial strategies must be based on the determination of an appropriate value for reduced acid generation based on pre-mining levels.
- General site contamination from industrial processes of refuelling and storage of fuels, oils and lubricants was present.

The auditor conditions to protect human and environmental receptors were as follows:

- Access by the general public to the Brukunga Mine were to be restricted until remedial works were completed and it was demonstrated that the site was suitable.
- Water treatment to neutralise acidification to remain in place until it was demonstrated that flows meet adopted water quality criteria.
- The capacity for water treatment to neutralise acidification to remain in place until water quality criteria were met for a period of ten years or after the passing of two stream flow rain events following one twelve months drought, post remediation.
- In-stream water level and water quality monitoring, with telemetry to remain in place, with capacity to notify water users in the surrounding area of flow events with unsuitable water quality.
- Community consultation, information and feedback to be established.

The auditor recommendations were as follows:

- Auditor verification or equivalent expert review of compliance with the pre-remediation conditions to be conducted prior to commencement of remediation works.
- Audit or expert review to be undertaken on completion of the monitoring period post remediation that evaluates design components improvements for Dawesley Creek and Taylors Creek domains.
- Outcomes of Days Creek remediation was to be reviewed and incorporated into the design specifications for remediation plans for the Dawesley Creek and Taylors Creek domains.
- A suitable expert team and project management process was to be developed to ensure implementation of the Auditor conditions.

#### Other relevant information

- The main aquifer was described as a fractured-rock type that was considered to be relatively low yielding; and minor aquifers were found to occur as perched or shallow groundwater table systems in the unconsolidated Quaternary alluvium. These fill some parts of the drainage lines of the Brukunga Mine such as Dawesley Creek.
- The SKM 2009 report provided a summary of information on wells utilised for groundwater monitoring purposes at Brukunga. A total of 46 boreholes were recorded, of which only 29 were reported to be intact/ operational. Of these, there only appeared to be reliable information (i.e. knowledge of the screened interval and screened unit) available for 15 boreholes.

 Sludge generated by the water treatment plant was initially to be stored in stockpiles on the southern mine bench area. In the long term, this material was to be encapsulated within a cell in the wider Brukunga mine area.

#### 2.6.3 GHD (2019a) Environmental Investigation

GHD completed an Environmental Investigation on the CFS Brukunga State Training Centre between October and November 2019.

The scope of works completed by GHD included the following:

- Collection of three soil samples: one adjacent to the hotpads, one opposite the multi storey building in the central portion of the site and one opposite the Workshop in the north-west portion of the site.
- Collection of two composite concrete samples from two locations from Hotpad A and Hotpad B hardstand areas located in the so part of the site and used for firefighting training purposes.
- Collection of one water sample from on-site water storage tank 2.
- Collection of water samples from water in Acid Seepage Pond (ASP) (pre-treatment) and Acid Treatment Pond (ATP) (post treatment) to determine any effect on PFAS levels from acid treatment.
- Collection of seven water samples from along Dawesley Creek and associated settling ponds. Samples were collected upstream, adjacent to and down hydraulic gradient of the site.
- Collection of one sample from sludge waste located further to the south-west of the site.

Based on the findings of the environmental investigation, the following conclusions were made:

- PFAS concentrations were detected in concrete dust, pavers and soil surrounding the site
  as well as water held within a storage tank on-site and the adjacent Dawesley Creek. The
  distribution of PFAS on and adjacent to the site with consideration to the historical use of
  PFAS containing firefighting foam suggested the CFS training site was a source of PFAS to
  the environment.
- The distribution of PFAS within Dawesley Creek indicated that no upstream offsite source
  of PFAS was contributing to PFAS within the creek and the highest concentrations detected
  within the creek were detected adjacent to the southern corner of the site.
- PFAS was detected in water in ASP and ATP above the recreational criterion for the sum of perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS). A reduction in PFAS concentrations was observed post treatment, however this reduction did not alter the potential risk profile to sensitive receptors.
- PFAS was also detected downstream of the site, where water was reintroduced into
  Dawesley Creek post treatment. The concentration of PFAS detected at Pond 4 was higher
  than those detected in the ASP. This suggests PFAS concentrations within the creek
  system were likely to fluctuate with flow regimes.
- The reported concentrations of PFAS in Dawesley Creek were considered to threaten groundwater and a Section 83A notification was submitted in accordance with the South Australian Environment Protection Act 1993 (Gov SA 1993) to the SA Environment Protection Authority via email on 21 October 2019.

 Elevated concentrations of PFAS were detected in the concrete storage tanks used to hold fire training water resulting from PFAS entering the tank during fire training activities, as well as during wet weather events and leaching of PFAS from concrete surfaces.

#### 2.6.4 GHD (2020a) Preliminary Site Investigation

GHD conducted a Preliminary Site Investigation (PSI) for the CFS Brukunga STC that included the following:

- Desktop review of available historic and current site information (e.g. previous reports, aerial photographs, title deeds, geological maps, data bases and registers);
- A site inspection checking for signs of contamination and confirming features documented in the desktop review; interviews with relevant people with knowledge of the site;
- Preparation of a preliminary conceptual site model and discussion of identified activities with potential for PFAS containing firefighting foam use.

The PSI identified two potentially contaminating activities associated with PFAS that have impacted soil and surface water on and adjacent to the site as well as potentially impacting groundwater in the area. The historical activities included:

- Historical use of PFAS containing firefighting foam at the CFS STC
- Treatment and disposal of acidic and metalliferous drainage and sulfidic waste associated with the Brukunga Pyrite Mine.

The preliminary CSM indicated that incidental consumption and direct contact with surface water and groundwater used for irrigation and recreational purposes such as filling of swimming pools are potentially complete exposure pathways, as well as consumption of fruit and vegetables irrigated with PFAS contaminated groundwater by surrounding residents.

GHD concluded that PFAS contamination on-site and off-site exists that may potentially pose a risk to human health or the environment. GHD recommended further investigations to assess the extent of PFAS in groundwater and to identify and assess any potential risks to human health and the environment from PFAS site contamination in the context of relevant land uses for any affected off-site properties.

#### 2.6.5 GHD (2020b) Off-site Groundwater Investigation

GHD completed an Environmental Investigation on the CFS Brukunga STC in February 2020. The groundwater and surface water results of this investigation are shown in Figure 3).

The scope of works completed by GHD included the following:

- Locating, gauging and sampling of 17 monitoring wells using no flow techniques.
- Locating and sampling of surface water and sediment in Dawesley Creek.
- Sampling of produce (fruit, vegetables and meat) grown on- and off-site
- Laboratory analysis of 17 groundwater, two surface water, two sediment, one swimming pool and nine produce samples for PFAS and total dissolved solids (TDS, groundwater samples only).

Based on the findings of the investigation, the following conclusions were made:

 Reported PFOS concentrations exceeded the adopted freshwater screening criterion in all 15 tested groundwater monitoring wells within the Brukunga Mine and in one residential bore located 1.7 km south of the CFS STC site.

- The sum of PFHxS and PFOS concentrations in groundwater exceeded the drinking water screening criterion at ten locations, with the highest concentrations being reported for well H02, located directly south of the CFS STC site.
- The nature and off-site extent of PFAS impact in groundwater beneath the Brukunga Mine
  was practically delineated to the north and north-west and partially to the east, west and
  south. No delineation was found for surface water in Dawesley Creek.
- There was no clear delineation of PFAS associated with historical activities at the CFS STC site in groundwater down hydraulic gradient of the CFS STC site within the investigation area.
- PFAS impact in groundwater was found to extend at least 1.7 km down hydraulic gradient (south) of the CFS STC site, where PFAS concentrations exceeded the drinking water criterion in a private residential bore (well 6627-8333). However, PFAS concentrations in a private residential bore (6627-7520) located approximately 2.2 km down hydraulic gradient of the CFS STC site were below the limit of reporting.
- Stockpiles of sludge, generated by the AMD treatment plant, located along the central and southern bench at the foot of the highwall on the western side of the Mine had elevated PFAS concentrations and may be a secondary source of PFAS to groundwater up and across hydraulic gradient of the CFS STC site.
- PFAS concentrations in two Dawesley Creek water samples collected about 1.2 km and 1.25 km south of the CFS STC site on either side of the southern boundary of the Brukunga Mine exceeded the ecological (PFOS) and drinking water (sum of PFHxS and PFOS) screening criteria but were below the recreational criteria. It is considered likely that PFAS concentrations above the screening criteria extend further downstream of the Brukunga Mine in the surface water of Dawesley Creek.
- The sediment sample collected in Dawesley Creek within the southern boundary of the Brukunga Mine did not exceed the adopted screening criteria for commercial / industrial land use. However, the sum of PFHxS and PFOS concentrations in a sediment sample collected about 50 m south of the Brukunga Mine exceeded the screening criteria for residential land use with garden / soil access, which may be appropriate for the private land south of the Mine. It appears likely that PFAS impacts above the screening criteria may extend further down hydraulic gradient of the investigation area in the sediment of Dawesley Creek.
- PFAS concentrations in a private swimming pool, which is filled using groundwater from bore 6627-8333 downstream of the CFS STC site, exceeded the PFOS freshwater screening criterion but were below the recreational water screening criteria. The risk to human health from the recreational use of the swimming pool was considered to be negligible.
- PFAS were not identified in an apple grown at the CFS STC or off-site in biota (fruit, vegetables and meat from a locally grown lamb) sampled at two private properties downstream of the CFS STC site. Biota produced on-site and off-site down hydraulic gradient are not considered to represent a complete pathway between the impacted surface water or groundwater and human receptors.
- The reported PFAS results for water samples before and after the total oxidisable precursor assay (TOPA) indicate the absence of oxidisable or bio-transformable precursors. Thus, PFAS in the water samples appear to be stable.
- A Section 83A notification was submitted for the CFS Training Centre (28 Pyrites Road, Brukunga, SA, CT5825/147) and for the residential property on 260 Pyrites Road,

Brukunga, SA (CT5557/777) in accordance with the Environmental Protection Act 1993 to the South Australian Protection Authority via email on 26 February 2020.

To further develop the conceptual site model and determine the extent of PFAS contamination, the following was recommended:

- Soil sampling on the CFS STC site to assess the nature and extent of PFAS within the historical use and storage areas.
- Flux testing on concrete at each hotpad on the CFS STC site to assess PFAS leaching from the concrete structures.
- Additional groundwater monitoring wells to be installed across the investigation area to delineate the lateral extent of PFAS in groundwater.
- Sampling of the Dawesley Creek diversion south of the CFS STC site.
- Sampling of groundwater monitoring wells down hydraulic gradient of the investigation area.
- Further sampling of surface water in Dawesley Creek down hydraulic gradient to the south of the site.
- Sampling of private groundwater wells and fruit and vegetables at residents' request, subject to the resident's informed consent and endorsement by the CFS and the auditor.

### Scope of Work

#### 3.1 Investigation Rationale

To further develop the conceptual site model and determine the extent of PFAS contamination, GHD conducted further investigations in accordance with the SAQP (GHD 2020c) including:

- Flux testing on concrete at each hotpad on the CFS STC site to determine the contaminant mass flux from the concrete structures on the CFS STC site during a simulated 5 mm rainfall event.
- Soil sampling on the CFS STC site to assess the nature and extent of PFAS within the historical use and storage areas.
- Concrete dust sampling in one building where PFAS containing substances were historically stored and that had not been sampled previously.
- Installation and sampling of additional groundwater monitoring wells to delineate the lateral extent of PFAS in groundwater.
- Sampling of the Dawesley Creek diversion drain in the middle and south of the CFS STC site.
- Further sampling of surface water and sediment in Dawesley Creek, both adjacent to the CFS STC site and down hydraulic gradient to the south of the Brukunga Mine to determine; if exposure pathways are complete; to delineate the lateral extent of PFAS; and to assess temporal changes in PFAS between wetter and drier periods.
- Sampling of major water courses upstream of the impacted Dawesley Creek to establish the regional background of PFAS.
- Further sampling of sludge waste stockpiles along the bench at the foot of the highwall on the western side of the Mine and adjacent to the sludge drying ponds and the emergency sludge overflow pond on the eastern side of the mine to determine the nature and extent of PFAS contamination in this material.

The sampling locations are illustrated in Figure 6a to Figure 10 and the rationale for the selection of each sampling location is provided in Table 3-1 to Table 3-7.

#### 3.1.1 Concrete Dust

The rationale for the concrete dust sampling locations (Figure 6a) is summarised in Table 3-1.

**Table 3-1 Concrete dust sampling rationale** 

| Sample ID     | Location                     | Rationale                                                            |
|---------------|------------------------------|----------------------------------------------------------------------|
| SB02_Concrete | Inside 'main store' building | Determine if concrete on site has PFAS impacts and is a PFAS source. |

#### Note:

\* Sampling location CD01 in SAQP renamed SB02\_Concrete as the concrete sample was taken at location of soil bore SB02.

#### 3.1.2 Flux Testing

The rationale for the flux testing locations is summarised in Table 3-2. Rainfall simulation areas for flux sampling at Hotpads A and B are shown in Figure 6a.

**Table 3-2 Flux testing rationale** 

| Sample ID                                                                                                     | Location                                                                                  | Rationale                                                                                                            |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Samples FX01 - FX07 were collected at 10 minutes intervals over 70 minutes and tested for PFAS                | Hotpad_A ¹ - concrete slab in the southern part of the site                               | Determine the PFAS mass flux from the concrete structure via surface run-off during a simulated 5 mm rainfall event. |
| Samples FX08 – FX13 were collected at approx. 10 minutes intervals; Samples FX08 & FX13 were tested for PFAS) | Hotpad_B <sup>2</sup> - area to<br>the north of Hotpad A<br>covered by concrete<br>pavers | Determine the PFAS mass flux from the paved area via surface run-off during a simulated 5 mm rainfall event.         |

#### Note:

#### 3.1.3 Soil Sampling

The rationale for the soil sampling locations (shown in Figure 6a) is summarised in Table 3-3.

**Table 3-3 Soil sampling rationale** 

| Sample<br>ID | Location                                                                                              | Rationale                                                                                                                                           |  |
|--------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| On-site      | On-site                                                                                               |                                                                                                                                                     |  |
| SB02         | Inside 'main store' building                                                                          | Determine the vertical extent of PFAS contamination in the soil profile underlying the concrete where PFAS containing foam was historically stored. |  |
| SB03         | Between the office building and Hotpad B, approximately 30 m to the west of the multistorey building. | Determine the vertical extent of PFAS contamination in the soil profile where PFAS containing foam was historically used.                           |  |
| SB05         | Hotpad B                                                                                              | Determine the vertical extent of PFAS contamination in the soil profile underlying                                                                  |  |
| SB06         | Hotpad A                                                                                              | the concrete where PFAS containing foam was historically used.                                                                                      |  |
| Off-site     |                                                                                                       |                                                                                                                                                     |  |
| SB01         | Between western CFS STC site boundary and Dawesley Creek.                                             | Determine if water runoff from the CFS STC site has impacted the soil.                                                                              |  |
| SB04         | Between western CFS STC site<br>boundary and Dawesley Creek,<br>approximately 90 m south of SB01.     | Determine the vertical extent of PFAS contamination in the soil profile.  Determine if the exposure pathway from the                                |  |
| SB07         | Between western CFS STC site<br>boundary and Dawesley Creek,<br>approximately 75 m south of SB04.     | CFS STC site via the soil to Dawesley Creek is complete.                                                                                            |  |

<sup>&</sup>lt;sup>1</sup> Sampling location FX02 in the SAQP was renamed Hotpad A in this investigation.

<sup>&</sup>lt;sup>2</sup> Sampling location FX01 in the SAQP was renamed Hotpad B in this investigation.

#### 3.1.4 Sludge waste pile sampling

The rationale for the sludge waste pile sampling locations (Figure 7) is summarised in Table 3-4.

Table 3-4 Sludge waste pile sampling rationale

| ID              | Location                                                                                                                                        | Rationale                                                                                                 |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| SW01            | Northern boundary of the sludge waste stockpile on the southern bench of the Brukunga Mine, south-west of the CFS STC site.                     | Assess the nature and extent of PFAS in sludge stockpiles located                                         |  |  |
| SW02            | Sludge waste stockpile on the southern bench of the Brukunga Mine, about 50 m south of SW01.                                                    | across the Brukunga mine"                                                                                 |  |  |
| SW03            | Sludge waste stockpile on the southern bench of the Brukunga Mine, about 50 m south of SW02.                                                    |                                                                                                           |  |  |
| SW04            | Eastern boundary of the sludge waste stockpile on the southern bench of the Brukunga Mine, about 50 m south-east of SW03.                       |                                                                                                           |  |  |
| SW05            | Sludge waste stockpile on the southern bench of the Brukunga Mine, about 50 m south of SW03.                                                    |                                                                                                           |  |  |
| SW06            | Sludge waste stockpile on the southern bench of the Brukunga Mine, about 50 m south of SW05.                                                    |                                                                                                           |  |  |
| SW07            | Eastern boundary of the sludge waste stockpile on the southern bench of the Brukunga Mine, about 50 m south-east of SW06.                       |                                                                                                           |  |  |
| SW08            | Southern boundary of the sludge waste stockpile on the southern bench of the Brukunga Mine, about 50 m south of SW07.                           |                                                                                                           |  |  |
| SW09            | Southern boundary of the sludge waste stockpile on the southern bench of the Brukunga Mine.                                                     |                                                                                                           |  |  |
| SW10 –SW15      | Stockpile of loose sludge material (8 m long x 8 m wide x 4 m high) next to the emergency sludge overflow pond to the east of the CFS STC site. | Assess the nature and extent of PFAS contamination in the vicinity of the emergency sludge overflow pond. |  |  |
| SW16 –<br>SW20* | Sludge waste stockpiles located in the vicinity of the six sludge drying ponds to the east of the CFS STC site.                                 | Assess the nature and extent of PFAS in sludge stockpiles located across the Brukunga mine"               |  |  |

#### Note:

#### 3.1.5 Brukunga Mine Diversion Drain

The rationale for the Brukunga mine diversion drain surface water sampling locations (Figure 6a) is summarised in Table 3-5.

Table 3-5 Brukunga mine diversion drain surface water sampling rationale

| ID    | Location                                                              | Rationale                                                            |
|-------|-----------------------------------------------------------------------|----------------------------------------------------------------------|
| DIV01 | Diversion drain passing underneath the CFS STC site; access via grate | Determine if the diversion drain is a preferential pathway for PFAS. |

<sup>\*</sup> Sample name varies from SAQP (see section 3.2).

### 3.1.6 Groundwater Investigation

The rationale for the groundwater well installation and sampling locations (Figure 8) is summarised in Table 3-6.

**Table 3-6 Groundwater Investigation rationale** 

| ID            | Location                                                                                                                                                                                     | Rationale                                                                                                                                            |  |  |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Onsite Wells  | Onsite Wells                                                                                                                                                                                 |                                                                                                                                                      |  |  |  |  |
| GW01          | Northern CFS STC site boundary.                                                                                                                                                              | To delineate the PFAS extent in groundwater to the north. To determine if there are off-site PFAS sources up hydraulic gradient of the CFS STC site. |  |  |  |  |
| Offsite Wells | S                                                                                                                                                                                            |                                                                                                                                                      |  |  |  |  |
| GW02          | To the east of the CFS STC site, on the Watts Road verge at the northern boundary of the Mine near the water treatment plant.                                                                | To delineate the PFAS extent in groundwater to the north of the tailings storage facility and the acid treatment plant.                              |  |  |  |  |
| GW03          | To the east of the CFS STC site, near the eastern boundary of the Mine.                                                                                                                      | To delineate the PFAS extent in groundwater to the east of the tailings storage facility.                                                            |  |  |  |  |
| GW04          | To the east of the CFS STC site, to the south of the tailings area used to dry sludge generated by the water treatment plant, at the southern boundary of the Mine.                          | To delineate the off-site PFAS extent in groundwater to the south of the tailings storage facility.                                                  |  |  |  |  |
| GW05          | 289 Pyrites Road, Brukunga, on the road verge; to the south of the CFS STC site and the Mine.                                                                                                | To delineate the off-site PFAS extent in groundwater to the south (down hydraulic gradient) and to the east of Dawesley Creek.                       |  |  |  |  |
| GW06          | Lot 294 Pyrites Road, Brukunga, on the road reserve south of the property near the boundary with 113 and 93 McIntyre Road, Brukunga; to the south of the CFS STC site and the Brukunga Mine. | To delineate the off-site PFAS extent in groundwater to the south (down hydraulic gradient) and to the east of Dawesley Creek.                       |  |  |  |  |
| GW07          | 260 Pyrites Road, Brukunga, near the south-western property boundary on the road verge; to the south of the CFS STC site and the Brukunga Mine.                                              | To delineate the off-site PFAS extent in groundwater to the south (down hydraulic gradient) and to the west of Dawesley Creek.                       |  |  |  |  |
| H15           | Lot 54 Pyrites Road, Brukunga, existing well on private land targeting deeper groundwater south of the tailings storage facility; to the south-east of the CFS STC site.                     | To delineate the off-site PFAS extent in groundwater to the south-east of the CFS STC site.                                                          |  |  |  |  |
| KAN23         | Lot 100 Peggy Buxton Road, Brukunga, existing well on private land; to the west of the CFS STC site and the Mine.                                                                            | To delineate the off-site PFAS extent in groundwater to the west of the CFS STC site and the Mine.                                                   |  |  |  |  |
| KAN26         | 203 Peggy Buxton Road, Brukunga, existing well on private land; to the west of the CFS STC site and the Mine.                                                                                | To delineate the off-site PFAS extent in groundwater to the west of the CFS STC site and the Mine.                                                   |  |  |  |  |

Where groundwater investigations were undertaken on private land, informed consent was obtained prior to undertaking groundwater investigations.

#### 3.1.7 Surface Water and Sediment

The rationale for the surface water and sediment sampling locations (Figures 6a and 9a) is summarised in Table 3-7.

Table 3-7 Surface water and sediment sampling rationale

| Sample ID | Location                                                                                                                           | Sample type                | Rationale                                                                      |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------|
| CREEK_4   | Dawesley Creek. Adjacent to western CFS STC site boundary, downstream from SB01 and GHD (2019) sampling location Creek 1.          | Surface water and sediment | Determine if the exposure pathway from the CFS STC                             |
| CREEK_5   | Dawesley Creek. Adjacent to western CFS STC site boundary, downstream from SB04 and GHD (2019) sampling location Creek 2.          | Surface water and sediment | site via surface<br>runoff or the soil<br>to Dawesley<br>Creek is              |
| CREEK_6   | Dawesley Creek. Adjacent to western CFS STC site boundary, downstream from SB07 and upstream GHD (2019) sampling location Creek 3. | Surface water and sediment | complete and assess temporal changes in PFAS between wetter and drier periods. |
| DC02      | Dawesley Creek at the Pyrites Road<br>Bridge, approx. 960 m downstream from<br>GHD (2019) sampling location DC01.                  | Surface water and sediment | Delineate the downstream PFAS extent in                                        |
| DC03      | Dawesley Creek at an unnamed road, near PFAS-impacted private bore 6627-8333 (Figure 3), approximately 540 m downstream from DC02. | Surface water and sediment | surface water<br>and sediment<br>off-site.                                     |
| DC04      | Dawesley Creek at an unnamed road, near private bore 6627-7520 (Figure 3), approximately 330 m downstream from DC03.               | Surface water and sediment |                                                                                |
| DC05      | Dawesley Creek at McIntyre Road, approx. 1.4 km downstream from DC04.                                                              | Surface water and sediment |                                                                                |
| DC06      | Dawesley Creek at Hawthorn Street, approx. 480 m downstream from DC05.                                                             | Surface water and sediment |                                                                                |
| DC07      | Dawesley Creek at Old Princess Highway, approx. 480 m downstream from DC06.                                                        | Surface water and sediment |                                                                                |
| DC08      | Dawesley Creek at Pastoral Road, approx. 2.7 km downstream from DC07.                                                              | Surface water and sediment |                                                                                |

#### 3.2 Variations to SAQP

In variation to the SAQP, the position of soil sampling locations SB03 and SB06 were changed as shown in Figure 6a:

- SB03 was moved approximately 30 m to the west of the multistorey building. Due to space restrictions it was not possible to drill this soil bore inside the multistorey building.
- SB06 was moved approximately 20 m to the western side of Hotpad A to capture PFAS impact in the area closer to Dawesley Creek.

The sludge waste sampling locations were adjusted based on site conditions to target the observed sludge stockpiles. The actual sludge sampling locations are shown in Figure 7.

#### 3.2.1 Inclusions to SAQP

During the investigation additional samples were collected and analysed, in variation to the SAQP. The additional samples, their locations and the justification for their inclusion in this investigation are listed in Table 3-8. The additional sampling locations are included in Figure 6a,

Figure 6b, Figure 6c, Figure 7, Figure 8, Figure 9a to 9d and Figure 10, as indicated in Table 3-8.

In September 2020, two additional monitoring rounds were conducted to collect additional background samples at the reference sites included in Table 3-8.

**Table 3-8 Additional Sample Locations** 

| Sample type                      | ID                                            | Location                                                                                                                                             | Justification                                                                                                                                                               | Figure<br>Reference |
|----------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Soil                             | SB08                                          | Eastern side of<br>Hotpad A                                                                                                                          | Determine the vertical extent of PFAS contamination in the soil profile underlying the concrete at the western (relocated SB06) and at the eastern (SB08) side of Hotpad A. | Figure 6a           |
| Soil                             | Garden1 –<br>Garden4                          | Disused vegetable<br>garden located on<br>296 Pyrites Road,<br>Brukunga                                                                              | At request of landowners following approval by CFS and the auditor.                                                                                                         | Figure 6b           |
| Concrete core                    | SB05_Concrete,<br>HPB1 – HPB5                 | Hotpad B                                                                                                                                             | Collect a compre-<br>hensive data set                                                                                                                                       | Figure 6c           |
| Concrete core                    | SB06_Concrete<br>SB08_Concrete<br>HPA1 – HPA5 | Hotpad A                                                                                                                                             | (concrete, soil<br>and flux tests) for<br>PFAS at both<br>hotpads.                                                                                                          | Figure 6c           |
| Concrete core                    | Tank1/01b –<br>Tank1/03b                      | Water storage tank 1                                                                                                                                 | Determine if PFAS from                                                                                                                                                      | Figure 6c           |
| Concrete                         | Tank4_concrete<br>Tank4/01b –<br>Tank4/03b    | Water storage tank 4                                                                                                                                 | contaminated water contained within the tank                                                                                                                                | Figure 6c           |
| Concrete core                    | Tank5_concrete                                | Water storage tank 5                                                                                                                                 | has adsorbed to the concrete                                                                                                                                                | Figure 6c           |
| Concrete core                    | Tank7/01b –<br>Tank7/03b                      | Water storage tank 7                                                                                                                                 | matrix.                                                                                                                                                                     | Figure 6c           |
| Surface<br>water and<br>sediment | DC02A                                         | Dawesley Creek at<br>296 Pyrites Road,<br>Brukunga, approx.<br>90 m downstream of<br>DC02                                                            | Sampled at request of the landowners and to inform the PFAS extent in                                                                                                       | Figure 9a           |
| Surface<br>water and<br>sediment | DC06a, DC06b                                  | Dawesley Creek at<br>16 Hawthorn St,<br>Dawesley, between<br>Hawthorn St and Old<br>Princess Hwy,<br>approx. 90 m and<br>340 m downstream of<br>DC06 | surface water and sediment.                                                                                                                                                 | Figure 9a           |
| Surface<br>water and<br>sediment | DC09                                          | Dawesley Creek<br>south of Kanmantoo<br>Bluestone Quarry,<br>approx. 6.6 km<br>downstream of DC08                                                    | Delineate the downstream PFAS extent in surface water and sediment off-site.                                                                                                | Figure 9b           |

| Sample type                      | ID    | Location                                                                                                                                                                                                                            | Justification                                                                                          | Figure<br>Reference |
|----------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------|
| Surface<br>water and<br>sediment | DC10  | Dawesley Creek,<br>approx. 500 m<br>downstream of DC09                                                                                                                                                                              |                                                                                                        | Figure 9b           |
| Surface<br>water and<br>sediment | DC11  | Dawesley Creek,<br>approx. 1.5 km<br>downstream of DC10                                                                                                                                                                             |                                                                                                        | Figure 9b           |
| Surface<br>water and<br>sediment | DC13  | Dawesley Creek at<br>Balyarta Train Station,<br>approx. 3.2 km<br>downstream of DC11                                                                                                                                                |                                                                                                        | Figure 9b           |
| Surface<br>water and<br>sediment | DC14  | Dawesley Creek, at<br>Back Callington Road,<br>approx. 850 m<br>downstream of DC13                                                                                                                                                  |                                                                                                        | Figure 9b           |
| Surface<br>water and<br>sediment | DC15  | Dawesley Creek, at<br>Éclair Mine Road and<br>directly north of South<br>Eastern Freeway,<br>approx. 2.9 km<br>downstream of DC14                                                                                                   |                                                                                                        | Figure 9b           |
| Surface<br>water and<br>sediment | DC16  | Dawesley Creek, at<br>Éclair Mine Road and<br>south of the South<br>Eastern Freeway,<br>approx. 1.1 km<br>downstream of DC15                                                                                                        |                                                                                                        | Figure 9c           |
| Surface<br>water and<br>sediment | DC17  | Dawesley Creek,<br>approx. 800 m<br>downstream of DC16<br>and approx. 800 m<br>upstream of<br>confluence with Mt<br>Barker Creek                                                                                                    |                                                                                                        | Figure 9c           |
| Surface<br>water and<br>sediment | DC17A | Mt Barker Creek, at<br>430D Callington<br>Road, Salem, location<br>of gauging station<br>A4260679, approx.<br>5.2 km downstream of<br>confluence with<br>Dawesley Creek and<br>470 m upstream of<br>confluence with<br>Bremer River | Sampled to<br>delineate the<br>downstream<br>PFAS extent in<br>surface water and<br>sediment off-site. | Figure 9c           |
| Surface<br>water and<br>sediment | DC18  | Bremer River, at<br>Callington Road,<br>approx. 120 m<br>downstream of<br>confluence with Mt<br>Barker Creek                                                                                                                        | Delineate the<br>downstream<br>PFAS extent in<br>surface water and<br>sediment off-site.               | Figure 9c           |
| Surface<br>water and<br>sediment | DC19  | Bremer River, at<br>Jaensch Road,<br>approximately 5.2 km<br>downstream of DC18                                                                                                                                                     |                                                                                                        | Figure 9c           |

| Sample type      | ID                                       | Location                                                                                                                                                     | Justification                                                                                                                          | Figure<br>Reference |
|------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Groundwater      | C04A                                     | Location of groundwater well C04 on private land at Lot 54 Pyrites Rd, Brukunga, adjacent the southern boundary of the eastern portion of the Brukunga Mine. | Replace lost well C04, formerly located on the same property, and delineate PFAS impacts to the south of the eastern part of the Mine. | Figure 8            |
| Groundwater      | 6627-5944                                | Private groundwater<br>bore at 296 Pyrites<br>Road, Brukunga                                                                                                 | Sampled twice at request of landowner                                                                                                  | Figure 8            |
| Groundwater      | 6627-7126<br>(Hawthorn1)                 | Private groundwater<br>bore at 16 Hawthorn<br>Street, Dawesley                                                                                               | Sampled at request of landowner                                                                                                        | Figure 8            |
| Groundwater      | 6627-11131                               | Private groundwater<br>bore at 483 Ironstone<br>Range Road,<br>Petwood                                                                                       | Sampled at request of landowner                                                                                                        | Figure 8            |
| Sludge           | SS01, SS02,<br>SS08, SS09                | Surface samples on northern bench                                                                                                                            | Assess presence of PFAS in sludge                                                                                                      | Figure 7            |
| Sludge           | SS03 – SS07<br>SS10 – SS17<br>SS21, SS22 | Surface samples from stockpiles on northern bench                                                                                                            | stockpiles within<br>the former<br>Brukunga Mine,                                                                                      | Figure 7            |
| Sludge           | SS18 – SS20                              | Material beneath<br>black lining of waste<br>rock piles in northern<br>bench                                                                                 | which were<br>observed to have<br>similar colour and<br>texture to sludge                                                              | Figure 7            |
| Sludge           | SS23 – SS30                              | Stockpiles in the southern extension WRD near the southern Mine boundary                                                                                     | originating from the water treatment plant.                                                                                            | Figure 7            |
| Brukunga Mir     | ne Seepage Water                         | sampling locations                                                                                                                                           |                                                                                                                                        |                     |
| Seepage<br>Water | WW01                                     | Water collection point<br>at the base of the<br>tailings dam adjacent<br>to the Acid Seepage<br>Ponds                                                        | Determine if seepage water from the tailings dam is impacted with PFAS.                                                                | Figure 10           |
| Seepage<br>Water | WW02                                     | Water collection point<br>'B notch' at the base<br>of the tailings dam<br>adjacent to the Acid<br>Seepage ponds, north<br>of WW01                            |                                                                                                                                        | Figure 10           |
| Seepage<br>Water | WW03                                     | Southern base of the<br>South WRD adjacent<br>to South Hill Road                                                                                             | Determine if seepage water from the South                                                                                              | Figure 10           |
| Seepage<br>Water | WW04                                     | South-western base of the South WRD adjacent to South Hill Road                                                                                              | WRD is impacted with PFAS.                                                                                                             | Figure 10           |
| Seepage<br>Water | WW05                                     | Northern edge of<br>North Cut pit, off West<br>Hill Road                                                                                                     | Determine if seepage water from the North                                                                                              | Figure 10           |
| Seepage<br>Water | WW06                                     | Western edge of<br>North Cut pit, off West<br>Hill Road                                                                                                      | Cut pit is impacted with PFAS.                                                                                                         | Figure 10           |
|                  |                                          |                                                                                                                                                              |                                                                                                                                        |                     |

| Sample type                      | ID                                                     | Location                                                                                                                                    | Justification                                                                                                                                                      | Figure<br>Reference     |  |  |
|----------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
| Seepage<br>Water                 | WW07                                                   | South-western corner of South Cut pit, off West Hill Road.                                                                                  | Determine if seepage water from the South Cut pit is impacted with PFAS.                                                                                           | Figure 10               |  |  |
| Upstream sur                     | Upstream surface water and sediment sampling locations |                                                                                                                                             |                                                                                                                                                                    |                         |  |  |
| Surface<br>water and<br>sediment | DC-UP01                                                | Dawesley Creek, at<br>Military Road, approx.<br>2.1 km upstream of<br>the CFS STC                                                           | Determine PFAS background levels.                                                                                                                                  | Figure 9a               |  |  |
| Surface<br>water and<br>sediment | DC-UP02                                                | Dawesley Creek at<br>Moore Road, approx.<br>690 m upstream of<br>DC-UP01                                                                    |                                                                                                                                                                    | Figure 9a               |  |  |
| Reference site                   | e / background loc                                     | cations within Bremer R                                                                                                                     | iver catchment                                                                                                                                                     |                         |  |  |
| Surface<br>water and<br>sediment | NC01                                                   | Nairne Creek at<br>Ironstone Range<br>Road, approx. 740 m<br>upstream of<br>confluence with<br>Dawesley Creek<br>(between DC11 and<br>DC13) | Determine PFAS background levels.                                                                                                                                  | Figure 9c               |  |  |
| Surface<br>water and<br>sediment | NC02                                                   | Nairne Creek at<br>Ironstone Range<br>Road, Petwood,<br>approx. 1.3 km<br>upstream of NC01                                                  |                                                                                                                                                                    | Figure 9c               |  |  |
| Surface<br>water and<br>sediment | MBC01                                                  | Mt Barker Creek<br>approx. 100 m<br>upstream of                                                                                             | Determine PFAS background levels and derive catchment specific assessment criteria in lieu of the PFAS NEMP 2020 Freshwater 99% species protection guideline value | Figure 9c,<br>Figure 9d |  |  |
| Surface<br>water                 | MBC01_A,<br>MBC01_B,<br>MBC01_C                        | confluence with Dawesley Creek, access via easement located in Lot 70 Samuels Road, Callington                                              |                                                                                                                                                                    | Figure 9d               |  |  |
| Surface<br>water and<br>sediment | MBC02                                                  | Mt Barker Creek<br>approx. 11.3 km<br>upstream of MBC01,                                                                                    |                                                                                                                                                                    | Figure 9c,<br>Figure 9d |  |  |
| Surface<br>water                 | MBC02_A,<br>MBC02_B,<br>MBC02_C                        | access via easement<br>located adjacent<br>106 Blue Wren Lane,<br>Wistow.                                                                   | for PFOS.                                                                                                                                                          | Figure 9d               |  |  |
| Surface<br>water and<br>sediment | BR01                                                   | Bremer River at<br>Samuels Road,<br>approx. 830 m<br>upstream of<br>confluence with Mt<br>Barker Creek                                      |                                                                                                                                                                    | Figure 9c,<br>Figure 9d |  |  |
| Surface<br>water                 | BR02, BR02_A,<br>BR02_B,<br>BR02_C                     | Bremer River beneath<br>South Eastern<br>Freeway, approx.<br>1.1 km upstream of<br>BR01                                                     |                                                                                                                                                                    | Figure 9d               |  |  |

| Sample type             | ID                           | Location                                                                                    | Justification                                                            | Figure<br>Reference                                |
|-------------------------|------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|
| Surface<br>water        | BR03_A,<br>BR03_B,<br>BR03_C | Bremer River at<br>Bridge St, Callington,<br>approx. 1.3 km<br>upstream of BR02             |                                                                          | Figure 9d                                          |
| Water from storage tank | Tank1 to Tank7               | Seven concrete water<br>storage tanks at the<br>south-western corner<br>of the CFS STC site | Obtain updated data on PFAS concentrations in all storage tanks on-site. | Tanks<br>shown in<br>Figure 6a<br>and<br>Figure 6c |

Where soil, groundwater and/or surface water investigations were undertaken on private land, informed consent forms (Appendix A) were obtained prior to undertaking these investigations.

A selected number of surface water samples from Dawesley Creek, Mt Barker Creek and Bremer River was analysed for the full "long" PFAS analytical suite to determine the "fingerprint" of different PFAS sources contributing the water quality in the downstream reaches of Bremer River.

#### 3.2.2 Exclusions to SAQP

The following sampling locations listed in the SAQP (GHD 2020c) were excluded from the scope of this investigation. The reasons for excluding the locations are provided in Table 3-9.

**Table 3-9 Exclusions from the SAQP** 

| Sample<br>Type | ID    | Location                                                                                                          | Justification                                                                                          |
|----------------|-------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Sediment       | DC02  | Dawesley Creek at the Pyrites Road Bridge, south of the site.                                                     | Bridge too high to reach with extendable arm; no site access due to fences on neighbouring properties. |
| Sediment       | DC06  | Dawesley Creek at Hawthorn Street                                                                                 | Creek bed lined with concrete and no sediment at location.                                             |
| Groundwater    | H10   | 289 Pyrites Road, Brukunga, existing DEM well on private land                                                     | Access denied by landowner.                                                                            |
| Groundwater    | GW08  | 289 Pyrites Road, Brukunga, near the western property boundary, to the south and west of Dawesley Creek           | Access denied by landowner.                                                                            |
| Groundwater    | KAN27 | Lot 100 Peggy Buxton Road, Brukunga, existing well on private land, to the west of the CFS STC site and the Mine. | Could not locate                                                                                       |
| Groundwater    | KAN28 | Lot 100 Peggy Buxton Road, Brukunga, existing well on private land, to the west of the CFS STC site and the Mine. | Could not locate                                                                                       |

PFAS laboratory analyses were undertaken as part of the 2020 scope of work for the following primary samples:

- 15 groundwater samples
- 58 surface water samples
- seven seepage water samples
- 23 soil samples
- 24 concrete core samples

- one concrete dust sample
- 29 sediment samples
- 61 sludge samples
- nine concrete flux samples
- seven water storage tank samples.

In addition, PFAS leachability testing was conducted on six sludge waste samples and 21 concrete core samples. Leach testing on sludge samples was completed using the toxicity characteristic leaching procedure (TCLP) at pH 4.9. Concrete core samples were leach tested using the Australian standard leaching procedure (ASLP as per AS 4439.3) with water at pH 7. For concrete core samples collected from the water storage tanks in in November 2020 the leaching environment assessment framework (LEAF) methods of leaching, in accordance with USEPA methods SW846 1313, 1314, 1315 or 1316, were used with water at pH 7.

# 4. Geology and Hydrogeology

## 4.1 Topography

The regional topography is presented in the South Australia 1:50,000 topographic series (map sheets Echunga 6627-1 and Onkaparinga 6628-2) (SA DEH 2001).

The topography of the CFS STC site and its immediate vicinity is dominated by low hills with undulating upper slopes, sometimes with relatively flat summit surfaces, moderately inclined hillslopes and some short steep slopes. The topography of the Brukunga Mine has been significantly altered by human interference, with large waste rock dumps and sheer cliff faces.

## 4.2 Geology

## 4.2.1 Regional Geology

The geological information is largely based on 1:50,000 scale geological mapping completed by the Geological Survey of South Australia in the late 1970s to mid-1980s over the Onkaparinga (SA DME 1979) and Echunga (SA DME 1985) map sheet areas.

The underlying stratigraphic unit identified by the Geological Map of the Adelaide Region (at the site is classified as the Tapanappa Formation, typically characterised by medium to dark grey, thick-bedded to laminated, generally fine- to coarse-grained metasandstone; outcrops of small-scale, lenticular conglomerate beds, frequently cross-bedded, are associated with coarser-grained sandstone near the top of formation.

### 4.2.2 Local Geology

Twelve DEM well logs (GHD 2020b) from 4 m to 14 m deep wells within the Brukunga Mine describe the local geology as generally consisting of grey coloured fine grained quartz mica schist overlain by silty sand to 1-4 metres below ground level (m bgl). While not specified as part of the Tapanappa Formation, schist is a component described in the Kanmantoo Group of which the Tapanappa Formation is part of.

Driller logs obtained from the Department for Environment and Water's (DEW) WaterConnect database (DEW 2020) for wells in the Brukunga mine's Tailings Storage Facility (TSF) show fill material down to depths between 17.2 and 32 m bgl, described as backfill tailings. Golder (2016) described the tailings materials as silts, clayey silt and silty sands.

Driller logs available from the DEW's WaterConnect database for bores within 2 km of the site also correlate with the expected local geology with rock, schist and quartzite being most of the lithology recorded.

During the installation of eight groundwater monitoring wells in the investigation area, which were between 8 m and 23 m deep, fill material mostly consisting of clayey sand with gravels or a mixture of sand, quartzite, silt stone and schist was encountered up to 2.7 m bgl. Underlying the fill, pale brown to pale grey weathered schist with silver mica was the predominant material. The bore logs for two wells, one located near the eastern boundary of the Brukunga Mine and one located on farm land south of the tailings dam, recorded up to 9.6 m thick layers of medium to dark grey quartzite over pale brown schist or pale brown sand and quartzite. At one location approximately 2 km south of the CFS STC site, pale to medium grey schist was overlain by pale brown sand to 1.9 m bgl and white to yellow sandstone to 5.5 m bgl.

The bore logs for monitoring wells installed during this investigation as well as all bore logs for previously installed wells in the investigation area that have been provided to GHD, irrespective

of their current status or if they were sampled or not, are provided in Appendix B. Bore logs for wells KAN12, KAN23, KAN26, KAN41, KAN45 and KAN52 were not available.

Soils encountered on-site during soil sampling as part of this investigation consisted of sand, gravels and clays, which appeared to be natural materials used as fill material to level the site. Bores refused on rock, which appeared to follow the natural topography, with depths ranging from 0.5 m bgl to 3.8 m bgl.

Off-site soil bores adjacent to the eastern boundary of the CFS STC site all refused at shallow depths ranging between 0.3 m bgl and 1.1 m bgl on rock. Soils consisted of sandy clay, to sandy clay with some gravels.

## 4.3 Hydrogeology

### 4.3.1 Regional hydrogeology

Other than narrow, thin deposits of alluvium along major drainage lines, the main regional aquifer is within the fractured bedrock. Bore yields are generally low (SKM 2008) with a maximum air-lift yield of about 0.25 L/sec. Many monitoring boreholes drilled at the site had no measurable yield.

A search of the PIRSA Drill Hole Enquiry System (DES) data (GHD, 2008) showed there were 31 wells with yield data within a 3 km radius of the mine centre (Figure 4-1), with a median yield of 0.33 L/s. This yield may, however, be an over-estimate, as it only includes boreholes completed as wells, and excludes "dry" holes. Conversely, the data does include some monitoring wells installed at the mine. The highest-yielding well (private irrigation well 6628-21783 shown on Figure 3, 4.5 L/s) is within an area mapped (1:50,000) as a large breccia zone, which cuts east-west across the regional structure.

In areas not impacted by mining activities, recorded total dissolved solids (TDS) in groundwater samples range from 2,000 to 3,000 mg/L. This is consistent with an average for 31 wells (PIRSA DES data) within a 3 km radius of approximately 2,000 mg/L. The elevated salinities and low yields suggest relatively evapotranspiration relative to recharge, and low permeability, consistent with the geology and climate.

It is typical in this type of geological environment to have shallow perched aquifers in the soil and upper weathered bedrock, separated from a deeper aquifer in the upper 20-60 m of bedrock by residual clays accumulated at the base of weathering. The lack of weathering below about 1 m over most of the area, however, indicates the upper perched aquifer is thin and probably ephemeral in this area. The limited weathering is also consistent with very low permeability.

Local aquifers are formed by the large waste rock stockpiles and the tailings storage facility, which are the most concentrated source of acid and metal, salt load to the local system. The water quality within these areas, with elevated salinity, acidity and metals has been discussed in SKM (2008) and Tonkin (2009), and the hydraulic properties are discussed in Section 4.3.2.

GHD (2020b) conducted a search of registered wells within a 2.0 km radius of the CFS STC site using the DEW's WaterConnect database (DEW 2020). Registered bore search results are presented in Appendix C.

A summary of the results indicated the following:

- There are 180 registered groundwater wells within a 2.0 km radius; three are registered as
  operational, seven as abandoned, four as backfilled and one as flowing. The status of the
  remaining 165 wells is recorded as unknown or not recorded.
- The operational wells are used for observation (1), domestic (1) and stock purposes (1).

- Other well purposes listed included investigation/observation (65), river (1), irrigation (3), soak (1) and dam (1).
- Recorded standing water levels (SWL) for the registered wells ranged from 0.0 m bgl to 31 m bgl.
- Salinity levels recorded ranged from 100 mg/L total dissolved solids (TDS) to 15,370 mg/L
- The groundwater wells in closest proximity to the site are monitoring wells associated with the Brukunga Mine, immediately adjacent the western side of the CFS Training Centre and the former mine tailings dam to the east.
- Of the registered wells that had an aquifer recorded, the majority were recorded as the Tapanappa Formation (Elt on the table in Appendix C) with other aquifers noted as Talisker Calc-siltstone (Esa), Backstairs Passage Formation (Eeb) and Kanmantoo Group (Ek).

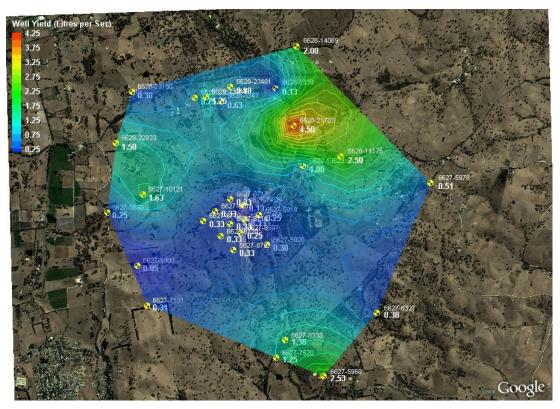



Figure 4-1 Well Yield Contours (L/s) (from GHD 2009)

## 4.3.2 Local Hydrogeology

The EES (2019) description of the hydrogeological conditions in the vicinity of the Brukunga Mine indicated a fractured rock groundwater system with low permeability. Groundwater at the site was considered to occur in multiple aquifers, summarised as follows:

- The main aquifer was described as a fractured-rock type that was considered to be relatively low-yielding, other than along fault zones.
- Minor aquifers were found to occur as perched or shallow groundwater systems in the unconsolidated Quaternary alluvium. These fill some parts of the drainage lines of the Brukunga Mine such as Dawesley Creek.
- Groundwater has also been recorded in fill deposits within the tailings storage facility and waste rock dumps.

Based on the current investigation and the GHD (2020b) off-site groundwater investigation, the specific hydrogeology of the investigation area is summarised in Table 4-1.

Table 4-1 Summary of site specific hydrogeology

| Feature                                                  | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Groundwater<br>Occurrence and<br>Depth to<br>Groundwater | In February 2020, SWL across the investigation area ranged between 0.373 m bgl at well H04a and 17.066 m bgl at well GAMW-03. Groundwater elevations ranged from 329.920 m Australian Height Datum (AHD) at well H09 to 372.014 m AHD at well KAN45. In June 2020, SWL across the investigation area ranged between 1.141 m bgl at well GW01 and 19.734 m bgl at well KAN23. Groundwater elevations ranged from 290.807 m AHD at well GW06 to 421.737 m AHD at well KAN26.                                                                                                                                                        |
| Groundwater<br>Flow Direction                            | Groundwater regional flow in 2020 was inferred to flow towards a north south aligned topographic trough represented by Dawesley Creek from regions of high topography to the east and west. The groundwater in the bottom of the trough generally flowed towards the south.                                                                                                                                                                                                                                                                                                                                                       |
| Groundwater<br>Gradient                                  | In June 2020, the groundwater gradient from well GW02 to GW01 along the eastern gradient was 0.038 m/m. In June 2020, the groundwater gradient from well GW05 to GW06 along the southern gradient was 0.015 m/m. In June 2020, the groundwater gradient from well KAN26 to KAN23 along the western gradient is 0.053 m/m.                                                                                                                                                                                                                                                                                                         |
| Effective<br>Porosity                                    | The effective porosity, based on literature values <sup>1</sup> , was estimated to be: East: 0.2 (tailings / silt) South: 0.26 (fractured rock / schist) West: 0.26 (fractured rock / schist)                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Hydraulic<br>Conductivity                                | The hydraulic conductivity, based on site data $^2$ (where appropriate) or literature values $^3$ , ranged between: East: $5.0 \times 10^{-2}$ m/day to $6.1 \times 10^{-1}$ m/day $^2$ South: $8.6 \times 10^{-3}$ m/day and $8.3 \times 10^{-1}$ m/day $^2$ West: $1.7 \times 10^{-6}$ m/day to $9.8 \times 10^{-1}$ m/day $^3$                                                                                                                                                                                                                                                                                                 |
| Seepage<br>Velocity                                      | The seepage velocity of groundwater beneath the investigation area, based on the effective porosities and hydraulic conductivities listed above, was calculated to range between:  East: 3.4 m/year to 42 m/year  South: 0.18 m/year and 17 m/year  West: 1.3 x 10 <sup>-4</sup> m/year and 72 m/year (for wells to the west of the Brukunga Mine on top of the highwall; for comparison, the seepage velocity for wells at the bottom of the highwall within the Brukunga Mine to the west of the CFS STC site in February 2020 was calculated to range between 8.2 x 10 <sup>-3</sup> m/year and 8.2 x 10 <sup>2</sup> m/year). |

| Feature                 | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Groundwater<br>Salinity | TDS within groundwater beneath the investigation area, as an indicator of salinity, was determined by converting the June 2020 field measurements of Electrical Conductivity into TDS. In February 2020, the results ranged between 813 mg/L (well GAMW-03) and 22,100 mg/L (well H13), indicating fresh to hypersaline groundwater quality beneath the investigation area. In June 2020, TDS ranged from 484 mg/L (well GW05) to 5,802 mg/L (well GW01), indicating fresh to saline groundwater quality beneath the investigation area. |
|                         | Based on the lowest calculated TDS value of the groundwater beneath<br>the investigation area, groundwater beneath the investigation area may<br>be suitable for:                                                                                                                                                                                                                                                                                                                                                                        |
|                         | <ul> <li>drinking water for human consumption (however may be aesthetically unacceptable (ADWG, 2011))</li> <li>irrigation, recreation and aesthetics, primary industries</li> <li>livestock drinking water and aquaculture and human consumption of aquatic foods (SA EPA 2019a).</li> </ul>                                                                                                                                                                                                                                            |

#### Notes:

- <sup>1</sup> Modified from McWorter, D. and Sunada, D., Groundwater Hydrology and Hydraulics, Water Resources Publications, Colorado, USA, 1977, Table 2-2, Page 31.
- <sup>2</sup> Modified from Golder 2016, Three dimensional regional groundwater flow modelling Brukunga Mine Remediation Program. Report 127666011-R-005-RevA prepared for the Department of State Development, Golder Associates, 26 February 2016, Table 3.3 Hydraulic conductivity data.
- <sup>3</sup> Modified from McWorter, D. and Sunada, D., Groundwater Hydrology and Hydraulics, Water Resources Publications, Colorado, USA, 1977, Table 3-1, Page 82.

Groundwater contour maps showing the interpreted February 2020 and June 2020 groundwater contours and the inferred groundwater flow directions are presented in Figure 11a and Figure 11b at the end of this report.

### 4.4 Hydrology and Drainage

The nearest surface water receptor is the Dawesley Creek flowing north to south and located immediately west of the CFS STC site. Testing of surface water collected from Dawesley Creek has shown that this receptor has been impacted by surface water runoff associated with the CFS STC site area.

As discussed in the conceptual hydrogeological model (Appendix D) groundwater is likely to discharge to Dawesley Creek during periods of elevated groundwater levels, following heavy rain. However, much of the discharge is likely to be taken up as evapotranspiration by riparian vegetation in the alluvial sediments along the creek, with groundwater-fed base flow only occurring for short periods of time after heavy rainfall and discharge restricted to a few rock pools.

Following extended dry periods with standing groundwater levels lowered deep into the alluvium or into upper fractured bedrock Dawesley Creek is likely to be a losing stream. This is supported by flow data for Dawesley Creek and Mt Barker Creek available from the DEW's WaterConnect database (DEW 2020), which shows periods of no flow in both creeks over summer for most years, and by anecdotal evidence from residents, who describe both creeks as a series of disconnected stagnant pools in summer. Golder (2016, pp 12-13) also inferred that "the actual rate of groundwater discharge to surface water features is low. Elsewhere, groundwater discharge into local creeks from the deeper weathered and fractured rocks is considered to be at low to negligible rates, based (again) on the observation that groundwater levels are not higher than creek bed levels and flows in the creek are not perennial." It is also likely to be a

losing stream where groundwater is extracted from the alluvial aquifer or near-creek fractured rock bores, such as AMD interception bores near the Mine or downstream private water supply bores.

Several smaller ephemeral drainage lines and watercourses including Days Creek, Jane Drain, North Creek, Taylors Creek flow into Dawesley Creek in the vicinity of the Brukunga Mine, while Dawesley Creek is being diverted around the majority of the Mine since 2003 (Section 2.2). Nairne Creek joins Dawesley Creek about 8 km south-south-east of the CFS STC site before Dawesley Creek flows into Mt Barker Creek a further 6 km south-east. Approximately 3.5 km east-south-east of the confluence with Dawesley Creek, Mt Barker Creek flows into Bremer River, which flows north to south, roughly parallel to Dawesley Creek about five to nine kilometres to east of Dawesley Creek (Figure 4). About 28 km south of the confluence with Mt Barker Creek the Bremer River empties into Lake Alexandrina, the artificially maintained lake at the mouth of the Murray River.

Drainage depressions are well defined throughout the region. Watercourses flow either southwards into the Dawesley Creek catchment, or eastward towards the Bremer River. The regional topography has been extensively modified by historic mining activities.

#### **Creek Flow Data**

Both historical and current flow data information for Dawesley Creek, Mt Barker Creek and Bremer River is publicly available online from the DEW WaterConnect data base (DEW 2020) and was accessed for the following five gauging stations (Figure 9c):

- Gauging station Dawesley Creek (A4260558) located near Old Princess Hwy approximately 5.7 km downstream of the CFS STC site, 20.7 km upstream of the confluence with Mt Barker Creek and 240 m downstream of sampling location DC07
- Gauging station Mt Barker Creek (A4260557) located off Smythe Road, approximately 18.9 km upstream of the confluence with Dawesley Creek, and approximately 7.6 km upstream of sampling location MBC02
- Gauging station Mt Barker Creek (A4260679) located at sampling location DC17A at 430D Callington Road, Salem, approximately 5.2 km downstream of the confluence with Dawesley Creek and 470 m upstream of the confluence with Bremer River
- Gauging station Bremer River (A4260688) located approximately 510 m upstream of the confluence with Mt Barker Creek and 170 m downstream of sampling location BR01
- Gauging station Bremer River (A4260533) located near the north-eastern corner of 219 Hassam Road, Woodchester, approximately 13.6 km downstream of the confluence with Mt Barker Creek and 8.3 km downstream of sampling location DC19.

Please note that the distances given in the description of the gauging stations refer to stream lengths rather than geographical distances. A review of this dataset indicates the following:

- Flow in Dawesley Creek, Mt Barker Creek and Bremer River mainly occurs between May and November, with peak flow periods between July and September and the potential for summer storms to generate short but high flows in December to February.
- In the past 5 years, 2016 and 2017 had exceptionally high flows while 2018 to 2020 have been very dry.
- Throughout 2020, there has been very limited flow in Bremer River, upstream of the confluence with Mt Barker Creek. Since 2018 the flow in Bremer River has been much lower, relative to Mt Barker Creek and Dawesley Creek, than it was historically. The reason for this change in relative flow rate is not clear but it may be that there has been some surface water extraction from the upstream reaches of Bremer River.

 Throughout 2020, the flow in the upstream reaches of Mt Barker Creek has typically been more than five times higher than that in the upstream reaches of Dawesley Creek. The available data suggests that the upper reaches of Mt Barker Creek contribute, on average, more of the flow discharging into the Bremer River than the upper reaches of Dawesley Creek.

A summary of the DEW flow data at the five gauging stations is presented in Appendix E.

## 4.5 Conceptual Hydrogeological Model

A conceptual hydrogeological model for the CFS STC site and Brukunga Mine, provided in Appendix D, is taken largely from GHD's 2009 study for the Brukunga Mine. Although the water level and climatic data are up to 2009, the concept remains valid.

## 5. Assessment Criteria

#### 5.1 General

PFAS are the key contaminants of enquiry of this environmental investigation. As such, the assessment criteria adopted for this investigation were adopted form the following guidelines documents:

- HEPA, 2020, PFAS National Environmental Management Plan (Version 2.0), Heads of Environment Protection Authorities Australia and New Zealand, January 2020, (PFAS NEMP)
- NHMRC, 2019, Guidance on Per and Polyfluoroalkyl substances (PFAS) in Recreational Water, National Health and Medical Research Council, Canberra, 2019
- NHMRC/NRMMC, 2011, Australian Drinking Water Guidelines 6, Version 3.5 updated August 2018, National Water Quality Management Strategy, National Health and Medical Research Council and Natural Resource Management Ministerial Council, Canberra, 2018, (ADWG)

The guideline values are shown in the results summary tables presented at the end of this report and application of these guidelines is summarised below.

The assessment was also undertaken in general accordance with the following guidelines and policy:

- ANZG, 2018, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, online resource www.waterquality.gov.au/anz-guidelines, Australian and New Zealand Governments, 2018, (AWQG).
- Gov SA, 2015, Environment Protection (Water Quality) Policy (WQEPP) 2015, Version 30.1.2018, Government of South Australia, 2018
- NHMRC, 2008, Guidelines for Managing Risks in Recreational Water, National Health and Medical Research Council, Australian Government, Canberra, 2008
- SA EPA, 2019a, Guidelines for the assessment and remediation (GAR) of site contamination, Environment Protection Authority, South Australia, revised November 2019
- SA EPA, 2019b, Guidelines for regulatory monitoring and testing Groundwater sampling Environment Protection Authority, South Australia, revised 2019

## 5.2 Soil, sediment, sludge and concrete

The adopted PFAS screening criteria for sediment, soil, sludge and concrete samples based on the PFAS NEMP 2020 are presented in Table 5-1 below. Samples collected from the CFS STC site and from within the boundary of the Brukunga Mine were compared to industrial/commercial criteria for human health. Samples taken from locations outside the Brukunga Mine were compared to human health screening criteria for residential land use with garden / access to soil. In addition, all samples were assessed against the interim soil criteria for ecological direct and indirect exposure.

Table 5-1 Adopted PFAS Interim Screening Criteria (sediment, soil, sludge and concrete)

| Exposure Scenario                                                                         | PFHxS <sup>1</sup> | PFOS <sup>2</sup> | PFOS/PFHxS <sup>3</sup> | PFOA<br>4    | Guideline    |
|-------------------------------------------------------------------------------------------|--------------------|-------------------|-------------------------|--------------|--------------|
| Soil – Human Health<br>Screening Values<br>Industrial/Commercial                          | 20 mg/kg           | 20 mg/kg          | 20 mg/kg                | 50<br>mg/kg  | PFAS<br>NEMP |
| Soil – Human Health<br>Screening Values<br>Residential with<br>garden / access to<br>soil | 0.01 mg/kg         | 0.01 mg/kg        | 0.01 mg/kg              | 0.1<br>mg/kg | PFAS<br>NEMP |
| Soil – Interim<br>Ecological Direct<br>Exposure                                           | -                  | 1 mg/kg           | -                       | 10<br>mg/kg  | PFAS<br>NEMP |
| Soil – Interim<br>Ecological Indirect<br>Exposure                                         | -                  | 0.01 mg/kg        | -                       | -            | PFAS<br>NEMP |

#### Notes:

### 5.3 Groundwater

To assess the contamination status of groundwater at a site, the GAR (SA EPA 2019a) provide a four step process to determine the environmental values of groundwater and to determine if actual or potential harm to groundwater that is not trivial has occurred. The four-step process described in the guidelines is described in Table 5-2.

Table 5-2 Four-step process for determining harm to groundwater

| Process                                                                           | Assessment                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1: Apply Table 3 of WQEPP 2015 Schedule 1 based on TDS ranges                | Calculated TDS results for groundwater samples collected in February 2020 ranged between 813 mg/L and 22,100 mg/L, indicating fresh to hyper-saline groundwater quality beneath the investigation area (GHD 2020b).                                                                                         |
|                                                                                   | The calculated TDS values ranged from 484 mg/L to 5,802 mg/L across all groundwater samples collected in June 2020, indicating fresh to saline water beneath the investigation area.                                                                                                                        |
| Step 2: Assess and identify surface water bodies within a 2 km buffer of the site | The nearest surface water receptor is Dawesley Creek, located directly west of the CFS STC site. Surface runoff from the site would flow into this water body. There is also potential groundwater discharge into Dawesley Creek (Appendix D).                                                              |
| Step 3: Review registered groundwater users in the Water Connect database         | A review of the Water Connect database identified a total of 180 registered bores within a 2 km radius of the CFS STC site (GHD 2020b). The uses of the bores were listed as investigation (35), observation (31), irrigation (3), domestic bore 6627-8333 (1), dam (1), river (1), soak (1) and stock (1). |

<sup>&</sup>lt;sup>1</sup> PFHxS – perfluorohexane sulfonate

<sup>&</sup>lt;sup>2</sup> PFOS – perfluorooctane sulfonate

<sup>&</sup>lt;sup>3</sup> PFOS/PFHxS – Sum of PFOS and PFHxS; as per PFAS NEMP this guideline value includes PFOS only, PFHxS only and the sum of the two.

<sup>&</sup>lt;sup>4</sup> PFOA – perfluorooctanoic acid.

| Process                                                                                       | Assessment                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 4: Application of the EPA recognised criteria for the most sensitive environmental value | The most sensitive environmental values to be applied to the site are the potential use of groundwater for drinking water purposes and the freshwater ecosystems of Dawesley Creek and downstream creek systems. |

Based on the assessment outlined in Table 5-2, the groundwater criteria were selected to protect the relevant environmental values identified for groundwater underlying the area of investigation. In the absence of PFAS assessment criteria for the environmental values of stock watering and irrigation in the PFAS NEMP 2020, the assessment criteria for drinking water were adopted for these environmental values.

The adopted groundwater screening / investigation levels, which are considered to protect potentially complete source receptor linkages, are summarised in Table 5-3.

Table 5-3 Adopted PFAS Interim Screening Criteria (Groundwater)

| Exposure Scenario                                               | PFHxS <sup>1</sup><br>(μg/L) | PFOS <sup>2</sup><br>(µg/L) | PFOS/PFHxS <sup>3</sup> (µg/L) | PFOA <sup>4</sup><br>(µg/L) | Guideline                                    |
|-----------------------------------------------------------------|------------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------------------|
| Human health – drinking water                                   | 0.07                         | 0.07                        | 0.07                           | 0.56                        | PFAS NEMP<br>ADWG <sup>5</sup>               |
| Human health –<br>recreational water<br>(domestic) <sup>6</sup> | 0.7                          | 0.7                         | 0.7                            | 5.6                         | NHMRC 2008 <sup>6</sup><br>ADWG <sup>5</sup> |
| Human health – recreational water (non-domestic) <sup>7</sup>   | 2                            | 2                           | 2                              | 10                          | PFAS NEMP<br>NHMRC 2019 <sup>7</sup>         |
| Freshwater –<br>99% species<br>protection <sup>8</sup>          | -                            |                             | -                              | 19                          | PFAS NEMP                                    |
| Freshwater – highly disturbed systems <sup>9</sup>              | 0.0046                       | 0.0066                      | -                              | -                           | Catchment specific WQG                       |

#### Notes:

<sup>&</sup>lt;sup>1</sup> PFHxS – perfluorohexane sulfonate

<sup>&</sup>lt;sup>2</sup> PFOS – perfluorooctane sulfonate

<sup>&</sup>lt;sup>3</sup> PFOS/PFHxS – Sum of PFOS and PFHxS; as per PFAS NEMP this guideline value includes PFOS only, PFHxS only and the sum of the two.

<sup>&</sup>lt;sup>4</sup> PFOA – Perfluorooctanoic acid.

<sup>&</sup>lt;sup>5</sup> The NHMRC/NRMMC 2011 Australian Drinking Water Guidelines 6, Version 3.5 updated August 2018, adopted the PFAS NEMP 2018 for drinking water, which were confirmed by the PFAS NEMP 2020.

<sup>&</sup>lt;sup>6</sup> The NHMRC 2008 Guidelines for Managing Risks in Recreational Water recommend health guideline values for recreational water that correspond to 10 times the current drinking water guideline value. These guideline values apply in a domestic setting where groundwater is used for recreational purposes such as the filling of swimming pools.

<sup>&</sup>lt;sup>7</sup> The PFAS NEMP 2020 adopted the NHMRC 2019 guidance for recreational water. These guideline values apply to creeks, rivers and lakes in non-domestic settings.

 $<sup>^8</sup>$  The PFAS NEMP 2020 Freshwater 99% species protection level guideline value for PFOS of 0.00023  $\mu$ g/L was replaced with catchment specific water quality guideline values (Section 5.5). However, the PFAS NEMP 2020 Freshwater 99% species protection level guideline value for PFOA of 19  $\mu$ g/L was adopted for this investigation.

<sup>&</sup>lt;sup>9</sup> Refer Section 5.5 for derivation of catchment specific water quality guideline values.

#### 5.4 Flux Test

Water samples collected during flux testing were compared to the same criteria as surface water (Section 5.5), which generally match the criteria used in the initial environmental investigation by GHD in November 2019 (GHD 2019a) and the off-site investigation in February 2020 (GHD 2020b).

## 5.5 Surface water, seepage water and storage tank water

Water samples collected from Dawesely Creek, Nairne Creek, Mt Barker Creek, Bremer River, the diversion drain, from seepage water collection points and from the water storage tanks at the CFS STC site were compared to the same criteria as groundwater (Table 5-3),

Initial results showed that PFAS concentrations in surface water samples collected upstream of Dawesley Creek in Nairne Creek, Mt Barker Creek and Bremer River exceeded the PFAS NEMP 99% species protection water quality guidelines (WQG) for PFOS (0.00023 µg/L), indicating that other Bremer River subcatchments may be impacted by PFAS. In agreement with the SA EPA and the auditor, and in accordance with ANZG (2018), the catchment specific WQG for PFOS and PFHxS listed in Table 5-4 were derived for use in-lieu of the PFAS NEMP 99% species protection WQG for PFOS. The data used to calculate the catchment specific WQG are provided in Appendix F.

Table 5-4 Catchment specific water quality guideline values

| Exposure Scenario                                                  | PFOS        | PFHxS       |
|--------------------------------------------------------------------|-------------|-------------|
| Freshwater – highly disturbed system <sup>1</sup>                  | 0.0066 μg/L | 0.0046 µg/L |
| Freshwater – slightly to moderately disturbed systems <sup>2</sup> | 0.0048 µg/L | 0.0044 µg/L |

Notes: <sup>1</sup> Based on 90<sup>th</sup> percentile of background concentrations in Mt Barker Creek – applies to Dawesley Creek (downstream of the CFS STC site).

ANZG (2018) suggest that for moderately disturbed catchments, reference sites should be selected to represent water quality at the least disturbed sites within the moderately disturbed region, with the underlying aim being to bring all streams in the moderately disturbed region up to the quality of the less disturbed sites. To determine catchment specific WQG for PFOS in the Bremer River catchment, Mt Barker Creek and Bremer River were selected as reference sites and two additional rounds of surface water monitoring were conducted at several sampling locations for each reference site (refer to sections 3.2.1 and 7.10). Selected samples were analysed for the full "long" PFAS analytical suite to determine the "fingerprint" of different PFAS sources that may be contributing to the water quality in the downstream reaches of Bremer River. In addition, both historical and current flow data from the DEW WaterConnect data base was also reviewed (Appendix E).

The available dataset indicated that Bremer River was not a suitable reference site for use in deriving catchment specific WQG for PFOS as there has been very limited flow measured in Bremer River upstream of the confluence with Mt Barker Creek in 2020. In addition, the reported PFAS concentrations showed high variability between individual sampling locations and between sampling events (section 7.10.2). Elevated PFAS concentrations measured in individual samples collected in the township of Callington from the upstream reaches of the Bremer River indicated a moderate level of disturbance. In comparison, surface water discharges from Mt Barker Creek were found to dominate the flow observed in the downstream reaches of Bremer River and the PFAS concentrations measured in Mt Barker Creek samples were relatively consistent. These findings indicate that, in this dataset, the Mt Barker Creek samples generally represented the least disturbed of the range of collected samples and that Mt

<sup>&</sup>lt;sup>2</sup> Based on 80<sup>th</sup> percentile of background concentrations in Mt Barker Creek – applies to Nairne Creek, Mt Barker Creek and Bremer River.

Barker Creek was therefore the most suitable of the available reference locations to derive catchment specific WQG.

The available dataset for Mt Barker Creek was used to calculate catchment specific WQG for PFOS, for use in-lieu of the NEMP 99% species protection WQG for PFOS (0.00023  $\mu$ g/L). ANZG (2018) suggest that for slightly to moderately disturbed ecosystems, test site medians should be compared with the 80<sup>th</sup> percentile of the reference site data and for highly disturbed ecosystems, the 90<sup>th</sup> percentile of the reference site data should be used. The 80<sup>th</sup> and 90<sup>th</sup> percentile PFOS and PFHxS reference concentrations were calculated using the dataset available for Mt Barker Creek upstream of the confluence with Dawesley Creek as shown in Table 5-4.

It is acknowledged that the data set does not meet the ANZG (2018) requirement of monthly sampling over two years for the derivation of catchment specific WQG values, as only a limited number of sampling events have been undertaken at the Mt Barker Creek reference locations over the 2020 winter and that the samples collected do not incorporate the drier low flow conditions in the Investigation Area waterways. Additional monitoring of PFAS concentrations both at reference locations and at locations downstream from the CFS STC during drier months would be required to understand the range of PFAS concentrations under different flow conditions. The derived catchment specific WQG for PFOS and PFHxS will be used until additional data become available and allow a revision of the WQG.

For the purpose of this assessment Nairne Creek, Mt Barker Creek and Bremer River were considered moderately disturbed ecosystems, while Dawesley Creek downstream of the CFS STC site was considered a highly disturbed ecosystem.

The classification of Dawesley Creek was made on the recommendation of the SA EPA, who stated via email (provided in Appendix F):

"The Dawesley Creek, assessed for many years as a result of the Brukunga Mine, continues to show evidence of adverse impacts from the mine based on the most recent 2015 assessment (https://www.energymining.sa.gov.au/minerals/mining/former\_mines/brukunga\_mine\_site/water\_quality\_monitoring). Over 26 km of stream has been adversely affected by high levels of nutrients, metals and fine sediment deposition.

A 90% level of protection for the highly disturbed Dawesley Creek is considered to be appropriate based on its current and expected condition over at least the next few decades."

The corresponding catchment specific WQG for PFOS and PFHxS were applied to surface water in these subcatchments.

# 6. Methodology

#### 6.1 General

Prior to any site works commencing, a job safety and environment analysis (JSEA) was prepared which considered the potential specific risks associated with the investigation methods and exposure to chemicals that were present at the site. All field staff were required to read, sign and conform to the site specific JSEA.

The following methodologies are in accordance with the following guidelines:

- National Environment Protection (Assessment of Site Contamination) Measure (1999) as amended 2013 (ASC NEPM).
- Australian/New Zealand Standard (1998) Water Quality Sampling Guidance on the Design of Sampling Programs, Sampling Techniques and the Preservation and Handling of Samples. AS/NZS 5667.1:1998.
- Australian/New Zealand Standard (1998) Water Quality Sampling Guidance on Sampling of Rivers and Streams. AS/NZS 5667.6:1998
- Australian/New Zealand Standard (1998) Water Quality Sampling Guidance on Sampling of Groundwaters. AS/NZS 5667.11:1998.
- Australian/New Zealand Standard (1999) Water Quality Sampling Guidance on Sampling of Bottom Sediments. AS/NZS 5667.12:1999.
- EPA Victoria (2000) Groundwater Sampling Guidelines.
- SA EPA (2019b) Guidelines for Regulatory Monitoring and Testing Groundwater Sampling.
- WA DER (2017) Interim Guideline of Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), Version 2.1, Contaminated Sites Guidelines, Department of Environment Regulation, Western Australia, Perth, January 2017.

#### 6.2 Concrete dust sampling

The concrete dust sampling methodology adopted during the sampling event is summarised in Table 6-1.

**Table 6-1 Concrete dust sampling methodology** 

| Activity                          | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling                          | Concrete samples were collected using a hammer drill and a 10 mm Masonry Drill Bit and brush.  The concrete dust generated by the drill was swept directly into laboratory supplied jars.                                                                                                                                                                                                                                                                                                        |
| Sample preservation and transport | Samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.  All samples were transported to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation.                                                                                                                                                                                                                                |
| Decontamination                   | All non-disposable equipment (drill bit and brush used to collect the samples) was washed with a PFAS-free and phosphate-free detergent and rinsed with clean water and additionally rinsed with demineralised water before and after each sample was collected. Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12. |

## 6.3 Concrete core sampling

The concrete core sampling methodology adopted during the sampling event is summarised in Table 6-2.

**Table 6-2 Concrete core sampling methodology** 

| Activity                                | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling                                | Concrete core samples (from the hotpads and water storage tanks) were collected using a coring drill under the supervision of a GHD scientist/engineer. Lubrication and cooling of the drill was by mains water only.                                                                                                                                                                                                                                                                            |
|                                         | Each core was at least 150 mm in diameter and sawed in half lengthwise.                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | One half of each tank core was vacuum-sealed in HDPE plastic and returned to Xypex for X55 treatment under COC documentation. The remaining tanks' half cores were cut in half lengthwise to obtain quarter cores and sufficient samples for QA/QC intra-laboratory duplicates. Following core drilling, the holes in the tanks and hotpads were reinstated by drilling contractor Symbiosis using Xypex Megamix II repair methodology.                                                          |
| Sample<br>preservation and<br>transport | Each cut core sample was vacuum-sealed and labelled with the project number and sample ID. The samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.  All samples were transported to the laboratory by GHD Field Staff under                                                                                                                                                                       |
|                                         | Chain of Custody (COC) documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Decontamination                         | All non-disposable equipment (drill bit and brush used to collect the samples) was washed with a PFAS-free and phosphate-free detergent and rinsed with clean water and additionally rinsed with demineralised water before and after each sample was collected. Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12. |

## 6.4 Flux testing

The flux testing methodology adopted during the sampling event is summarised in Table 6-3.

The flux test for Hotpad A was conducted on 7 May 2020 with a maximum flow rate of 0.99 L/s. For the purposes of the flux test the entire area of Hotpad A of 832 m<sup>2</sup> was used to simulate a 5 mm rainfall event. The required time was 70 minutes.

The flux test for Hotpad B was conducted on 18 May 2020 using a longer hose with different fittings, which yielded a maximum flow rate of 0.29 L/s. Due to the large size of Hotpad B (1,858 m²), the rainfall simulation area for flux sampling was limited to the area between the concrete bund in the centre of Hotpad B and the drain (214 m²) to ensure that a 5 mm rainfall event could be simulated within a reasonable timeframe (60 minutes). The selection of the rainfall simulation area for Hotpad B was based on information provided by the CFS that this section of Hotpad B was used the most and potentially had the highest PFAS impact. The rainfall simulation areas for Hotpad A and Hotpad B are shown on Figure 6a.

During the flux tests it took 10 minutes and 30 minutes for the surface run-off to reach the collection point for flux test samples from Hotpad A and Hotpad B, respectively.

Table 6-3 Flux testing methodology

| Activity                                  | Details                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling                                  | The area of the hotpad being tested was measured and multiplied by 5 mm in order to calculate the volume of water required to simulate a 5 mm rainfall event.                                                                                                                                                                                                                                                                                  |
|                                           | The hose was run at maximum flow rate into a 20 L container. The time it took to fill the container was recorded, and the flow rate of the hose calculated from this. The total time that the hose needed to be run at maximum flow rate to simulate a 5 mm rainfall event was calculated based on these tests.                                                                                                                                |
|                                           | Prior to running the flux test a blank sample was collected directly from the hose. The hose was then run at maximum flow rate over the hotpad to simulate the 5 mm rainfall event.                                                                                                                                                                                                                                                            |
|                                           | Water samples were collected as the water ran off the hotpad into the drain as grab samples.                                                                                                                                                                                                                                                                                                                                                   |
| Sampling<br>Preservation<br>and Transport | Samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.                                                                                                                                                                                                                                                                                             |
|                                           | All samples were transported to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation.                                                                                                                                                                                                                                                                                                                                  |
| Decontamination                           | All non-disposable equipment was washed with a PFAS-free and phosphate-free detergent and rinsed with clean water and additionally rinsed with demineralised water before and after each sample was collected. Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12. |

## 6.5 Storage tank water sampling

The storage tank water sampling methodology adopted during the sampling event is summarised in Table 6-4.

Table 6-4 Storage tank water sampling methodology

| Activity                                  | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling                                  | The manhole cover of each tank, located at the car park's ground level, was unlocked and opened. Each sample was taken as grab sample directly from the water tank using an extendable arm that was lowered through the manhole into the tank with the bottle opening pointing down to avoid collection of surface films. The bottles were appropriately labelled with a unique GHD job number, sample identification and sampling date. All samples were collected in laboratory supplied containers appropriate for PFAS analysis.  Water quality parameters (pH, dissolved oxygen, electrical conductivity, reduction/oxidation (redox) potential and temperature) were measured using a multi parameter water meter and recorded using sampling record sheets. Depending on the water level in the tank, the water quality parameters were determined by placing the probe either directly into the tank or into a grab sample. The tank water was visually assessed for turbidity and any evidence of contamination. |
| Sampling<br>Preservation<br>and Transport | Samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.  All samples were transported to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Activity        | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decontamination | All non-disposable equipment (e.g. water quality meter) was washed with a PFAS-free and phosphate-free detergent and rinsed with clean water and additionally rinsed with demineralised water before and after each sample was collected. Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12. |

## 6.6 Soil sampling

The soil sampling methodology adopted during the sampling event is summarised in Table 6-5.

**Table 6-5 Soil sampling methodology** 

| A stirite                         | D. C.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Activity                          | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Borehole drilling                 | Soil bores were drilled using mechanical pushtube and hand auger (at locations with restricted access for the rig) techniques to maximum depths of 3.8 m (SB03) for pushtube and 1.1 m (SB01) for hand auger below the surface or the concrete slab.  Soil bores drilled using pushtube technique were drilled by a licensed GHD approved driller. Soil bores drilled using hand auger technique were drilled by GHD personnel.  Where a concrete surface was present, the concrete was cored using a hammer drill and a 120 mm masonry drill bit. Concrete coring was                                              |
|                                   | conducted by a licensed GHD concrete cutter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sampling                          | Where the soil was directly accessible, surface soil samples were taken from 0 – 0.1 m below surface using a shovel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | Soil samples collected from the pushtube were collected at surface and 0.5 m intervals for the first 2 m bgl and 1 m intervals thereafter or where evidence of contamination or changes in lithology are observed. Soil samples collected from the hand auger were collected at surface and at 0.5 m intervals or where evidence of contamination or changes in lithology occured. Soil was reinstated following sampling. Soil samples were collected directly into PFAS suitable sample jars provided by the laboratory, using the jar to grab the sample directly from the soil, shovel, pushtube or hand auger. |
| Soil logging                      | Soils encountered at each sample location were described consistent with the AS 1726:2017 and recorded in PLog Data Collection Software on field tablets. Soil borehole logs are presented in Appendix B.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample preservation and transport | Samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.  All samples were transported to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation.                                                                                                                                                                                                                                                                                                                                                   |
| Decontamination                   | All non-disposable equipment (shovel and hand auger) was washed with a PFAS-free and phosphate-free detergent and rinsed with clean water and additionally rinsed with demineralised water before and after each sample was collected. Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12.                                                                                                                                              |

## 6.7 Sludge sampling

Sludge material originating from the acid water treatment plant covered the areas described as the sludge drying ponds, sludge emergency overflow pond and the sludge disposal area on the southern bench. DEM staff, who have been working on the Brukunga Mine for the past ten years, stated that during this time sludge had only been disposed in the sludge disposal area on the southern bench. However, material that looked similar to the sludge on the southern bench

was observed on the northern bench in small stockpiles, one large stockpile along the foot of the highwall, and underneath the lining of the waste rock piles. These materials were also sampled and analysed. The sludge sampling methodology adopted during the sampling event is summarised in Table 6-6.

Table 6-6 Sludge sampling methodology

| A otivity                               | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Activity                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sampling                                | To collect sludge samples from the waste stockpile on the southern bench, a GHD approved driller was engaged to drill soil bores using pushtubes. The boreholes were extended up to 0.5 m into the natural ground up to a maximum depth of 5.7 m below the stockpile surface. Sludge samples were collected directly from the pushtube at surface and at 1 m intervals or where evidence of contamination or changes in composition were observed. In the vicinity of the emergency sludge overflow pond a further three soil bores (SW10, SW11 and SW15) were drilled to a maximum depth of 3.8 m below the stockpile surface. The boreholes were reinstated following sampling.  Sludge samples from smaller stockpiles located near the sludge drying ponds and the emergency sludge overflow pond were taken as grab samples by digging up to 1 m deep into the stockpile using a shovel. Sludge samples were collected directly into laboratory supplied jars, suitable for PFAS analysis, using the jar to grab the sample directly from the sludge stockpile surface, the shovel or the pushtube. |
| Soil logging                            | Sludge encountered at each sample location was described consistent with the AS 1726:2017 and recorded in PLog Data Collection Software on field tablets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample<br>preservation and<br>transport | Samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.  All samples will be transported to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Decontamination                         | All non-disposable equipment was washed with a PFAS-free and phosphate-free detergent and rinsed with clean water and additionally rinsed with demineralised water before and after each sample was collected. Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

## 6.8 Seepage water sampling

The seepage water sampling methodology is summarised in Table 6-7 below.

Table 6-7 Seepage water sampling methodology

| Activity                                | Details                                                                                                                                                                                                                                                                                                            |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sampling                                | Each sample was taken as grab samples directly from the seeping wall water collection point or run-off. The bottles were appropriately labelled with a unique GHD job number, sample identification and sampling date. All samples were collected in laboratory supplied containers appropriate for PFAS analysis. |  |
| Sample<br>Preservation and<br>Transport | Samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.  All samples were transported to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation.                                                  |  |

| Activity        | Details                                                                                                                                                                                                                                                                                                |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decontamination | No decontamination was required as no reusable equipment was utilised. Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12. |

## 6.9 Groundwater Well Installation and Sampling

The groundwater well installation methodology adopted during the site works is summarised in Table-6-8. DEW well permits are presented in Appendix G. Groundwater well construction details are presented in Appendix B.

**Table-6-8 Groundwater Well Installation Methodology** 

| Activity                     | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Underground service locating | All groundwater well locations were checked for the presence of buried services by a professional services locator before the commencement of the field investigations. In addition, underground service plans for the area were obtained prior to the commencement of the investigations and used to assist with locating underground services.                                                                                                                                                                     |  |  |
| Well Installation            | Groundwater monitoring wells were installed using DH400 Drilling Rig with air hammer to a maximum depth of 23 m bgl (well GW07). Clean augers were used to drill each well.                                                                                                                                                                                                                                                                                                                                          |  |  |
| Well<br>Construction         | Groundwater monitoring wells were constructed with 50 mm diameter, Class 18, polyvinyl chloride (PVC). A 50 mm diameter, class 18 PVC encap was threaded to the bottom of each well casing.                                                                                                                                                                                                                                                                                                                          |  |  |
|                              | Each monitoring well was installed generally with a 3.0 m screened section of class 18 PVC well casing, with the screen installed from the base of the well. Longer screens were used where wells were installed within fractured rock and fractures were low yielding, with minimal evidence of water strike.                                                                                                                                                                                                       |  |  |
|                              | Graded and washed filter sand was placed around the well screen from the bottom of the borehole to approximately 0.5 m above the top of the well screen (1 m bgl). A bentonite seal was installed on top of the sand/gravel pack with the remaining annular space filled with a cement/bentonite grout from the top of the bentonite seal to ground surface. A locking expansion cap was installed in each groundwater monitoring well with all wells completed at the surface with a lockable stand piper monument. |  |  |
| Soil logging                 | Soils encountered at each well installation location were logged based on field interpretation, consistent with the AS 1726:2017 and recorded in PLog Data Collection Software on field tablets. Soil borehole logs are presented in Appendix B.                                                                                                                                                                                                                                                                     |  |  |
| Well<br>Development          | Post installation the wells were developed using a dedicated disposable bailer for each well to remove fines from the borehole and promote the flow of groundwater from the surrounding formation into the well for subsequent sampling.  Each well was considered to be suitably developed either when three well volumes has been removed, where recharge permitted, or until purge water ran clear or the well was purged dry.                                                                                    |  |  |
| Waste Disposal               | Excess soil cuttings from well installation and groundwater from development and sampling activities were spread out near the well location.                                                                                                                                                                                                                                                                                                                                                                         |  |  |

| Activity        | Details                                                                                                                                                                                                                                                                                                              |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Well survey     | The top of each well casing was surveyed to Australian Height Datum (AHD) and map grid Australia (MGA) zone 54 geocentric datum Australia (GDA 94). In the instance where the top of casing was not evenly cut, the highest point of the top of casing was surveyed. The survey results are presented in Appendix H. |  |
| Decontamination | All non-disposable equipment was washed with pH neutral phosphate and PFAS free detergent (Liquinox) and rinsed with clean water before and after use.                                                                                                                                                               |  |

The groundwater sampling methodology adopted during the sampling event is summarised in Table 6-9.

**Table 6-9 Groundwater sampling methodology** 

| Activity                                | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gauging                                 | The monitoring wells' standing water levels (SWL) and bore depths were gauged in accordance with standard industry practice and the GHD documented standard field procedures. All wells were gauged with an oil / water interface probe prior to sampling.  SWL and bore depths were recorded in the field using sampling record sheets. The SWL measurement were undertaken from the top of casing (TOC).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sampling                                | Sampling was conducted using a no-purge method via high density polyethylene (HDPE) HydraSleeve™ samplers dedicated for each well in accordance with the Hydrasleeve (2019) Standard Operating Procedure (SOP). The sampler was slowly lowered into the screened section of the well to minimise disturbance. Once the HydraSleeve™ had reached the target depth it was slowly drawn up to open the valve and collect the sample. The sampler was removed within 1-5 minutes after deployment to allow for sample equilibration, raising it slowly to ensure the valve closed properly. All samples were obtained directly from the sampler sleeve into laboratory supplied containers with appropriate preservatives where required.  Private residential bores with fixed pumps were sampled by running the pump. Once the water quality meter readings had stabilised as per GHD standard operating procedure samples were collected directly from the pump into laboratory supplied containers with appropriate preservatives, where required.  All sampling containers were appropriately labelled with a unique GHD job number, sample identification and sampling date. All samples were collected in laboratory supplied containers appropriate for PFAS analysis. Water quality parameters (pH, dissolved oxygen, electrical conductivity, reduction/oxidation (redox) potential and temperature) were measured using a multi parameter water quality meter and recorded using sampling record sheets. The groundwater was visually assessed for turbidity and evidence of contamination. |
| Sample<br>Preservation<br>and Transport | Samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.  All samples were transported to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Decontamination                         | All non-disposable equipment (i.e. oil / water interface probe and water quality meter) was washed with a PFAS-free and phosphate-free detergent and rinsed with clean water and additionally rinsed with demineralised water before and after each sample was collected. Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Activity                                      | Details                                                                                                                                                                                                                                                              |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well survey (if<br>not available<br>from DEM) | The top of each well casing was surveyed to Australian Height Datum (AHD) and map grid Australia (MGA) zone 54 geocentric datum Australia (GDA 94). In the instance where the top of casing was not evenly cut, the highest point of the top of casing was surveyed. |

## 6.10 Surface water sampling

The surface water sampling methodology adopted during the sampling event is summarised in Table 6-10. Surface water samples were collected from the locations listed in Table 3-7 and Table 3-8.

Table 6-10 Surface water sampling methodology

| Activity                                | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling                                | Each sample was taken as grab sample directly from the water body using an extendable arm with the opening pointing down to avoid collection of surface films. The bottles were appropriately labelled with a unique GHD job number, sample identification and sampling date. All samples were collected in laboratory supplied containers appropriate for PFAS analysis.  Water quality parameters (pH, dissolved oxygen, electrical conductivity, reduction/oxidation (redox) potential and temperature) were measured using a multi parameter water meter and recorded using sampling record sheets. The surface water was visually assessed for turbidity and any evidence of contamination. |
| Sample<br>Preservation and<br>Transport | Samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.  All samples were transported to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Decontamination                         | All non-disposable equipment (i.e. water quality meter) was washed with a PFAS-free and phosphate-free detergent and rinsed with clean water and additionally rinsed with demineralised water before and after each sample was collected. Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12.                                                                                                                                                                                                                        |

## **6.11 Sediment sampling**

The sediment sampling methodology adopted during the sampling event is summarised in Table 6-11. Sediment samples were collected from the locations listed in Table 3-7 and Table 3-8, provided it was safe to do so, and the creek bed contained sufficient sediment for sampling at the location.

Table 6-11 Sediment sampling methodology

| Activity                                | Details                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sampling                                | Each sediment sample was taken as discrete grab sample from the edge of the creek / river by scooping the sediment directly into laboratory supplied containers appropriate for PFAS analysis . The sediment jars were appropriately labelled with a unique GHD job number, sample identification and sampling date. |  |  |
| Sample<br>Preservation and<br>Transport | Samples were stored on ice in an insulated cooler immediately after sampling and were kept chilled prior to and during delivery to the laboratory.  All samples were transported to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation.                                                    |  |  |

| Activity        | Details                                                                                                                                                                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decontamination | Disposable nitrile gloves were worn during sampling and changed between samples to minimise the potential for cross-contamination. Further sample collection, handling and preservation details are summarised in Section 6.12. |

## 6.12 Sample collection, handling and preservation

Due to the nature of PFAS, further care during sampling must be undertaken to minimise the potential for cross contamination during sample collection and transport. Table 6-12, adopted from WA DER 2017 and aligned with PFAS NEMP 2020, summarises the mitigation practice and alternative approach for each potential source of cross contamination during PFAS sampling.

**Table 6-12** Summary of mitigation practices

| Product                                                                                                | Mitigation practices         | Alternative approach                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clothing and food                                                                                      | <u>'</u>                     |                                                                                                                                                           |
| New clothing                                                                                           |                              | All field clothing was washed after purchase before using at the assessment area.                                                                         |
| Clothing with stain-resistant, rain resistant, or waterproof coatings/ treated fabric (e.g. GORE-TEX®) | Prohibited for sampling      | Sampling during rain was avoided if possible; polyethylene rain gear (e.g. disposable LDPE), vinyl, or polyvinyl chloride (PVC) clothing were acceptable. |
| Tyvek® clothing                                                                                        | personnel (1)                | None.                                                                                                                                                     |
| Fast food wrappers and containers                                                                      |                              | Rigid plastic containers or bags or stainless steel containers were used for all food brought to the assessment area.                                     |
| Pre-wrapped foods and snacks (e.g. chocolate bars, energy bars, granola bars, potato chips etc.)       |                              | Food brought to the assessment area was contained in plastic (rigid containers or bags) or stainless steel containers.                                    |
| Sampling equipment and container                                                                       | rs                           |                                                                                                                                                           |
| Teflon®-containing or –coated field equipment (tubing, bailers, tape, plumbing paste, etc.)            | Prohibited at site (2)       | High-density polyethylene (HDPE) or silicone tubing, and HDPE or polypropylene field equipment recommended.                                               |
| Teflon®-lined lids on containers (e.g. sample containers, rinsate water storage containers)            | Prohibited at site (2)       | Polypropylene lids (3) for sample containers and polypropylene or HDPE containers for rinsate.                                                            |
| Glass sample containers with lined lids                                                                | Contact with samples         | Polypropylene or HDPE were used for sample containers (3) (PFAS adsorb strongly to glass).                                                                |
| Other products                                                                                         |                              |                                                                                                                                                           |
| Aluminium foil                                                                                         | Prohibited at site (2)       | Thin HDPE sheeting (commonly used as drop cloths for painting or home improvement) could be used.                                                         |
| Self-sticking notes and similar office products (e.g. 3M Post-it notes)                                | Prohibited at site (2)       | Avoided the use of these products at the site.                                                                                                            |
| Waterproof paper, notebooks, and labels                                                                | Prohibited at site (2)       | Standard paper and paper labels.                                                                                                                          |
| Detergents and decontamination solutions (e.g. Decon 90® Decontamination Solution)                     | Prohibited for all equipment | Decontamination using Liquinox ® detergent (PFAS-free and phosphate-free) follow water-only decontamination approach.                                     |

| Product                                             | Mitigation practices                        | Alternative approach                                          |
|-----------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|
| Reusable chemical or gel ice packs (e.g. Blue Ice®) | Prohibited for sample storage and transport | Ice contained in plastic (polyethylene) bags (double bagged). |

#### **Notes**

- (1) Sampling personnel includes all personnel who:
- were directly involved in the collection, handling, and/or processing of samples prior to the samples leaving the assessment area; or
- handled any part of equipment that directly contacts surface water or aquatic sediment; or
- Were within 2–3 m of the sampling location during sampling.
- Personnel were not included as sampling personnel if they remain at least 2–3 m away from sample collection areas prior to and during sampling.
- (2) Entire sample collection and processing area, including vehicles used by sampling personnel.
- (3) USEPA and ASTM method for the analysis of PFAS in solid and liquids specify polypropylene or HDPE with polypropylene lids.

## **6.13** Laboratory analysis

Selected samples were submitted for laboratory analysis to a National Association of Testing Authorities (NATA) accredited laboratory under standard chain of custody procedures. The analysing laboratories are as follows:

- Primary Laboratory Envirolab Group
- Secondary Laboratory ALS
- All samples were tested for PFAS short analytical suite except selected surface water samples from Dawesley Creek, Mt Barker Creek and Bremer River analysed for the full "long" PFAS suite to determine the "fingerprint" of different PFAS sources.

### 6.14 Community engagement

GHD conducted the community engagement in accordance with the VSCAP (GHD 2019b), the CFS Community Engagement Plan and EPA (2018) Site Contamination Guideline for communication and engagement. A comprehensive summary of the community engagement is provided in Appendix A.

- Community engagement included posting and / or delivering letters to the landowners of private properties on which proposed groundwater and surface water sampling locations were located to obtain informed consent to conduct the monitoring program. The informed consent was obtained from the following private owners: Ray & Tania Jackson, Lot 294, 296 Pyrites Rd, Brukunga
- 2. Peter Buik, Peggy Buxton Road Pty Ltd, 203 Peggy Buxton Rd, Brukunga
- 3. Elizabeth Jean Shephard, Lot 54 Pyrites Rd, Brukunga
- 4. Milos J Castelli, 16 Hawthorn Street, Dawesley, "The Brae"
- 5. Brad McAvanney, 483 Ironstone Range Rd, Petwood
- 6. Paul Johnston, 430D Callington Road, Salem.

In addition, letters were posted and / or delivered to the landowners of private properties adjacent to proposed groundwater and surface water sampling locations located on road reserves (public land) that were not accessible by public roads to obtain permission to access the road reserve via their property. A door knock was conducted as part of this environmental investigation to distribute an information letter to properties adjacent to the new monitoring wells installed. Copies of the community engagement letters are provided in Appendix A.

GHD (2020d) undertook a door knock/water use survey regarding existing water use, groundwater bores and frequency/type of use, including preparation of communication collateral and Survey Monkey. The survey area was determined based on the results of the surface water samples collected from Dawesley Creek and is shown in Figure 12.

GHD will also be assisting the CFS with Community Information Sessions on the results of the survey and information regarding PFAS impacts in the Brukunga area as required. This Information Sessions will be undertaken in accordance with the VSCAP milestones.

## 7. Results

All field notes collected as a part of this investigation can be found in Appendix I. Calibration certificates for the interface probe and water quality meter can be found in Appendix J. Laboratory reports and chain of custody documentation can be found in Appendix K. Photographs taken during site investigations can be found in Appendix L. Results tables for field parameters and analytical data can be found at the end of this report.

#### 7.1 Concrete

The analytical results for one concrete dust sample (SB02) and 24 concrete core samples (seven from Hotpad A, six from Hotpad B, three from Tank 1, four from Tank 4, one from Tank 5 and three from Tank 7) are presented in Table 1 at the end of this report. PFAS concentrations in concrete exceeding the adopted screening criteria are shown in Table 7-1 and illustrated in Figure 13 at the end of this report.

Table 7-1 Concrete analytical exceedances May and July 2020

| No. of primary samples | Analyte       | Value (µg/kg)       | Samples exceeding criteria      |
|------------------------|---------------|---------------------|---------------------------------|
| PFAS NEMP 20           | 20 Interim Ed | ological Direct Ex  | posure (1,000 μg/kg PFOS)       |
| 25                     | PFOS          | 1,200               | SB05_Concrete (Hotpad B pavers) |
| PFAS NEMP 20           | 20 Interim Ed | ological Indirect E | xposure (10 μg/kg PFOS)         |
| 25                     | PFOS          | 1,200               | SB05_Concrete (Hotpad B pavers) |
|                        |               | 140                 | HPB1 (Hotpad B pavers)          |
|                        |               | 190                 | HPB2 (Hotpad B pavers)          |
|                        |               | 150                 | HPB3 (Hotpad B pavers)          |
|                        |               | 65                  | HPB4 (Hotpad B pavers)          |
|                        |               | 18                  | Tank1/01b                       |
|                        |               | 59                  | Tank4                           |
|                        |               | 28                  | Tank4/01b                       |
|                        |               | 38                  | Tank4/02b                       |

#### 7.2 Flux test results

#### 7.2.1 Field observations

The flux tests were undertaken following a period of minimal rainfall with no rainfall recorded at the Bureau of Meteorology weather station at Nairne (Station number 023739, located approximately 5 km south-west of the site) in the three days period prior to the test (Table 7-2).

The weather during the flux test at Hotpad A on 7 May 2020 was overcast with showers. The weather station in Mt Barker (Station number 023733) recorded temperatures between 11.3°C and 15.4°C recorded for the day and the weather station in Nairne recorded 4.4 mm of rainfall.

The weather during the flux test at Hotpad B on 18 May 2020 was slightly overcast with temperatures between 8.9°C and 19.4°C and no rainfall.

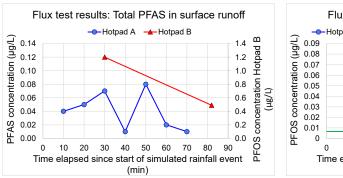
Table 7-2 BOM rainfall observations at Nairne (weather station 023739)

| Flux test | Date of Works | Rainfall observations prior to flux test (mm) |          |        |         |
|-----------|---------------|-----------------------------------------------|----------|--------|---------|
|           |               | 24 hours                                      | 72 hours | 1 week | 3 weeks |
| Hotpad A  | 7 May 2020    | 0                                             | 0        | 13.0   | 58.8    |
| Hotpad B  | 18 May 2020   | 0                                             | 0        | 5.6    | 62.8    |

The climate observations for Brukunga are provided in Appendix M.

### 7.2.2 Analytical results

The analytical results of the flux tests are presented in Table 2 at the end of this report. The calculated PFAS mass flux off the hotpads during the flux tests is summarised in Table 7-3. For Hotpad A, the mass flux was calculated for each 10 minute interval of the simulated 5 mm rainfall event, yielding a total of 168  $\mu$ g PFAS (sum of total) that were mobilised during the experiment. For Hotpad B, the PFAS mass flux was calculated for the first 30 min interval and the following 52 min interval, assuming constant PFAS concentrations in the runoff off the rainfall simulation area for each interval. Overall, a total of 1,069  $\mu$ g PFAS (sum of total) were mobilised from the 214 m² rainfall simulation area at Hotpad B during the experiment. Assuming a constant PFAS mass flux per square metre for the whole area of Hotpad B, the total PFAS mass flux off the 1,858 m² Hotpad B during a 5 mm rainfall event was calculated to be 9,281  $\mu$ g PFAS (sum of total).


Table 7-3 PFAS mass flux off hotpads in a simulated 5 mm rainfall event

| ID           | Interval (min)        | Total PFAS (µg/L)        | Flow rate (L/s) | Mass (µg) |  |  |
|--------------|-----------------------|--------------------------|-----------------|-----------|--|--|
| Hotpad A (to | Hotpad A (total area) |                          |                 |           |  |  |
| FX01         | 10                    | 0.04                     | 0.99            | 24        |  |  |
| FX02         | 20                    | 0.05                     | 0.99            | 30        |  |  |
| FX03         | 30                    | 0.07                     | 0.99            | 42        |  |  |
| FX04         | 40                    | 0.01                     | 0.99            | 6         |  |  |
| FX05         | 50                    | 0.08                     | 0.99            | 48        |  |  |
| FX06         | 60                    | 0.02                     | 0.99            | 12        |  |  |
| FX07         | 70                    | 0.01                     | 0.99            | 6         |  |  |
|              |                       |                          | TOTAL           | 168       |  |  |
| Hotpad B (m  | ass flux test area;   | 11.5% of total hotpad ar | rea)            |           |  |  |
| FX08         | 30                    | 1.2                      | 0.29            | 626       |  |  |
| FX13         | 82                    | 0.49                     | 0.29            | 443       |  |  |
|              |                       |                          | TOTAL           | 1,069     |  |  |

Based on the flux test results the annual PFAS mass flux off Hotpad A and Hotpad B was calculated using the long-term average annual rainfall of 675.3 mm recorded at the weather station in Nairne (Station ID 023739, BOM 2020), located 4.8 km to the south-west of Brukunga. With the conservative assumption of constant PFAS mass flux off the hotpads during any rainfall event, the flux test results were divided by five mm and multiplied with the average annual rainfall of 675.3 mm. In an average year, up to 23 mg and 1,253 mg could be mobilised via surface runoff off Hotpad A and Hotpad B per year.

The PFOS concentrations detected in the surface water runoff from Hotpad A and Hotpad B exceeded the catchment specific surface WQG for PFOS in all samples collected and analysed. The PFHxS concentrations detected in the surface water runoff were also above the catchment specific WQG for PFHxS in all samples collected and analysed from Hotpad B and in four samples from Hotpad A. The PFHxS concentrations in the remaining three samples from

Hotpad A were below the laboratory's LOR of 0.01  $\mu$ g/L and thus potentially above the WQG of 0.0046  $\mu$ g/L. The change in total PFAS and PFOS concentrations in the surface runoff over time is shown in Figure 7-1.



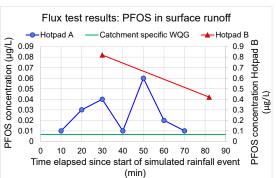



Figure 7-1 Sum of total PFAS and PFOS in runoff from hotpads over time (note the different scale for Hotpad A and Hotpad B)

## 7.3 Storage tank water

The analytical results for water samples collected on 28 October 2020 from the seven water storage tanks at the Brukunga Mine are provided in Table 3 at the end of this report. PFAS concentrations above the adopted assessment criteria are summarised in Table 7-4.

Table 7-4 Storage tank water analytical exceedances October 2020

| No. of primary samples | Analyte                                                                          | Value (μg/L)       | Samples exceeding criteria |  |  |
|------------------------|----------------------------------------------------------------------------------|--------------------|----------------------------|--|--|
| Catchment specific WQ0 | Catchment specific WQG for PFOS – highly disturbed ecosystems (0.0066 µg/L PFOS) |                    |                            |  |  |
| 7                      | PFOS                                                                             | 0.41               | Tank1                      |  |  |
|                        |                                                                                  | 0.36               | Tank2                      |  |  |
|                        |                                                                                  | 0.34               | Tank3                      |  |  |
|                        |                                                                                  | 0.25               | Tank4                      |  |  |
|                        |                                                                                  | 0.37               | Tank5                      |  |  |
|                        |                                                                                  | 0.32               | Tank6                      |  |  |
|                        |                                                                                  | 0.28               | Tank7                      |  |  |
| Catchment specific WQ0 | G for PFHxS – highly                                                             | disturbed ecosyste | ms (0.0046 µg/L PFHxS)     |  |  |
| 7                      | PFHxS                                                                            | 0.08               | Tank1                      |  |  |
|                        |                                                                                  | 0.09               | Tank2                      |  |  |
|                        |                                                                                  | 0.08               | Tank3                      |  |  |
|                        |                                                                                  | 0.07               | Tank4                      |  |  |
|                        |                                                                                  | 0.09               | Tank5                      |  |  |
|                        |                                                                                  | 0.08               | Tank6                      |  |  |
|                        |                                                                                  | 0.07               | Tank7                      |  |  |
| PFAS NEMP 2020 Healt   | th Drinking Water (0.0                                                           | )7 μg/L sum of PFC | S and PFHxS)               |  |  |
| 7                      | Sum of PFOS and                                                                  | 0.49               | Tank1                      |  |  |
|                        | PFHxS                                                                            | 0.46               | Tank2                      |  |  |
|                        |                                                                                  | 0.42               | Tank3                      |  |  |
|                        |                                                                                  | 0.32               | Tank4                      |  |  |
|                        |                                                                                  | 0.45               | Tank5                      |  |  |
|                        |                                                                                  | 0.41               | Tank6                      |  |  |
|                        |                                                                                  | 0.36               | Tank7                      |  |  |

#### **7.4** Soil

Soil samples were collected on-site from various locations (Figure 6a) and off-site from a disused vegetable garden located at 296 Pyrites Road, Brukunga (Figure 6b), at the request of the landowner.

Soil analytical results are presented in Table 4 at the end of this report. PFAS concentrations in exceedance of the adopted assessment criteria are summarised in Table 7-5 and shown in Figure 13 at the end of this report.

 Table 7-5 Soil analytical exceedances May / September 2020

| No. of primary samples | Analyte                                                              | Value (µg/kg)        | Samples exceeding criteria |  |  |  |
|------------------------|----------------------------------------------------------------------|----------------------|----------------------------|--|--|--|
| PFAS NEMP 2020 Interi  | PFAS NEMP 2020 Interim Ecological Direct Exposure (1,000 μg/kg PFOS) |                      |                            |  |  |  |
| 23                     | PFOS                                                                 | 1,400                | SB01_0-0.2                 |  |  |  |
|                        |                                                                      | 1,300                | SB01_0.2-0.4               |  |  |  |
|                        |                                                                      | 2,100                | SB01_0.9-1.1               |  |  |  |
| PFAS NEMP 2020 Interi  | m Ecological Indire                                                  | ct Exposure (10 µg/k | g PFOS)                    |  |  |  |
| 23                     | PFOS                                                                 | 1,400                | SB01_0-0.2                 |  |  |  |
|                        |                                                                      | 1,300                | SB01_0.2-0.4               |  |  |  |
|                        |                                                                      | 2,100                | SB01_0.9-1.1               |  |  |  |
|                        |                                                                      | 130                  | SB03_0-0.2                 |  |  |  |
|                        |                                                                      | 19                   | SB04_0-0.2                 |  |  |  |
|                        |                                                                      | 27                   | SB05_0.1-0.2               |  |  |  |
|                        |                                                                      | 250                  | SB05_0.3-0.4               |  |  |  |
|                        |                                                                      | 25                   | SB06_0.4-0.6               |  |  |  |
|                        |                                                                      | 26                   | SB06_1.0-1.2               |  |  |  |
|                        |                                                                      | 170                  | SB07_0-0.2                 |  |  |  |
|                        |                                                                      | 740                  | SB07_0.4-0.6               |  |  |  |
|                        |                                                                      | 33                   | SB08_0.2-0.4               |  |  |  |

### 7.5 Sludge

#### 7.5.1 Field observations

The sludge material consisted of pale orange gypsum with a sandy-silty texture that was very light in weight. Sludge material collected from the sludge waste stockpiles on the southern bench was classified as sandy silt. In contrast, the sludge material collected from the sludge waste stockpiles around the emergency sludge overflow pond included clayey sand, sand, sandy clay, and clay. This difference is due to operational procedures as sludge from the acid treatment plant is pumped directly into the sludge drying ponds and, once dry, transferred by truck to the sludge waste piles at the foot of the highwall on the western side of the mine, while the sludge in the area of the emergency sludge overflow pond is mixed with other fill material.

All sludge waste pile soil bores on the southern bench (SW01 to SW09) were advanced until refusal on hard rock material underlying the waste piles. At three of these locations (SW07 to SW09) a 10 cm thick wet sludge layer was observed between 2.0 m and 4.2 m below the surface of the sludge waste pile (Appendix B). This was most likely perched water due to differences in sludge consistency resulting in a more porous sludge layer overlying a less permeable sludge layer within the sludge waste pile.

Two sludge waste soil bores on the south-western side of the emergency sludge overflow pond (SW10 and SW11) were advanced until collapsing bore holes prevented further progress due to

a wet layer of sandy clay fill material, which was encountered between 1.4 and 3.0 m bgl at SW10 and between 1.1 and 3.0 m bgl at SW11. This layer most likely consisted of perched water sitting on top of a less permeable layer of fill material onto which the emergency sludge overflow pond was built.

### 7.5.2 Analytical results

Sludge analytical results are presented in Table 5 at the end of this report. Exceedances of the adopted criteria are summarised in Table 7-6 and illustrated in Figure 14a to Figure 14d at the end of this report.

Table 7-6 Sludge analytical exceedances May 2020

| No. of primary samples                                              | Analyte | Value<br>(µg/kg) | Samples exceeding criteria (Location) |  |
|---------------------------------------------------------------------|---------|------------------|---------------------------------------|--|
| PFAS NEMP 2020 Interim Ecological Indirect Exposure (10 μg/kg PFOS) |         |                  |                                       |  |
| 61                                                                  | PFOS    | 65               | SS15 (Northern Bench)                 |  |
|                                                                     |         | 18               | SS16 (Northern Bench)                 |  |
|                                                                     |         | 36               | SS17 (Northern Bench)                 |  |
|                                                                     |         | 18               | SS27 (Southern Extension WRD)         |  |
|                                                                     |         | 29               | SW15 (Emergency Sludge Overflow Pond) |  |

## 7.6 Leachability tests

The leachability of PFAS compounds from selected sludge and concrete core samples was tested using a multiple extraction procedure, in accordance with the Australian Standard Leaching Procedure (ASLP, AS 4439.3-2019). The analytical results of the leachability tests for sludge and concrete core samples are provided in Table 6a and Table 6b at the end of this report and summarised in Table 7-7. The concrete core samples were collected from both hotpads and from on-site water storage tanks number one, four, five and seven, which have previously held PFAS containing water.

**Table 7-7 Summary of leachate exceedances** 

| No. of             | Sludge / concrete exceedances        |                                                       | Leachate exceedances                |                                                          |  |  |
|--------------------|--------------------------------------|-------------------------------------------------------|-------------------------------------|----------------------------------------------------------|--|--|
| primary<br>samples | Criterion                            | Sample<br>(concentration)                             | Criterion                           | Sample<br>(concentration)                                |  |  |
| Sludge su          | ırface samples                       |                                                       |                                     |                                                          |  |  |
| 3                  | Ecological<br>Indirect<br>Exposure * | SS15 (65 μg/kg)<br>SS17 (36 μg/kg)<br>SS27 (18 μg/kg) | Drinking water ^ and                | SS15 (0.61 μg/L)<br>SS17 (0.33 μg/L)<br>SS27 (0.29 μg/L) |  |  |
|                    |                                      |                                                       | Fresh water –<br>PFOS <sup>#</sup>  | SS15 (0.59 μg/L)<br>SS17 (0.32 μg/L)<br>SS27 (0.29 μg/L) |  |  |
|                    |                                      |                                                       | Fresh water –<br>PFHxS <sup>#</sup> | SS15 (0.03 μg/L)<br>SS17 (0.01 μg/L)                     |  |  |
| Sludge wa          | Sludge waste stockpile samples       |                                                       |                                     |                                                          |  |  |
| 3                  | -                                    | al -                                                  | Drinking water ^                    | SW13 (0.08 µg/L)                                         |  |  |
|                    | Indirect<br>Exposure *               |                                                       | Fresh water –<br>PFOS #             | SW04 (0.02 μg/L)<br>SW09 (0.02 μg/L)<br>SW13 (0.08 μg/L) |  |  |

| No. of             | Sludge / concrete exceedances        |                                                                                       | Leachate exceeda         | ances                                                                                                                                                                                                                                                                                                      |
|--------------------|--------------------------------------|---------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| primary<br>samples | Criterion                            | Sample<br>(concentration)                                                             | Criterion                | Sample<br>(concentration)                                                                                                                                                                                                                                                                                  |
|                    |                                      |                                                                                       | Fresh water –<br>PFHxS # | SW04 (0.01 μg/L)<br>SW09 (0.02 μg/L)<br>SW13 (0.05 μg/L)                                                                                                                                                                                                                                                   |
|                    | core samples                         |                                                                                       |                          |                                                                                                                                                                                                                                                                                                            |
| 21                 | Ecological<br>Indirect<br>Exposure * | HPB1 (140 μg/kg)<br>HPB2 (190 μg/kg)<br>HPB3 (150 μg/kg)<br>HPB4 (65 μg/kg)           | Recreational water §     | HPB1 (7.0 μg/L)<br>HPB2 (7.5 μg/L)<br>HPB3 (7.1 μg/L)<br>HPB4 (2.5 μg/L)                                                                                                                                                                                                                                   |
|                    |                                      | Tank1/01 (18 μg/kg) Tank4_Concrete (59 μg/kg) Tank4/01 (28 μg/kg) Tank4/02 (38 μg/kg) | Drinking water ^         | HPA1 (0.16 μg/L) HPB1 (7.0 μg/L) HPB2 (7.5 μg/L) HPB3 (7.1 μg/L) HPB4 (2.5 μg/L) HPB5 (0.075 μg/L) Tank1/01 (0.19 μg/L) Tank1/02 (0.093 μg/L) Tank1/03 (0.21 μg/L) Tank4_Concrete (0.81 μg/L) Tank4/01 (1.3 μg/L) Tank4/02 (0.72 μg/L) Tank4/03 (0.15 μg/L)                                                |
|                    |                                      |                                                                                       | Fresh water –<br>PFOS #  | HPA1 (0.071 μg/L) HPA3 (0.011 μg/L) HPB1 (5.0 μg/L) HPB2 (3.8 μg/L) HPB3 (4.5 μg/L) HPB4 (1.6 μg/L) HPB5 (0.064 μg/L) Tank1/01 (0.16 μg/L) Tank1/02 (0.069 μg/L) Tank4/03 (0.16 μg/L) Tank4/Concrete (0.61 μg/L) Tank4/01 (0.56 μg/L) Tank4/01 (0.56 μg/L) Tank4/03 (0.13 μg/L) Tank5_Concrete (0.01 μg/L) |
|                    |                                      |                                                                                       | Fresh water –<br>PFHxS # | HPA1 (0.087 μg/L) HPA5 (0.005 μg/L) HPB1 (2.1 μg/L) HPB2 (3.7 μg/L) HPB3 (2.6 μg/L) HPB4 (0.9 μg/L)                                                                                                                                                                                                        |

| No. of             | Sludge / concrete exceedances |                           | Leachate exceedances |                                                                                                    |
|--------------------|-------------------------------|---------------------------|----------------------|----------------------------------------------------------------------------------------------------|
| primary<br>samples | Criterion                     | Sample<br>(concentration) | Criterion            | Sample<br>(concentration)                                                                          |
|                    |                               |                           |                      | HPB5 (0.011 μg/L) Tank1/01 (0.032 μg/L) Tank1/02 (0.024 μg/L) Tank1/03 (0.042 μg/L) Tank4 Concrete |
|                    |                               |                           |                      | (0.20 μg/L) Tank4/01 (0.75 μg/L) Tank4/02 (0.064 μg/L) Tank4/03 (0.024 μg/L)                       |

#### Notes:

## 7.7 Seepage water

The analytical results for seepage water samples collected at the Brukunga Mine are provided in Table 7 at the end of this report. PFAS concentrations above the adopted assessment criteria are summarised in Table 7-8 and illustrated in Figure 15 at the end of this report.

Table 7-8 Seepage water analytical exceedances July 2020

| No. of primary samples                                                 | Analyte                  | Value (μg/L)                       | Samples exceeding criteria   |  |
|------------------------------------------------------------------------|--------------------------|------------------------------------|------------------------------|--|
| Catchment spec                                                         | ific WQG for PFOS – high | ly disturbed ecosysten             | ns (0.0066 µg/L PFOS)        |  |
| 7                                                                      | PFOS                     | 0.0071<br>0.12<br>0.035<br>0.023   | WW03<br>WW04<br>WW06<br>WW07 |  |
| Catchment spec                                                         | ific WQG for PFHxS – hig | hly disturbed ecosyste             | ms (0.0046 μg/L PFHxS)       |  |
| 7                                                                      | PFHxS                    | 0.028<br>0.0049<br>0.0078<br>0.088 | WW04<br>WW05<br>WW06<br>WW07 |  |
| PFAS NEMP 2020 Health Drinking Water (0.07 µg/L sum of PFOS and PFHxS) |                          |                                    |                              |  |
| 7                                                                      | Sum of PFOS and PFHxS    | 0.15<br>0.11                       | WW04<br>WW07                 |  |

## 7.8 Brukunga Mine Diversion Drain

A grab sample was collected from the diversion drain at the CFS STC on 18 May 2020. The surface water quality parameters and the analytical results for this sample are presented in Table 8 and Table 9 at the end of this report. The water in the diversion drain was fresh with slightly alkaline pH, high oxygen content and oxidising redox potential. All reported PFAS concentrations were below the laboratory LOR. It is noted that the standard laboratory LOR was above the catchment specific WQG for PFOS and PFHxS.

<sup>\*</sup> PFAS NEMP 2020 guideline for Interim Ecological Indirect Exposure (10 μg/kg PFOS)s

<sup>^</sup> PFAS NEMP 2020 Health Drinking Water (0.07 μg/L sum of PFOS and PFHxS)

 $<sup>^{\#}</sup>$  Catchment specific WQG –highly disturbed ecosystems (0.0066  $\mu$ g/L PFOS and 0.0046  $\mu$ g/L PFHxS)

<sup>§</sup> NHMRC 2019 Recreational Water PFAS Guidelines (2 µg/L sum of PFOS and PFHxS)

#### 7.9 Groundwater

#### 7.9.1 Field observations and parameters

Groundwater gauging data collected during the February 2020 and June to September 2020 groundwater monitoring events is provided in Table 10 at the end of this report and summarised in Table 4-1. Fixed pumps installed on private residential bores (6627-5944, 6627-7126, 6627-7520, 6627-8333 and 6627-11131) could not be removed, hence the standing water levels could not be measured. The observed SWL in monitoring wells C04a, GW01, GW03, GW05 and GW07 were above the screened section of the wells. This was considered not relevant, however, as PFAS are not floating contaminants and none of the wells are in close proximity to small shallow PFAS sources, which might pass over the screen.

Groundwater parameters collected during 2020 are summarised in Table 7-9 and provided in Table 11 at the end of this report.

Table 7-9 Summary of groundwater parameters 2020

| Parameter                    | Range                                    | Comments                    |
|------------------------------|------------------------------------------|-----------------------------|
| рН                           | Feb: 2.39 (BH19) - 6.39 (6627-7520)      | Acidic to slightly acidic   |
|                              | Jun: 6.43 (6627-5944) to 7.0 (KAN23) 1   | Slightly acidic to alkaline |
| Electrical                   | Feb: 1,250 (GAMW-03) - 34,000 (H13)      | Low to high                 |
| conductivity<br>(µS/cm)      | Jun-Sep: 744 (GW05) to 20,641 (GW02)     | Low to high                 |
| TDS <sup>2</sup>             | Feb: 813 (GAMW-03) – 22,100 (H13)        | Fresh to saline             |
| (mg/L)                       | Jun-Sep: 484 (GW05) to 13,417 (GW02)     | Fresh to saline             |
| Dissolved oxygen             | Feb: 0.49 (KAN41) – 8.35 (H09)           | Low to high                 |
| (mg/L)                       | Jun-Sep: 1.42 (GW02) to 6.54 (KAN26)     | Low to Moderate             |
| Redox potential <sup>3</sup> | Feb: 218 (6627-8333) - 711 (H01)         | Oxidising conditions        |
| (mV)                         | Jun-Sep: -17 (6627-7126) to 240 (GW03)   | Reducing to oxidising       |
| Temperature                  | Feb: 15.3 (H12) – 21.9 (BH19)            | Normal range for summer     |
| (°C)                         | Jun-Sep: 14.4 (GW01) to 17.4 (6627-7126) | Normal range for winter     |

#### Notes:

In June 2020, the groundwater was predominantly clear to pale brown with low to medium turbidity and no sheen. The sample from well KAN23 had a slight sulphur odour. During the sampling of private bore 6627-5944 strong / slight methane odour was observed upon starting the pump in August / September 2020, respectively. However, the odour dissipated after some time while the water quality parameters were stabilising prior to the sample being collected.

## 7.9.2 Analytical Results

The tabulated analytical results for this investigation and the February 2020 GME are presented in Table 12 at the end of this report, and laboratory reports are provided in Appendix K. Fourteen primary groundwater samples were submitted for laboratory analysis as part of this investigation. The reported February 2020 and June to September 2020 concentrations of all

<sup>&</sup>lt;sup>1</sup> The field pH values recorded in June 2020 indicated a faulty pH probe, were not representative of the site conditions and were replaced with lab values or excluded from this table.

<sup>&</sup>lt;sup>2</sup> TDS values were calculated by multiplying the electrical conductivity values with a conversion factor of 0.65.

<sup>&</sup>lt;sup>3</sup> Redox potential relative to the standard hydrogen electrode (SHE) was calculated by adding an off-set voltage of 199 mV to the field redox potential measurements made with an Ag/AgCl electrode saturated with KCl.

analytes were below the laboratory limit of reporting or below the adopted assessment criteria, except for those summarised in Table 7-10. The June 2020 and February / March 2020 groundwater exceedances for PFOS and the sum of PFOS and PFHxS are shown in Figure 16a. The extent of PFAS impacts in groundwater in the investigation area is illustrated with inferred sum of PFOS and PFHxS concentration contours in Figure 16b at the end of this report.

 Table 7-10
 Summary of groundwater analytical results 2020

| No. of primary samples                                                                     | Analyte          | Concentration<br>(µg/L) | Samples exceeding criteria |
|--------------------------------------------------------------------------------------------|------------------|-------------------------|----------------------------|
| PFAS NEMP 2020 health screening level for drinking water (0.07 μg/L sum of PFHxS and PFOS) |                  |                         |                            |
| 17 (Feb/Mar 2020)                                                                          | Sum of PFHxS and | 0.15                    | 6627-8333                  |
|                                                                                            | PFOS             | 0.16                    | BH22                       |
|                                                                                            |                  | 0.42                    | H02                        |
|                                                                                            |                  | 0.17                    | H04a                       |
|                                                                                            |                  | 0.16                    | H06a                       |
|                                                                                            |                  | 0.08                    | H13                        |
|                                                                                            |                  | 0.08                    | KAN12                      |
|                                                                                            |                  | 0.09                    | KAN45                      |
| 15 (Jun-Sep 2020)                                                                          | Sum of PFHxS and | 0.110                   | 6627-5944 *                |
|                                                                                            | PFOS             | 0.084                   | 6627-5944_B *              |
| Catchment specific WQG – highly disturbed ecosystem (0.0066 µg/L PFOS)                     |                  |                         |                            |
| 17 (Feb/Mar 2020)                                                                          | PFOS             | 0.08                    | 6627-8333                  |
| ,                                                                                          |                  | 0.02                    | BH19                       |
|                                                                                            |                  | 0.09                    | BH22                       |
|                                                                                            |                  | 0.03                    | GAMW-03                    |
|                                                                                            |                  | 0.02                    | H01                        |
|                                                                                            |                  | 0.04                    | H02                        |
|                                                                                            |                  | 0.02                    | H04a                       |
|                                                                                            |                  | 0.02                    | H04b                       |
|                                                                                            |                  | 0.03                    | H06a                       |
|                                                                                            |                  | 0.02                    | H09                        |
|                                                                                            |                  | 0.03                    | H12                        |
|                                                                                            |                  | 0.08                    | H13                        |
|                                                                                            |                  | 0.03                    | KAN12                      |
|                                                                                            |                  | 0.02                    | KAN41                      |
|                                                                                            |                  | 0.02                    | KAN45                      |
|                                                                                            |                  | 0.02                    | KAN52                      |
| 15 (Jun-Sep 2020)                                                                          | PFOS             | 0.010                   | GW03                       |
|                                                                                            |                  | 0.063                   | 6627-5944 *                |
|                                                                                            |                  | 0.046                   | 6627-5944_B *              |
| Catchment specific WQG – highly disturbed ecosystem (0.0046 µg/L PFHxS)                    |                  |                         |                            |

| No. of primary samples | Analyte | Concentration<br>(μg/L) | Samples exceeding criteria |
|------------------------|---------|-------------------------|----------------------------|
| 17 (Feb/Mar 2020)      | PFHxS   | 0.07                    | 6627-8333                  |
|                        |         | 0.07                    | BH22                       |
|                        |         | 0.02                    | GAMW-03                    |
|                        |         | 0.03                    | H01                        |
|                        |         | 0.38                    | H02                        |
|                        |         | 0.15                    | H04a                       |
|                        |         | 0.04                    | H04b                       |
|                        |         | 0.12                    | H06a                       |
|                        |         | 0.05                    | KAN12                      |
|                        |         | 0.06                    | KAN45                      |
| 15 (Jun-Sep 2020)      | PFHxS   | 0.047                   | 6627-5944 *                |
|                        |         | 0.038                   | 6627-5944_B *              |

#### Note:

#### 7.9.3 Section 83A notification

The reported concentrations of PFAS in a sampled groundwater monitoring bore were considered to constitute harm to groundwater and a Section 83A notification form was submitted in accordance with the South Australian Environment Protection Act 1993 (Gov SA 1993) to the SA Environment Protection Authority via email on 14 September 2020 as follows:

Private bore 6627-5944.

A copy of the Section 83A notification form is provided in Appendix N.

#### 7.10 Surface water

Surface water samples were collected from Dawesley Creek, both upstream and downstream of the CFS Brukunga STC, as well as from Mt Barker Creek (downstream of the confluence with Dawesley Creek) and from Bremer River (downstream of the confluence with Mt Barker Creek). In addition, surface water samples were collected from reference sites in Nairne Creek, Mt Barker Creek and Bremer River upstream of the confluence with Dawesley Creek / Mt Barker Creek to determine PFAS background concentrations used to derive catchment specific water quality guidelines for PFOS and PFHxS in the highly disturbed ecological system of Dawesley Creek and the slightly to moderately disturbed ecological systems of Nairne Creek, Mt Barker Creek and Bremer River.

## 7.10.1 Field observations and parameters

#### **Reference sites**

Nairne Creek, upstream of the confluence with Dawesley Creek, was observed to be shallow with clear water flowing slowly over a rocky creek bed. The water in Mt Barker Creek upstream of the confluence with Dawesley Creek had medium turbidity and was flowing freely over a rocky creek bed. The Bremer River upstream of the confluence with Mt Barker Creek was observed to be clear to pale yellow and stagnant to slow moving with reeds abundant at BR02 and algae present at BR01 and BR02.

The background surface water quality parameters collected from the reference sites are summarised in Table 7-11 and presented in Table 8 at the end of this report.

<sup>\*</sup> Higher value adopted from QA/QC analysis.

Table 7-11 Summary of background surface water quality parameters in July and September 2020

| Parameter                                  | Water course    | Value           | Comments                     |
|--------------------------------------------|-----------------|-----------------|------------------------------|
| рН                                         | Nairne Creek    | 8.03 to 8.45    | Slightly alkaline            |
|                                            | Mt Barker Creek | 7.64 to 8.80    | Neutral to slightly alkaline |
|                                            | Bremer River    | 7.47 to 9.2     | Neutral to slightly alkaline |
| Electrical conductivity                    | Nairne Creek    | 1,187 to 1,342  | Moderate                     |
| (µS/cm)                                    | Mt Barker Creek | 1,150 to 1,966  | Moderate                     |
|                                            | Bremer River    | 2,975 to 15,330 | Moderate to high             |
| Total dissolved solids <sup>1</sup> (mg/L) | Nairne Creek    | 772 to 872      | Fresh                        |
|                                            | Mt Barker Creek | 748 to 1,278    | Fresh to brackish            |
|                                            | Bremer River    | 1,934 to 9,965  | Brackish to saline           |
| Dissolved oxygen                           | Nairne Creek    | 10.36 to 10.55  | High                         |
| (mg/L)                                     | Mt Barker Creek | 7.83 to 12.15   | Moderate to High             |
|                                            | Bremer River    | 1.10 to 12.88   | Low to high                  |
| Redox potential <sup>2</sup> (mV)          | Nairne Creek    | 423 to 428      | Oxidising conditions         |
|                                            | Mt Barker Creek | 65 to 433       | Oxidising conditions         |
|                                            | Bremer River    | 18 to 435       | Oxidising conditions         |
| Temperature                                | Nairne Creek    | 11.1 to 12.4    | Normal for winter            |
| (°C)                                       | Mt Barker Creek | 9.2 to 16.8     | Normal for winter            |
|                                            | Bremer River    | 11.5 to 19.0    | Normal for winter            |

#### Notes:

## Dawesley Creek and downstream reaches of Mt Barker Creek and Bremer River

Dawesley Creek was observed to be flowing freely in a shallow, predominantly rocky creek bed that was approximately 1.5 m to 5 m wide. The wider sections of the creek (e.g. DC16 and DC17) often had abundant reeds along the banks and submerged water plants in the middle of the creek bed. The water was mostly clear with low to medium turbidity. The sampling locations located upstream of the CFS Brukunga STC (DC-UP01 and DC-UP02) were within the area that was burnt during the Cudlee Creek bushfires in December 2019. The water at the sampling locations adjacent the CFS STC site (Creek\_4 to Creek\_6) was stagnant during sampling in May 2020. The water in the diversion drain between the Media Training Building and Hotpad B was flowing freely in May 2020.

Mt Barker Creek downstream of the confluence with Dawesley Creek (DC17A) had clear to pale brown water with low to medium turbidity and was free flowing slowly in a wide (< 10 m) and deep channel. The Bremer River downstream of the confluence with Mt Barker Creek (DC18 and DC19) had water with medium turbidity flowing slowly in a wide (< 10 m) and deep channel.

The surface water quality parameters collected as a part of this investigation are summarised in Table 7-12 and presented in Table 8 at the end of this report.

<sup>&</sup>lt;sup>1</sup> TDS values were calculated by multiplying the electrical conductivity values with a conversion factor of 0.65.

<sup>&</sup>lt;sup>2</sup> Redox potential relative to the standard hydrogen electrode (SHE) was calculated by adding an off-set voltage of 199 mV to the field redox potential measurements made with an Ag/AgCl electrode saturated with KCl.

Table 7-12 Summary of surface water quality parameters May to August 2020

| Parameter                                  | Value                           | Comments             |
|--------------------------------------------|---------------------------------|----------------------|
| рН                                         | 4.59 (Creek_5) to 9.47 (DC04)   | Acidic to alkaline   |
| Electrical conductivity (µS/cm)            | 1,170 (DC02) to 7,915 (Creek_6) | Moderate to high     |
| Total dissolved solids <sup>1</sup> (mg/L) | 761 (DC02) to 5,145 (Creek_6)   | Fresh to saline      |
| Dissolved oxygen (mg/L)                    | 2.55 (Creek_6) to 17.95 (DC08)  | Low to high          |
| Redox potential <sup>2</sup> (mV)          | 39 (DC17A) to 593 (Creek_6)     | Oxidising conditions |
| Temperature (°C)                           | 2.7 (DC08) to 15.4 (Creek_4)    | Normal for winter    |

#### Notes:

#### 7.10.2 Analytical results

#### **Reference sites**

Background surface water PFAS analytical results of this investigation for the reference sites Nairne Creek, Mt Barker Creek and Bremer River are presented in Table 9 at the end of this report. The results were used to calculate catchment specific WQG for PFOS and PFHxS (section 5.5). PFAS concentrations above the adopted assessment criteria are summarised in Table 7-13.

Table 7-13 Summary of background surface water analytical exceedances July / September 2020

| No. of primary samples                                                                             | Analyte | Concentration (µg/L)                                                                                                           | Samples exceeding criteria                                                                                                                                   |
|----------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFAS NEMP 2020 Freshwater 99% protection level (0.00023 µg/L PFOS)                                 |         |                                                                                                                                |                                                                                                                                                              |
| 32                                                                                                 | PFOS    | 0.0006 to 0.0270                                                                                                               | All except for BR02 (23/07/20)                                                                                                                               |
| Catchment specific WQG for PFOS – slightly to moderately disturbed systems (0.0048 $\mu g/L$ PFOS) |         |                                                                                                                                |                                                                                                                                                              |
| 32                                                                                                 | PFOS    | 0.0270<br>0.0072<br>0.0074<br>0.0108<br>0.0160<br>0.0160<br>0.0160<br>0.0070<br>0.0050<br>0.0071<br>0.0066<br>0.0054<br>0.0061 | BR01<br>BR03_1A<br>BR03_1B<br>BR03_1C *<br>BR03_2A *<br>BR03_2B<br>BR03_2C<br>MBC01_2A *<br>MBC02_1A *<br>MBC02_1A *<br>MBC02_2A<br>MBC02_2B<br>NC01<br>NC02 |
| Catchment specific WQG for PFHxS – slightly to moderately disturbed systems (0.0044 µg/L PFHxS)    |         |                                                                                                                                |                                                                                                                                                              |

<sup>&</sup>lt;sup>1</sup> TDS values were calculated by multiplying the electrical conductivity values with a conversion factor of 0.65.

<sup>&</sup>lt;sup>2</sup> Redox potential relative to the standard hydrogen electrode (SHE) was calculated by adding an off-set voltage of 199 mV to the field redox potential measurements made with an Ag/AgCl electrode saturated with KCl.

| No. of primary samples | Analyte                                                                | Concentration (µg/L) | Samples exceeding criteria |  |  |
|------------------------|------------------------------------------------------------------------|----------------------|----------------------------|--|--|
| 32                     | PFHxS                                                                  | 0.0440               | BR01                       |  |  |
|                        |                                                                        | 0.0330               | BR03_1A                    |  |  |
|                        |                                                                        | 0.0310               | BR03_1B                    |  |  |
|                        |                                                                        | 0.0380               | BR03_1C *                  |  |  |
|                        |                                                                        | 0.0730               | BR03_2A *                  |  |  |
|                        |                                                                        | 0.0610               | BR03_2B                    |  |  |
|                        |                                                                        | 0.0600               | BR03_2C                    |  |  |
|                        |                                                                        | 0.0050               | MBC01_2A *                 |  |  |
|                        |                                                                        | 0.0046               | MBC01_2B                   |  |  |
|                        |                                                                        | 0.0049               | NC01                       |  |  |
|                        |                                                                        | 0.0047               | NC02                       |  |  |
| PFAS NEMP 2020 Healt   | PFAS NEMP 2020 Health Drinking Water (0.07 μg/L sum of PFOS and PFHxS) |                      |                            |  |  |
| 32                     | Sum of                                                                 | 0.0710               | BR01                       |  |  |
|                        | PFOS and                                                               | 0.0890               | BR03_2A*                   |  |  |
|                        | PFHxS                                                                  | 0.0770               | BR03_2B                    |  |  |
|                        |                                                                        | 0.0760               | BR03_2C                    |  |  |

#### Note:

### Dawesley Creek and downstream reaches of Mt Barker Creek and Bremer River

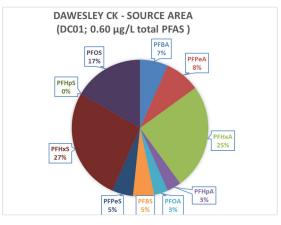
Surface water PFAS analytical results of this investigation and the February 2020 investigation are presented in Table 9 at the end of this report. These include samples from Dawesley Creek and from reaches of Mt Barker Creek and Bremer River downstream of the confluence with Dawesley Creek. The standard laboratory LOR for PFOS and PFHxS (0.01  $\mu$ g/L) was higher than the catchment specific WQG for these analytes (0.0044  $\mu$ g/L to 0.0066  $\mu$ g/L). Ultra-trace PFAS analysis was undertaken for selected surface water samples to confirm if PFOS and PFHxS concentrations exceeded the catchment specific WQG.

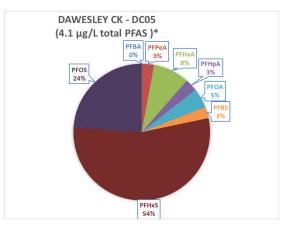
Assessment criteria exceedances for the surface water samples collected in February 2020 and between May and August 2020 are summarised in Table 7-14 and shown in Figure 17 at the end of this report.

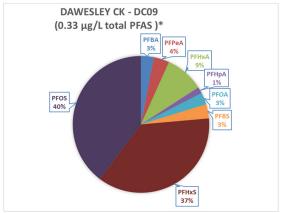
<sup>\*</sup> Higher value adopted from QA/QC analysis

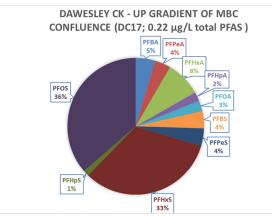
Table 7-14 Surface water analytical exceedances 2020

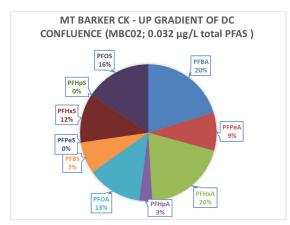
| No. of primary samples                    | Analyte           | Concentration (µg/L)                                                                         | Samples exceeding criteria                                                |
|-------------------------------------------|-------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Catchment specific WQC                    | G for PFOS – hig  | hly disturbed systems (0                                                                     | 0.0066 μg/L PFOS)                                                         |
| 2 (Feb 2020)                              | PFOS              | 0.099                                                                                        | DC01                                                                      |
|                                           |                   | 0.11                                                                                         | BV01                                                                      |
| 26 (May – Aug 2020)                       | PFOS              | 0.12<br>0.94<br>0.66<br>0.03<br>0.06<br>0.05<br>0.06<br>0.98<br>0.17<br>0.09<br>0.08<br>0.09 | Creek_4 Creek_5 Creek_6 DC02 DC02A DC03 DC04 DC05 * DC06 DC06A DC06B DC07 |
|                                           |                   | 0.08<br>0.13<br>0.11<br>0.13<br>0.097<br>0.081<br>0.080<br>0.087<br>0.078                    | DC08 DC09 DC10 DC11 DC13 DC14 DC15 DC16 DC17                              |
| Catchment specific WQC (0.0048 µg/L PFOS) | G for PFOS – slig | ghtly to moderately distu                                                                    | rbed systems                                                              |
| 26 (May – August<br>2020)                 | PFOS              | 0.014<br>0.012<br>0.020                                                                      | DC17A<br>DC18<br>DC19 *                                                   |
| Catchment specific WQC                    | G for PFHxS – hi  | ghly disturbed systems                                                                       | (0.0046 µg/L PFHxS)                                                       |
| 2 (Feb 2020)                              | PFHxS             | 0.16<br>0.22                                                                                 | DC01<br>BV01                                                              |

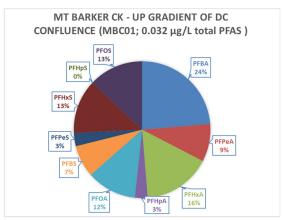

| No. of primary samples                     | Analyte          | Concentration (µg/L)      | Samples exceeding criteria |
|--------------------------------------------|------------------|---------------------------|----------------------------|
| 26 (May – Aug 2020)                        | PFHxS            | 0.17                      | Creek_4                    |
| 20 (May 7 (ag 2020)                        | TTTXO            | 2.2                       | Creek_5                    |
|                                            |                  |                           | _                          |
|                                            |                  | 2.0                       | Creek_6                    |
|                                            |                  | 0.01                      | DC02                       |
|                                            |                  | 0.07                      | DC02A                      |
|                                            |                  | 0.02                      | DC03                       |
|                                            |                  | 0.02                      | DC04                       |
|                                            |                  | 2.23                      | DC05 *                     |
|                                            |                  | 0.08                      | DC06 *                     |
|                                            |                  | 0.07                      | DC06A                      |
|                                            |                  | 0.06                      | DC06B                      |
|                                            |                  | 0.05                      | DC07                       |
|                                            |                  | 0.06                      | DC08                       |
|                                            |                  | 0.12                      | DC09 *                     |
|                                            |                  | 0.11                      | DC10                       |
|                                            |                  | 0.11                      | DC11                       |
|                                            |                  | 0.088                     | DC13                       |
|                                            |                  | 0.081                     | DC13                       |
|                                            |                  |                           |                            |
|                                            |                  | 0.066                     | DC15                       |
|                                            |                  | 0.072                     | DC16                       |
|                                            |                  | 0.070                     | DC17                       |
| Catchment specific WQC (0.0044 µg/L PFHxS) | G for PFHxS – sl | ightly to moderately dist | urbed systems              |
| 26 (May – August                           | PFHxS            | 0.0064                    | DC17A                      |
| 2020)                                      |                  | 0.0140                    | DC18                       |
|                                            |                  | 0.0150                    | DC19 *                     |
| PFAS NEMP 2020 Healt                       | h Drinking Wate  |                           |                            |
| 2 (Feb 2020)                               | Sum of           | 0.26                      | DC01                       |
|                                            | PFOS and PFHxS   | 0.33                      | BV01                       |
| 26 (May – August                           | Sum of           | 0.29                      | Creek_4                    |
| 2020)                                      | PFOS and         | 3.1                       | Creek_5                    |
| ·                                          | PFHxS            | 2.6                       | Creek_6                    |
|                                            |                  | 0.08                      | DC04                       |
|                                            |                  | 3.21                      | DC05 *                     |
|                                            |                  | 0.24                      | DC06                       |
|                                            |                  | 0.24                      | DC06A                      |
|                                            |                  |                           |                            |
|                                            |                  | 0.14                      | DC06B                      |
|                                            |                  | 0.14                      | DC07                       |
|                                            |                  | 0.14                      | DC08                       |
|                                            |                  | 0.25                      | DC09 *                     |
|                                            |                  | 0.22                      | DC10                       |
|                                            |                  | 0.24                      | DC11                       |
|                                            |                  | 0.18                      | DC13                       |
|                                            |                  | 0.16                      | DC14                       |
|                                            |                  | 0.15                      | DC15                       |
|                                            |                  | 0.16                      | DC16                       |
|                                            |                  | 0.15                      | DC17                       |
| NHMRC 2019 Recreatio                       |                  | L sum of PFOS and PFI     | HxS)                       |
| 26                                         | Sum of           | 3.1                       | Creek_5                    |
|                                            | PFOS and         | 2.6                       | Creek_6                    |
|                                            | PFHxS            | 3.21                      | DC05 *                     |
|                                            |                  |                           |                            |

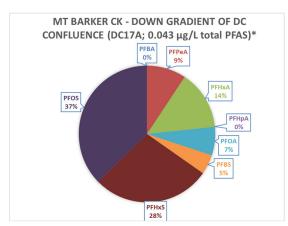

#### Note:


\* Higher value adopted from QA/QC analysis


## **PFAS** fingerprint results


Results for the full "long" PFAS analytical suite for selected surface water samples from Dawesley Creek and from reference sites are presented in Table 9. The relative distribution of PFAS compounds at sampling locations in Dawesley Creek and Mt Barker Creek is illustrated in Figure 7-2 while Figure 7-3 shows the PFAS "fingerprint" for sampling locations in Bremer River.



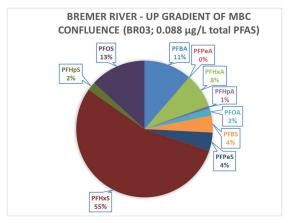


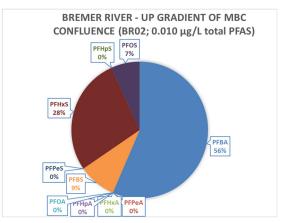


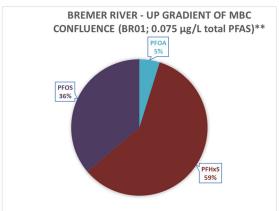


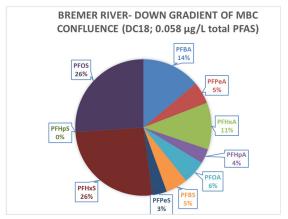


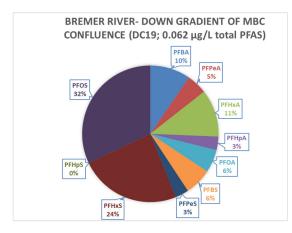




## Notes:


Data for individual samples collected at DC01 to DC17A between 11/02/20 (DC01) and 17/08/20 (DC17A)


Average values for MBC01 and MBC02 (samples collected between 23/07/20 and 17/09/20)


\* No PFPeS and PFHpS data available


Figure 7-2 PFAS "fingerprint" in Dawesley Creek and Mt Barker Creek











#### Notes:

Data for individual samples collected at BR01, DC18 and DC19 on 23/07/20

Average values for BR02 and BR03 (samples collected between 23/07/20 and 17/09/20)

\*\* Short PFAS analytical suite (PFOA, PFHxS and PFOA) only available

Figure 7-3 PFAS "fingerprint" in Bremer River

## 7.11 Sediment

#### 7.11.1 Field observations

The sediment samples taken from Dawesley Creek primarily consisted of dark grey/black fine to coarse grained sand with non-plastic fines and rich in organic material (loam).

Nairne Creek consisted of brown/pale brown fine to coarse grained sand with fine grained gravel upstream of the confluence with Dawesley Creek. Mt Barker Creek had a rocky creek bed with little to no accessible sediment at MBC02 and fine to coarse grained sand with non-plastic fines at MBC01.

The sediment in the Bremer River consisted of pale brown fine to coarse grained sand with fine to medium grained gravel upstream of confluence with Mt Barker Creek (BR01) and brown, fine to coarse grained sand with non-plastic fines downstream of the confluence.

## 7.11.2 Analytical results

Sediment PFAS analytical results of this investigation and the February 2020 investigation are presented in Table 13 at the end of this report. These include samples from Dawesley Creek, Nairne Creek, Mt Barker Creek and Bremer River. PFAS assessment criteria exceedances for sediment samples collected in Dawesley Creek in February 2020 and between May and August 2020 are summarised in Table 7-15 and illustrated in Figure 18 at the end of this report. PFAS concentrations in all sediment samples collected in Nairne Creek, Mt Barker Creek and Bremer River were below the adopted assessment criteria.

 Table 7-15
 Sediment analytical exceedances 2020

| No. of primary samples                                              | Analyte             | Value (μg/kg)         | Samples exceeding criteria |  |  |
|---------------------------------------------------------------------|---------------------|-----------------------|----------------------------|--|--|
| PFAS NEMP 2020 Interim Ecological Indirect Exposure (10 μg/kg PFOS) |                     |                       |                            |  |  |
| 2 (Feb 2020)                                                        | PFOS                | 25                    | DC01                       |  |  |
|                                                                     |                     | 62                    | BV01                       |  |  |
| 29 (May – Aug)                                                      | PFOS                | 33                    | Creek_4                    |  |  |
|                                                                     |                     | 810                   | Creek_5                    |  |  |
|                                                                     |                     | 500                   | Creek_6 *                  |  |  |
|                                                                     |                     | 40.3                  | DC02A *                    |  |  |
|                                                                     |                     | 58                    | DC03                       |  |  |
|                                                                     |                     | 44                    | DC04                       |  |  |
|                                                                     |                     | 28                    | DC06A                      |  |  |
|                                                                     |                     | 15                    | DC06B                      |  |  |
|                                                                     |                     | 27                    | DC07                       |  |  |
|                                                                     |                     | 65                    | DC08                       |  |  |
|                                                                     |                     | 37                    | DC09 *                     |  |  |
|                                                                     |                     | 59                    | DC10                       |  |  |
|                                                                     |                     | 31                    | DC11                       |  |  |
|                                                                     |                     | 27                    | DC15                       |  |  |
|                                                                     |                     | 34                    | DC16                       |  |  |
|                                                                     |                     | 48                    | DC17                       |  |  |
| PFAS NEMP 2020 Healt                                                | h Residential Acces | ssible Soil (10 µg/kg | Sum of PFOS and PFHxS)     |  |  |
| 2 (Feb 2020)                                                        | Sum of PFOS         | 27                    | DC01                       |  |  |
|                                                                     | and PFHxS           | 70                    | BV01                       |  |  |

| No. of primary samples | Analyte     | Value (µg/kg) | Samples exceeding criteria |
|------------------------|-------------|---------------|----------------------------|
| 29 (May – Aug)         | Sum of PFOS | 38            | Creek_4                    |
|                        | and PFHxS   | 970           | Creek_5                    |
|                        |             | 540           | Creek_6                    |
|                        |             | 42.1          | DC02A                      |
|                        |             | 61            | DC03                       |
|                        |             | 45            | DC04                       |
|                        |             | 29            | DC06A                      |
|                        |             | 15            | DC06B                      |
|                        |             | 28            | DC07                       |
|                        |             | 68            | DC08                       |
|                        |             | 38            | DC09 *                     |
|                        |             | 60            | DC10                       |
|                        |             | 33            | DC11                       |
|                        |             | 27            | DC15                       |
|                        |             | 35            | DC16                       |
|                        |             | 49            | DC17                       |

#### Note:

Previously reported analytical results for groundwater (before and after the total oxidisable precursor assay - TOPA) and biota samples (GHD 2020b) are provided in Table 14 and Table 15, respectively, at the end of this report.

<sup>\*</sup> Higher value adopted from QA/QC analysis

# 8. Quality Assurance and Quality Control

The Data Quality Objectives (DQOs) for the investigation are detailed in the Sampling and Analysis Quality Plan (GHD 2020c) and based on guidance presented in:

NEPC (1999) National Environment Protection (Assessment of Site Contamination)
 Measure 1999, as amended 2013 (ASC NEPM) No. 1 – Schedule B2, Guideline on Site Characterisation, National Environment Protection Council, 2013.

The DQOs establish a framework for contamination investigations which incorporates a seven stepped continuum that defines the problem at the Site. A series of stages then optimises the design of the investigation. The seven steps are outlined below:

- Step 1: State the Problem
- Step 2: Identify the Principal Study Question
- Step 3: Inputs to the Decision
- Step 4: Boundaries of the Study
- Step 5: Decision Rules
- Step 6: Tolerable Limits on Decision Errors
- Step 7: Optimisation of the Data Collection Process.

Data Quality Indicators (DQIs), field (QA/QC) measures field quality assurance and quality control (QA/QC) measures and laboratory QA/QC measures are presented in Appendix O. DQIs including precision, accuracy (or bias), representativeness, completeness and comparability have been reviewed. Blank analytical results are presented in Table 16 at the end of this report. Water, sediment and soil RPD results are presented in Table 17, Table 18 and Table 19 respectively, at the end of this report.

In summary, the results of the QA/QC program indicated that there were no significant non-conformances, which could potentially compromise the data, and that the analytical data were of an acceptable quality for the purposes of this investigation.

## 9. Discussion

#### 9.1 Distribution of PFAS

#### 9.1.1 Concrete

Concrete core samples taken from concrete pavers at Hotpad B showed high PFAS concentrations. PFOS concentrations in five cores were above the PFAS NEPM interim ecological criterion for indirect exposure, with one sample exceeding the PFAS NEPM interim ecological criterion for direct exposure. This correlates with the flux test undertaken on Hotpad B (refer section 9.1.2) and soil sampling undertaken beneath Hotpad B (section 9.1.4).

Detectable concentrations of PFAS were identified in the concrete dust sample from inside the main store (SB02), which correlates with soil sampling undertaken beneath the main store. In contrast, PFAS compounds were not detected in core samples from the concrete slab at Hotpad A, although in 2019 PFAS had been detected in a concrete sample from the central portion of Hotpad A (CONCRETE\_1). PFAS appear to be not evenly distributed within the concrete slab of Hotpad A. However, the flux test from Hotpad A reported that PFAS are mobilised from both hotpads via runoff during rainfall events.

PFAS concentrations were also detected in concrete cores taken from three water storage tanks at the CFS STC site (Tank 1, Tank 4 and Tank 5), while PFAS concentrations in concrete cores taken from Tank 7 were below the laboratory's LOR. One sample from Tank 1 and three samples from Tank 4 exceeded the PFAS NEPM interim ecological criterion for indirect exposure. The results are consistent with the sorption of PFAS concentrations present in the stored tank water (section 9.1.3) onto the concrete of the tank walls. The results of the concrete leaching test results (section 9.1.6) indicate that the concrete tank walls could potentially act as an ongoing source of PFAS to any clean water that may be stored in the tanks in the future.

### 9.1.2 Flux tests

The flux tests were conducted to determine the PFAS mass flux that is mobilised from the hotpads via surface runoff during rainfall events. PFAS concentrations in the runoff off Hotpad B were twice as high at the start of the simulated rainfall event than at the end. However, PFAS runoff concentrations off Hotpad B may have varied during the experiment, as was observed for PFAS runoff concentrations off Hotpad A, which showed no trend over time. Hotpad B contributed about 98% of the PFAS load during the flux tests compared to about 2% running off from Hotpad A.

The results showed that both hotpads together contribute up to 9.2 mg PFAS per 5 mm rainfall event and up to 1,244 mg PFAS annually to surface runoff that eventually drains into Dawesley Creek. This annual PFAS mass flux included 935 mg PFOS (75%). Based on these findings, the hotpads are acting as an ongoing source of PFAS to the environment during rainfall events and training exercises.

## 9.1.3 Storage tank water

The PFAS concentrations in all seven water storage tanks at the south-western corner of the CFS site exceeded the adopted catchment specific WQG for PFOS and PFHxS in freshwater as well as the health screening level for drinking water. The water in the storage tanks is considered a potential PFAS source as it could infiltrate the subsurface or reach Dawesley Creek via the open diversion channel when excess water is discharged from the tanks to the underground diversion drain during high rainfall events. There is also the potential for PFAS to

be absorbed by the tank walls as shown by the concrete test results for Tank 4 and Tank 5 (Section 9.1.1).

#### 9.1.4 Soil

Soil sampling across the CFS site identified elevated concentrations of PFAS at all locations. Generally, the distribution of PFAS in soil was observed to be variable both laterally and vertically, however the following observations were made:

- PFOS concentrations were elevated, above the nominated ecological assessment criteria, in soils beneath the hotpads and in open soil between the western site boundary and Dawesley Creek.
- The highest concentrations of PFAS in soil were detected in soil bores located between the
  western site boundary and Dawesley Creek. The elevated PFAS concentrations in soil in
  this portion of the investigation area are likely a result of PFAS mass fluxing out of hotpads
  A and B.
- The lateral and vertical extent of PFAS impacts in soil between the hotpads and the old Dawesley Creek alignment has not been delineated due to problematic site access and refusal during drilling. Based on the elevated PFAS concentrations in the old Dawesley Creek alignment, it is likely PFAS in soil extend laterally to Dawesley Creek. Further soil sampling to the west of SB01, SB04 and SB07 would be required to confirm this. Based on the vertical PFAS profile in bore holes SB01 and SB07 and expected groundwater levels around one metre bgl it is considered likely that the shallow soils also act as potential ongoing secondary sources for PFAS impacts in groundwater.
- PFAS was detected in soil beneath the main store building where PFAS foams were
  historically stored, indicating some leaks or spills had occurred in this area resulting in
  PFAS migrating through the concrete floor. The concentrations detected in soil beneath the
  main store did not exceed the nominated assessment criteria.

Soil sampling within the garden of the residential property located at 296 Pyrites Road identified detectable concentrations of PFAS in soil that were below the adopted HIL A assessment criteria for residential properties. The tenants of the property were not aware of bore water currently being used on the property. However, it is considered likely that the garden has historically been watered with bore water from the registered bore 6627-5944 on the property. The bore water was found to contain PFAS concentrations above the adopted assessment criteria for drinking water (see section 9.1.9) and is considered the likely source of PFAS in soil on this property.

#### 9.1.5 Sludge

PFAS were detected in 51 out of 61 sludge samples that were analysed and five of these samples exceeded the adopted PFOS interim criterion for ecological indirect exposure. Low level PFAS concentrations below the assessment criteria were reported for all sludge stockpile and disposal areas. Despite these low concentrations the large amounts of sludge waste generated in the acid rock drainage treatment plant contain considerable amounts of PFAS. In combination with the leaching test results (section 9.1.6), these results indicate that the sludge represents a significant PFAS source as PFAS are likely to leach from the sludge with the potential to impact ecological receptors via groundwater, seepage water and surface water pathways.

#### 9.1.6 PFAS leachability

PFAS compounds are highly water soluble and the ASLP results indicate that PFAS are leaching from the sludge and concrete under the simulated ASLP conditions. The PFAS

concentrations in the leachates were proportional to the PFAS concentrations in the sludge or concrete, i.e. the higher the PFAS concentration was in the sludge or concrete, the higher the PFAS concentration was in the leachate. The leachability of PFAS from sludge indicated that PFAS contained in fresh sludge is likely to leach into the soil and groundwater. The leachability of PFAS from concrete cores indicated that residual PFAS impacts in the concrete of Hotpad B and to a lesser extent Hotpad A and in the soil underneath and adjacent to the CFS site are likely to act as a source for the continual migration of PFAS downward deeper into the soil profile and into the groundwater. The concrete walls of water storage tanks Tank 1, Tank 4 and Tank 5 are also likely to act as ongoing sources of PFAS that may leach into any clean water that may be stored within the tanks.

The highest PFAS leachate concentrations were reported for four Hotpad B concrete core samples that had the highest PFAS content (HPB1 to HPB4). The concentrations of the sum of PFHxS and PFOS in these four leachates were above the adopted NHMRC criteria for recreational water. The leachates of all analysed sludge samples and concrete core samples from Hotpad A, Tank 1, Tank 4 and Tank 5 exceeded the catchment specific WQG for PFOS and PFHxS in fresh water, even if the concentrations did not exceed the adopted assessment criteria for sludge or concrete. The leachate concentrations of the sum of PFHxS and PFOS in one sludge waste stockpile sample (SW13) and in 13 concrete core samples (HPA1, all Hotpad B samples, all Tank 1 and all Tank 4 samples) exceeded the PFAS NEMP guideline value for drinking water (0.07 µg/L) even though the PFAS concentrations in the sludge sample and in five concrete core samples were below the assessment criteria. This indicates that solids with acceptable PFAS levels may contribute to PFAS concentrations in surface water or groundwater that may pose health or ecological risks.

## 9.1.7 Seepage water

PFAS concentrations in five seepage water samples collected from the Brukunga Mine waste rock dump to the west of Dawesley Creek (WW03, WW04, WW05, WW06 and WW07) exceeded one or more of the adopted catchment specific WQG in freshwater. In addition, the PFAS concentrations collected at sampling locations WW04 and WW07 also exceeded the adopted health screening level for drinking water. These sampling locations are located to the south and north of the sludge waste piles between the Southern Highwall and the South WRD, respectively. The sludge waste piles in this area were found to contain low level PFAS concentrations and are considered to be the likely source of PFAS detected in the seepage water (Section 9.1.5). Due to their high solubility PFAS compounds may have leached quickly from freshly deposited sludge into the groundwater that is surfacing as seepage water at sampling locations WW04 and WW07.

Sampling locations WW03 and WW04 are located close enough to Dawesley Creek to potentially act as source for PFAS in surface water, while seepage water at the other locations is more likely to be a PFAS source for the underlying groundwater.

#### 9.1.8 Brukunga Mine Diversion Drain

The water quality parameters of the underground diversion drain sample were similar to those observed in Dawesley Creek downstream of the CFS site except for the electrical conductivity, which was more than 38% lower than in any other surface water sample. The water in the diversion drain was fresh while the water in Dawesley Creek was fresh to saline. There were no detectable PFAS concentrations reported for the diversion drain at the CFS STC site. However, the standard LOR for this sample (0.01  $\mu$ g/L) was above the adopted catchment specific WQG for PFOS (0.0066  $\mu$ g/L) and PFHxS (0.0046  $\mu$ g/L) in fresh water so that the PFAS concentrations may potentially have been above the catchment specific WQG.

Due to the concentrations of PFAS detected in surface water and groundwater adjacent and beneath the site, it is reasonable to expect that, if the diversion drain was impacted by on-site PFAS sources, the concentrations would be above the standard LOR. If PFAS are present in the diversion drain water below the standard LOR, but above the catchment specific WQG, it is likely reflecting regional background PFAS concentrations. Background concentrations in Dawesley Creek upstream of the CFS site were below the catchment specific WQG for PFOS and PFHxS (Section 9.1.10).

#### 9.1.9 Groundwater

The reported PFAS concentrations in groundwater were below the limit of reporting (LOR) for all wells sampled in June 2020 expect for GW03, which showed PFOS results at the LOR (0.01  $\mu$ g/L). Based on the results of the February 2020 GME and this investigation, PFAS impact is delineated in all directions around the CFS site except east of the acid rock drainage / water treatment plant towards GW03. East of the CFS site may be considered practically delineated based on the low concentration of PFAS reported in GW03 and the fact that GW03 is located 620 m up-gradient of the CFS site with a groundwater elevation over 30 m higher than the CFS site.

Groundwater sampled from two private wells in February at 260 Pyrites Road, Brukunga (6627-8333) and in August / September 2020 at 296 Pyrites Road, Brukunga (6627-5944), both downstream and down-gradient from the CFS STC site, exceeded the adopted health assessment criteria for drinking water. These two wells are located within 75 m of Dawesley Creek. It is likely that localised groundwater impacts will extend along the Dawesley Creek alignment down the hydraulic gradient, beyond the current investigation area. The impact is possibly a combination of contaminated groundwater moving down the valley through the alluvial and shallow fractured rock aquifer, as well as localised periodic inflow of contaminated surface water into the aquifer, when it is a losing stream after prolonged dry weather or due to localised extraction-induced drawdown of groundwater.

#### 9.1.10 Surface water and sediment

### Reference sites

- Nairne Creek: PFAS background concentrations in Nairne Creek were reported above the adopted catchment specific WQG for PFOS and PFHxS in slightly to moderately disturbed systems. However, the observed total PFAS concentrations in Nairne Creek were about half of those in Dawesley Creek upstream of the confluence of both creeks. Due to dilution with water from Nairne Creek total PFAS concentrations in Dawesley Creek downstream of the confluence decreased by almost 25%. PFAS fingerprint and flow information were not available for Nairne Creek. Under the present conditions in Dawesley Creek and Nairne Creek, Nairne Creek was not considered a significant source of PFAS. Should PFAS concentrations in Dawesley Creek between the CFS STC site and the confluence with Nairne Creek decrease significantly in the future, this assessment may need to be reevaluated.
- Mt Barker Creek: The catchment specific WQG for slightly to moderately disturbed systems correspond to the 80th percentile of the reported PFOS and PFHxS concentrations in the upstream reaches of Mt Barker Creek (section 5.5). Therefore, 20% of the samples from Mt Barker Creek exceed, by definition, the WQG. Fingerprint analysis showed distinct differences between the relative distribution of PFAS compounds in Dawesley Creek, Mt Barker Creek and Bremer River. Mt Barker Creek had an average total PFAS concentration of 0.032 µg/L that was characterised by high concentrations of perfluorobutanoic acid (PFBA, 20%-24%), perfluorohexanoic acid (PFHxA, 16%-20%), PFOS (13-16%), PFOA

(12%-13%), PFHxS (12%-13%) and perfluoropentanoic acid (PFPeA, 9%). The DEW's flow monitoring data indicates that Mt Barker Creek typically contributes ≥ 80% to the flow in the downstream sections of Bremer River. Therefore, Mt Barker Creek should be considered as a potential source of PFBA, PFHxA, PFOA and PFPeA. However, the upper reaches of Mt Barker Creek were found to be the least PFAS impacted reference site tested in the investigation area, with total PFAS concentrations almost an order of magnitude lower than in Dawesley Creek and ≥ 25% lower downstream of the confluence with Dawesley Creek. It will be important to continue to monitor flow rates and PFAS concentrations in Mt Barker Creek especially should PFAS concentrations in Dawesley Creek decrease substantially in the future.

Bremer River: PFAS background concentrations at two out of three sampling locations in Bremer River (BR01 and BR03) were reported above the adopted catchment specific WQG for slightly to moderately disturbed systems. Four samples from Bremer River, three of which were collected after a rainfall event from sampling location BR03 within the township of Callington, also exceeded the adopted PFAS NEMP drinking water criterion for the sum of PFHxS and PFOS. The results for Bremer River showed high variability between sampling locations and between sampling events. During this investigation, the upstream reaches of the Bremer River were found to be stagnant to slow moving, contributing only 0.2% of the total flow downstream of the confluence with Mt Barker Creek between May and October 2020 (Appendix E). Fingerprint analysis showed that the average total PFAS concentration in Bremer River ranged from 0.010 µg/L at sampling location BR02 to 0.085 µg/L at sampling location BR03, with PFHxS (28-59%), PFBA (11%-56%), PFOS (7%-36%) and PFBS (4%-9%) being the predominant PFAS compounds. Given the high PFAS concentrations measured in individual samples collected from the upstream reaches of the Bremer River, especially within the township of Callington (BR03), the Bremer River must be considered a potential additional PFAS source downstream. Therefore, it will be important to continue to monitor flow conditions in Bremer River and to incorporate upstream Bremer River sampling locations into future sampling events when there is more substantial flow.

Sediment samples collected from reference sites in Nairne Creek, Mt Barker Creek and Bremer River contained detectable PFAS concentrations below the adopted assessment criteria.

#### Dawesley Creek and downstream reaches of Mt Barker Creek and Bremer River

Between May and August 2020, PFAS were detected in all surface water samples collected from Dawesley Creek adjacent to and downstream of the CFS site, as well as from downstream reaches of Mt Barker Creek and Bremer River. In all samples, the reported PFAS concentrations exceeded the adopted catchment specific WQG for PFOS and PFHxS.

The highest PFAS concentrations in surface water, in excess of the adopted criteria for recreational water, were found in Dawesley Creek adjacent the CFS site (sampling locations Creek\_5 and Creek\_6) and approximately 4.4 km downstream of the CFS site (DC05). A total of 16 sampling locations within Dawesley Creek downstream of the CFS site had PFAS concentrations above the adopted drinking water criteria. There was no clear correlation between PFAS concentrations within Dawesley Creek and the distance from the CFS site downstream.

PFAS concentrations in the downstream reaches of Mt Barker Creek (DC17A) and Bremer River (DC18, DC19) downstream were lower than those in Dawesley Creek, but higher than the background concentrations in Mt Barker Creek upstream. The observed PFAS concentrations reflected the mixing of Dawesley Creek and Mt Barker Creek. Although the DEW's flow monitoring data indicates that Dawesley Creek typically only contributes ≤ 20% to the flow in the downstream sections of Bremer River, the substantially higher PFOS and PFHxS

concentrations measured in Dawesley Creek, relative to the upstream reaches of Mt Barker Creek, mean that the majority of the PFOS and PFHxS found downstream of the confluence of Mt Barker Creek and Bremer River is likely to be related to the CFS site.

This interpretation is supported by the results of the PFAS fingerprint analysis. The lower reaches of Dawesley Creek (DC14 to DC17) had consistent total PFAS concentrations of 0.21  $\mu$ g/L to 0.24  $\mu$ g/L with a characteristic composition of PFOS (35%-39%), PFHxS (31%-35%), PFHxA (8%-9%), PFBA (4%-5%), and PFPeA, PFOA, PFBS and perfluoropentane sulfonic acid (PFPeS) ( $\leq$ 4% each).

Dawesley Creek background sampling locations DC-UP01 and DC-UP02 were located upstream of the CFS Brukunga STC in the area that was burnt by the Cudlee Creek bushfire in December 2019. A review of information provided by the CFS indicated that aerial fire suppressants and retardants used during the Cudlee Creek fire are unlikely to have contained any PFAS. This is supported by the fact that the detected background PFAS concentrations at these locations were below the adopted catchment specific WQG and lower than background concentrations reported for reference sites in Nairne Creek and Mt Barker Creek, which were not affected by the Cudlee Creek fire.

In the currently available dataset, PFAS impacts in surface water have been delineated with respect to the adopted assessment criteria for Health Drinking Water (PFAS NEMP 2020): upstream of the CFS site at sampling location Creek\_1 in 2019 (GHD 2019) and at sampling location DC-UP01 in this investigation; and downstream of the CFS site at sampling location DC17A, located approximately 5.2 km downstream of the confluence of Dawesley Creek and Mt Barker Creek. PFAS impacts with respect to the adopted catchment specific WQG for PFOS and PFHxS in fresh water have been delineated upstream of the CFS site at sampling location DC-UP01 but not downstream of the CFS site. The impacts extent beyond Jaensch Road in Hartley (between Callington Road and North Bremer Road), approximately 37 km, downstream from the CFS.

The PFAS NEMP suggests that the PFOS concentrations observed downstream of sampling location DC06A are unlikely to represent a direct exposure risk to more than 95% of aquatic organisms or recreational users of the waterway. As the concentrations exceeded the catchment specific WQG however, the potential increase in the bioaccumulation of PFOS in aquatic organisms and the resulting risk to higher trophic level organisms associated with the reported PFOS concentrations should be considered in a human health and environmental risk assessment.

#### **Sediment**

PFAS concentrations in 13 out 16 sediment samples collected from Dawesley Creek downstream of the CFS site exceeded the adopted assessment criteria for interim ecological indirect exposure and the health screening level for residential land use with access to soil. PFAS concentrations found in sediment adjacent the CFS site (Creek\_5 and Creek\_6), were about an order of magnitude higher than those in all other samples. There was no clear trend in PFAS concentrations in the sediment of Dawesley Creek relative to the distance from the CFS site. Sediment samples collected from the lower reaches of Mt Barker Creek (DC17A) and Bremer River (DC18 and DC19) contained detectable PFAS concentrations below the adopted assessment criteria.

Background sediment samples collected from Dawesley Creek upstream of the CFS site contained no detectable PFAS (DC-UP02) or PFAS concentrations below the assessment criteria (DC-UP01).

Impacts of PFAS concentrations in sediment have been delineated upstream of the CFS site at sampling location DC-UP01 and downstream of the CFS site at sampling location DC17A in Mt

Barker Creek. The sediment impacts were confined to Dawesley Creek between the CFS site and the confluence of Dawesley Creek with Mt Barker Creek.

Given that only one surface water and sediment sample have been collected per sampling location to date, no conclusions can be drawn regarding seasonal trends, potential effects of flow rates and water levels on PFAS concentrations in surface water and sediment or potential interactions between PFAS in surface water and sediment.

## 9.2 Conceptual Site Model (CSM)

#### 9.2.1 General

A conceptual site model (CSM) is an analysis tool which identifies the contamination sources, transport mechanisms, exposure pathways and receptors considered in a site-specific risk assessment.

For an identifiable risk to exist, an exposure pathway must be present which requires each of the following to be identified:

- Presence of substances that may cause harm (Sources)
- Presence of a receptor which may be harmed (Receptors)
- Existence of a means of exposing a receptor to the source (Pathways) and whether exposure pathways are complete or incomplete.

A site specific CSM, presented below, has been developed based on previous investigations and GHD's understanding of the site setting, including geology, hydrogeology and surrounding land use in order to identify potentially significant source-pathway-receptor (SPR) linkages in respect to the potential risks to human health and the environment that may be encountered.

#### 9.2.2 Sources

Based on previous investigations, on-site sources of contamination include shallow soil contamination from movement and storage of firefighting trucks as well as soil and surface water contamination from PFAS use and storage, while off-site sources include activities associated with the Brukunga Pyrite Mine.

The following sources of PFAS were identified on the CFS STC site:

- Use of per- and polyfluoroalkyl substances (PFAS) on and adjacent to Hotpad A and Hotpad B and inside the main store.
- Water stored in seven concrete storage tanks with PFAS absorbed by the tank walls, as shown by the concrete leachate results.
- Ongoing leaching of PFAS from concrete structures associated with the fire training area.
- Ongoing leaching of PFAS from shallow soils underneath the hotpads and between the hotpads and the western site boundary.

The following sources of PFAS were identified on the Department of Mining and Energy's properties and surrounding areas:

- Ongoing leaching of PFAS from shallow soils between the western CFS STC boundary and the old Dawesley Creek alignment both towards the old creek alignment and into the groundwater.
- Acid treatment plant discharge
- Acid seepage pond and associated sediment

- Sludge waste piles on Brukunga Mine
- Settling ponds and associated sediment.

#### 9.2.3 Exposure pathways

For an exposure to occur, a complete pathway must exist between a source of contamination and a receptor. Where the exposure pathway is incomplete, there is no exposure, and hence no risk. The following exposure pathways may need to be considered:

- Incidental consumption of and dermal contact with contaminated surface water and sediment during recreational activities within Dawesley Creek, downstream of the Mine and CFS STC site
- Direct dermal contact or incidental ingestion of contaminated soil on the CFS site during maintenance activities
- Inhalation of contaminated soil or dust
- Consumption of fruit from trees grown on-site and off-site possibly intersecting contaminated groundwater or being irrigated by contaminated groundwater
- Livestock consuming contaminated surface water within Dawesley Creek
- Livestock consuming contaminated groundwater
- Consumption of contaminated livestock/eggs etc. fed on irrigated pasture and stock watering from contaminated sources
- Domestic recreational use of contaminated groundwater to fill swimming pools
- Aquatic and terrestrial fauna / flora ingesting or taking up contaminated surface water or sediment directly or via food web exposures.

#### 9.2.4 Receptors

The potential receptors relevant to site activities are:

- Firefighters and other professionals undertaking training courses on-site
- Workers and visitors to the CFS site and surrounding properties
- Subsurface construction/maintenance workers on the CFS site
- Ecosystems of Dawesley Creek and possibly Mt Barker Creek and Bremer River further south of CFS site
- Users of surface water of Dawesley Creek and possibly of Mt Barker Creek and Bremer River downstream of Dawesley Creek
- Users of bore water in the vicinity of the CFS site and in the vicinity of Dawesley Creek downstream or downgradient of the CFS site
- Livestock consuming PFAS-impacted water including
  - groundwater from bores in the vicinity of the CFS site
  - groundwater in the vicinity of Dawesley Creek downstream of the CFS site or
  - surface water from Dawesley Creek and possibly from Mt Barker Creek and Bremer
     River downstream of Dawesley Creek
- Consumers of produce where PFAS-impacted water has been used for irrigation/livestock watering or where livestock had access to PFAS-impacted surface water
- Consumers of aquatic biota (e.g. fish and yabbies) caught in PFAS-impacted surface water.

#### 9.2.5 Potentially complete exposure pathways

Potential SPR linkages based on the CSM are presented in Table 9-1 and in Figure 19 at the end of this report.

Whilst potentially complete SPR linkages have been identified for on-site firefighters, workers or visitors as well as land owners and occupants of and visitors to properties located in the vicinity of Dawesley Creek downstream of the CFS site, incidental ingestion of sediment within Dawesley Creek was the only SPR linkage where human receptors are exposed to PFAS concentrations above the adopted human health criteria. Due to difficult access to and small quantities of sediment in Dawesley Creek, it is considered unlikely that human receptors will come into contact with PFAS concentrations detrimental to their health. This also applies to other identified potential human SPR linkages. Therefore, the risk to human receptors posed by PFAS contamination identified in this investigation is deemed acceptable. As a precaution, potential human receptors should be advised to avoid contact with identified PFAS sources such as soil and concrete at the CFS site and between the CFS site and Dawesley Creek, sludge originating from the water treatment plant, as well as water and especially sediment within Dawesley Creek.

The risk to human receptors from consumption of fruit, vegetables and meat from livestock grown in the vicinity of Dawesley Creek downstream of the CFS site using contaminated surface water or groundwater could not be conclusively assessed due to lack of data.

The risk to human receptors from consumption of fish and yabbies caught in PFAS-impacted surface water was not assessed as part of the DSI.

With respect to ecological receptors, the following complete SPR linkages requiring action have been identified:

- Ecosystems at the CFS site and the area between Dawesley Creek and the CFS site with access to / in contact with contaminated soil with PFAS concentrations above interim ecological criteria for indirect / direct exposure.
- Ecosystems within Dawesley Creek, Mt Barker Creek and Bremer River exposed to PFAS
  concentrations in surface water and sediment (Dawesley Creek only) above ecological
  criteria along a length of approximately 37 km, downstream from the CFS site to Jaensch
  Road, Hartley (between Callington Road and North Bremer Road).
- Ecosystems at locations where sludge originating from the water treatment plant has been
  or is being placed, especially where PFAS concentrations in the sludge exceed the adopted
  ecological criteria.

#### 9.2.6 CSM Data Gaps

Most of the CSM data gaps identified during the February 2020 off-site investigation (GHD 2020) have been addressed in this investigation and the CSM has been updated accordingly. However, the following data gaps remain or have been identified during this investigation:

- The vertical and lateral extent of PFAS contamination in soil immediately west of the CFS site boundary. Limited soil sampling beneath Hotpad A and Hotpad B indicates that the soil is impacted beneath this infrastructure. Based on the use of PFAS associated with this infrastructure, the PFAS detected in concrete/pavers of these structures and the flux test results, it is assumed that soils underlying this infrastructure are impacted with PFAS.
- Soil underlying PFAS-impacted sludge has not been assessed.
- The downstream extent of PFAS in the surface water and sediments requires delineation.

- It has not been assessed whether livestock, such as chicken, sheep, cattle, alpacas and horses that are consuming PFAS-impacted groundwater or surface water (from Dawesley Creek or Mt Barker Creek), and produce gained from these livestock, such as eggs, meat and milk, are bio-accumulating PFAS.
- Ecological impacts within the creek system have not been assessed.
- It has not been confirmed whether aquatic biota in PFAS-impacted surface water are bioaccumulating PFAS.

**Table 9-1 Conceptual Site Model** 

| Potential source               | Receptor                                                                                               | Pathway                                                                                                                   | Pathway present?                                                                                                                                                                                                                      |
|--------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFAS contaminated              | 5 ,                                                                                                    | Inhalation of contaminated soil or dust                                                                                   | No PFAS concentrations detected in concrete and soil on-site to date were                                                                                                                                                             |
|                                |                                                                                                        | Direct dermal contact with contaminated concrete or soil                                                                  | below the adopted Tier 1 human health assessment criteria.                                                                                                                                                                            |
|                                |                                                                                                        | Incidental ingestion of contaminated soil                                                                                 |                                                                                                                                                                                                                                       |
|                                | Firefighters, workers and visitors to the CFS site and adjacent properties exposed to rainwater runoff | Direct dermal contact with contaminated rainwater runoff from hotpads                                                     | Unlikely Flux testing identified elevated PFAS concentrations exceeding human health criteria for drinking water in surface runoff from both hotpads. PFAS concentrations, however, did not exceed recreational criteria.             |
|                                | from hotpads                                                                                           | Incidental ingestion of contaminated rainwater runoff from hotpads                                                        | Whilst it is possible that on-site firefighters, workers or visitors could incidentally ingest contaminated surface runoff from the hotpads, it is unlikely that they will ingest quantities detrimental to their health.             |
|                                | Ecosystem at the CFS site                                                                              | Direct contact with<br>contaminated soil<br>Ingestion of contaminated soil<br>Bioaccumulation through<br>indirect contact | Possible PFAS concentrations detected in soil exceeded the adopted Tier 1 interim ecological criteria for indirect exposure.                                                                                                          |
|                                | Ecosystem of Dawesley<br>Creek downstream of the<br>CFS site                                           | Rainwater event runoff from hotpads to discharge to waterbodies / freshwater environments                                 | Possible Surface water sampling in Dawesley Creek has identified PFAS concentrations exceeding Tier 1 ecological risk criteria and catchment specific WQG.                                                                            |
|                                | Groundwater beneath the site                                                                           | Migration through porous media and discharge to water bodies / freshwater environments                                    | Possible While water used during training activities and rainfall is collected as surface runoff and transferred into the storage tanks; some water may also infiltrate the ground and leach PFAS from the soil into the groundwater. |
| PFAS-impacted soil, sludge and | Workers and visitors to the area to the west between                                                   | Inhalation of contaminated soil or dust                                                                                   | No<br>PFAS concentrations detected in soil in this area to date were below                                                                                                                                                            |
| seaiment off-site              | sediment off-site Dawesley Creek and the                                                               | Direct dermal contact with contaminated soil                                                                              | the adopted Tier 1 human health assessment criteria.                                                                                                                                                                                  |

| Potential source | Receptor                                                                                                                                                                         | Pathway                                                                                                                   | Pathway present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | CFS site exposed to contaminated soil or dust.                                                                                                                                   | Incidental ingestion of contaminated soil                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | Ecosystems in the area to<br>the west between<br>Dawesley Creek and the<br>CFS site                                                                                              | Direct contact with<br>contaminated soil<br>Ingestion of contaminated soil<br>Bioaccumulation through<br>indirect contact | Possible PFAS concentrations detected in soil in this area exceeded the adopted Tier 1 interim ecological criteria for direct and indirect exposure.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | Workers at and visitors to locations where sludge has                                                                                                                            | Inhalation of contaminated (dried) sludge or dust                                                                         | No PFAS concentrations detected in sludge to date were below the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | been or is being placed or handled                                                                                                                                               | Direct dermal contact with contaminated sludge                                                                            | adopted Tier 1 human health assessment criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  |                                                                                                                                                                                  | Incidental ingestion of contaminated sludge                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                  | Ecosystems at locations where sludge has been or is being placed                                                                                                                 | Direct contact with contaminated sludge Ingestion of contaminated sludge Bioaccumulation through indirect contact         | Possible PFAS concentrations detected in sludge exceeded the Tier 1 adopted interim ecological criteria for indirect exposure.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | Landowners and occupants of and visitors to properties located in the vicinity of Dawesley Creek downstream of the CFS site exposed to contaminated sediment from Dawesley Creek | Direct dermal contact with contaminated sediment within Dawesley Creek                                                    | Unlikely PFAS concentrations detected in Dawesley Creek sediment exceeded the adopted Tier 1 human health criteria for residential land use with accessible soil. GHD (2020d) identified two properties where the landowners, occupants or visitors use Dawesley Creek for purposes that may involve contact with sediment (swimming and/or fishing/yabbying). However, sediment was either difficult to access or present only in small quantities at most sampling locations. Exposure to PFAS via the dermal route to an extent that may be detrimental to health is considered unlikely. |

| Potential source                                                                                    | Receptor                                                                                                                                                                                                                        | Pathway                                                                                                           | Pathway present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     |                                                                                                                                                                                                                                 | Incidental ingestion of<br>contaminated sediment from<br>Dawesley Creek                                           | Unlikely PFAS concentrations detected to date in Dawesley Creek sediment exceeded the adopted human health criteria for residential land use with accessible soil. Whilst it is possible that landowners and occupants of and visitors to properties located in the vicinity of Dawesley Creek downstream of the CFS site could incidentally ingest contaminated sediment from within Dawesley Creek, it is unlikely that they will ingest quantities detrimental to their health. At most sampling sites, sediment was either difficult to access or present only in small quantities. |
|                                                                                                     | Ecosystems exposed to contaminated sediment from Dawesley Creek downstream of the CFS site                                                                                                                                      | Direct contact with contaminated sludge Ingestion of contaminated sludge Bioaccumulation through indirect contact | Possible PFAS concentrations detected within the sediment within Dawesley Creek downstream of the CFS site exceeded the adopted Tier 1 interim ecological assessment criteria for indirect exposure.                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                     | Groundwater                                                                                                                                                                                                                     | Migration through porous media and discharge to water bodies / freshwater environments                            | Possible Infiltrating rainfall may leach PFAS from impacted soil into the groundwater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PFAS-impacted surface water and seepage water (associated with rainwater event runoff from hotpads, | Firefighters, workers and visitors to the CFS site                                                                                                                                                                              | Direct dermal contact with contaminated surface water  Incidental ingestion of contaminated surface water         | Unlikely PFAS were not detected within the diversion drain. The drain is covered and not easily accessible. PFAS concentrations detected in surface runoff from both hotpads exceeded the adopted Tier 1 human health criteria for drinking water but were below the criteria for recreational water. Whilst it is possible that workers or visitors could incidentally ingest contaminated surface water, it is unlikely that they will ingest quantities detrimental to their health.                                                                                                 |
| leaching of PFAS from contaminated sludge or sediment into surface water and PFAS- impacted         | Recreational users of<br>Dawesley Creek, Mt Barker<br>Creek and Bremer River<br>downstream of the CFS site<br>(i.e. landowners and<br>occupants of and visitors to<br>properties located in the<br>vicinity of these waterways) | Direct dermal contact with contaminated surface water Incidental ingestion of contaminated surface water          | Unlikely PFAS concentrations detected to date within surface water downstream of the CFS site did not exceed the adopted Tier 1 assessment criteria for recreational water, except for one sampling location on the Brukunga Mine that is impacted by acid mine drainage and not accessible to the public – i.e. unlikely to be used for recreational purposes.                                                                                                                                                                                                                         |

| Potential source                                                                                                                                                                                                                                                                                    | Receptor                                                                                                                                                                                                  | Pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pathway present?                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| groundwater surfacing where mining activity has altered the topography)  Landowners and occupants of and visitors to properties located in the vicinity of Dawesley Creek, Mt Barker Creek and Bremer River, downstream of the CFS site, where plants / livestock for human consumption are watered | Consumption of meat or produce originating from livestock watered with or with access to contaminated surface water                                                                                       | Possible GHD (2020d) identified that livestock on three properties downstream of the CFS site consume water from Dawesley Creek with PFAS concentrations above the Tier 1 drinking water criterion for the sum of PFOS and PFHxS. Livestock on three properties consume water from Mt Barker Creek, which exceeds the adopted catchment specific Tier 1 ecological WQG.  Meat or produce originating from livestock watered with or with access to contaminated surface water have not yet been tested. |                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                     | with or have access to contaminated surface water                                                                                                                                                         | Consumption of fruit and vegetables irrigated with contaminated surface water                                                                                                                                                                                                                                                                                                                                                                                                                           | Unlikely GHD (2020d) identified that surface water from Mt Barker Creek with PFAS concentrations above the adopted catchment specific Tier 1 ecological WQG is used to water fruit and vegetables on two properties. However, a single round of produce testing of fruit and vegetables, which had been irrigated with PFAS contaminated (bore-) water, reported PFAS concentrations below the LOR (GHD 2020b). |
| of and located Dawes Creek downs site, why yabbying Ecosys Creek, and Br                                                                                                                                                                                                                            | Landowners and occupants of and visitors to properties located in the vicinity of Dawesley Creek, Mt Barker Creek and Bremer River, downstream of the CFS site, who go fishing / yabbying in these creeks | Consumption of aquatic biota (e.g. fish and yabbies) caught in PFAS-impacted surface water.                                                                                                                                                                                                                                                                                                                                                                                                             | Possible GHD (2020d) identified six properties where landowners, occupants or visitors go fishing or yabbying in Dawesley Creek or Mt Barker Creek. It has not been confirmed whether caught specimens are consumed. Aquatic biota caught in these PFAS-impacted creeks has not yet been tested.                                                                                                                |
|                                                                                                                                                                                                                                                                                                     | Ecosystems of Dawesley<br>Creek, Mt Barker Creek<br>and Bremer River<br>downstream of the CFS site                                                                                                        | Direct contact with<br>contaminated surface water<br>Ingestion of contaminated<br>surface water<br>Bioaccumulation through<br>indirect contact                                                                                                                                                                                                                                                                                                                                                          | Possible Surface water sampling in Dawesley Creek, Mt Barker Creek and Bremer River has identified PFAS concentrations exceeding the adopted Tier 1 ecological risk criteria and catchment specific WQG. The downstream extent of PFAS impacts in Bremer River has not been delineated.                                                                                                                         |

| Potential source | Receptor                                                                                                                                                                              | Pathway                                                                                                                                        | Pathway present?                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Pets / livestock drinking<br>and plants being watered<br>with contaminated surface<br>water from Dawesley<br>Creek, Mt Barker Creek<br>and Bremer River<br>downstream of the CFS site | Direct contact with<br>contaminated surface water<br>Ingestion of contaminated<br>surface water<br>Bioaccumulation through<br>indirect contact | Possible The water use survey (GHD 2020d) confirmed that pets / livestock consume water from Dawesley Creek or Mt Barker Creek with PFAS concentrations above the adopted Tier 1 drinking water criteria or the catchment specific Tier 1 ecological WQG. Fruit and vegetables on two properties are irrigated with water from Mt Barker Creek.                                                                            |
|                  | Workers at and visitors to locations where seepage water surfaces on the ground                                                                                                       | Direct dermal contact with contaminated seepage water                                                                                          | Unlikely PFAS concentrations detected in seepage water to date exceeded the adopted human health assessment criteria for drinking water in two samples but were below the recreational criteria. NHMRC (2019) Guidance on PFAS in Recreational Water considers exposure to PFAS via dermal and inhalation routes as negligible.                                                                                            |
|                  |                                                                                                                                                                                       | Incidental ingestion of contaminated seepage water                                                                                             | Unlikely PFAS concentrations detected in seepage water to date exceeded the adopted human health assessment criteria for drinking water in two samples but were below the recreational criteria. Whilst it is possible that workers or visitors to locations where seepage water occurs could incidentally ingest contaminated seepage water, it is unlikely that they will ingest quantities detrimental to their health. |
|                  | Ecosystems exposed to<br>PFAS-impacted seepage<br>water downstream of<br>locations where seepage<br>water occurs                                                                      | Direct contact with<br>contaminated seepage water<br>Ingestion of contaminated<br>seepage water<br>Bioaccumulation through<br>indirect contact | Possible PFAS concentrations detected in seepage water exceeded the adopted Tier 1 ecological risk criteria and catchment specific WQG.                                                                                                                                                                                                                                                                                    |

| Potential source          | Receptor                                                                                                                      | Pathway                                                                                         | Pathway present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFAS-impacted groundwater | People using groundwater for domestic and drinking purposes                                                                   | Consumption of contaminated groundwater                                                         | Unlikely Some TDS values in groundwater beneath the assessment area were below 1,200 mg/L, indicating that groundwater may be suitable for potable use (NHMRC/NRMMC, 2011 updated 2018). GHD identified one property (296 Pyrites Road, Brukunga) with a registered groundwater bore (well 6627-5944) within the plume extent that is plumbed directly to the house. While bore water may have historically been used for domestic purposes, including drinking water, it is unlikely that this continues today as the TDS values of the bore water in Aug/Sep 2020 exceeded 2,300 mg/L and rainwater is available as alternate water source for domestic purposes.  GHD (2020d) identified that mains water and/or rainwater is available and being used for drinking water purposes by 100% of survey respondents. |
|                           | People using groundwater<br>for irrigation of vegetable<br>gardens and / or fruit trees<br>to grow produce for<br>consumption | Consumption of fruit and vegetables irrigated by contaminated groundwater                       | Unlikely GHD identified two properties with registered groundwater bores within the plume extent for irrigation purposes to grow fruit and vegetables for consumption.  A single round of produce testing of fruit and vegetables grown on one of these properties reported PFAS concentrations below the LOR (GHD 2020b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                           | People using groundwater for watering livestock for human consumption                                                         | Consumption of meat or produce originating from livestock watered with contaminated groundwater | Unlikely  GHD has not identified any properties with registered or unregistered groundwater bores within the plume extent that are used to water livestock for human consumption.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | People growing fruit and / or vegetables in open soil, which may interact with groundwater                                    | Consumption of PFAS-<br>impacted fruit and / or<br>vegetables.                                  | Unlikely A single round of produce testing of fruit and vegetables grown on- and off-site at selected properties within the PFAS plume area reported PFAS concentrations below the laboratory LOR (GHD 2020b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Potential source | Receptor                                                                                                                                                                                                   | Pathway                                                                                                                                             | Pathway present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Landowners and occupants of and visitors to properties located in the vicinity of Dawesley Creek downstream of the CFS site using groundwater for recreational purposes such as filling of swimming pools. | Direct dermal contact with contaminated groundwater Incidental ingestion of contaminated groundwater                                                | No PFAS concentrations in one sample from a private swimming pool, which is filled using groundwater from bore 6627-8333 within the PFAS plume extent down gradient, were below the adopted Tier 1 assessment criteria for recreational water in a domestic setting.                                                                                                                                                                                                                                                                                        |
|                  | Livestock, pets and plants /<br>crops watered with<br>groundwater down gradient<br>of the CFS site in the<br>vicinity of Dawesley Creek                                                                    | Direct contact with<br>contaminated groundwater<br>Ingestion / uptake of<br>contaminated groundwater<br>Bioaccumulation through<br>indirect contact | Unlikely GHD identified two properties with registered groundwater bores within the PFAS plume extent that are used to water lawns and gardens. A single round of testing of fruit and vegetables grown at one of these properties reported PFAS concentrations below the laboratory LOR (GHD 2020b).                                                                                                                                                                                                                                                       |
|                  | Down gradient off-site<br>maintenance workers<br>exposed to contact with<br>PFAS contaminated<br>groundwater                                                                                               | Direct dermal contact with contaminated groundwater Incidental ingestion of contaminated groundwater                                                | No PFAS concentrations detected to date in groundwater in the assessment area did not exceeded the adopted human health Tier 1 assessment criteria for recreational water. Whilst it is possible that off- site maintenance workers could incidentally ingest contaminated groundwater, it is unlikely that they will ingest quantities detrimental to their health.                                                                                                                                                                                        |
|                  | Ecosystems of Dawesley<br>Creek and Mt Barker Creek                                                                                                                                                        | Migration through porous<br>media and discharge to water<br>bodies / freshwater<br>environments                                                     | Possible  Dawesley Creek is likely to vary, both temporally and geographically, between a losing and gaining stream, depending on the relative elevations of groundwater and creek beds or alluvial aquifer water levels, which will in turn depend of preceding rainfall and streamflow conditions and possibly near-creek groundwater extraction-induced drawdown. Consequently, both recharge of contaminated surface water into aquifers and discharge of contaminated groundwater to the creek, or the root zone of riparian vegetation, are possible. |

# 10. Conclusions

Based on the results of this investigation, the following conclusions have been made:

#### Flux tests, soil and concrete

- The results of concrete, soil, flux and concrete core leachability testing confirmed that Hotpad B and to a lesser extent Hotpad A as well as the concrete walls of on-site water storage tanks, especially Tank 1 and Tank 4, continue to represent an ongoing source of PFAS to the environment. PFAS concentrations in leachates from 16 out of 21 samples concrete core samples were above the adopted assessment criteria for freshwater, with 13 samples (HPA1, HPB1-PPB5, all Tank 1 and all Tank 4 samples) exceeding the criteria for drinking water and four samples exceeding the criteria for recreational water (HPB1-HPB4). During a simulated rainfall event, PFAS concentrations up to two orders of magnitude above the adopted catchment specific WQG for freshwater were reported for surface run-off from Hotpad B. These high concentrations reflected high PFAS concentrations in concrete core samples, leachates and to a lesser extent in soil samples from Hotpad B.
- Soil samples taken to the west of Hotpad A and B, between the CFS site and Dawesley Creek, reported elevated PFAS concentrations exceeding either the ecological direct and/or indirect exposure criteria for PFOS. These impacts have not been vertically or laterally delineated towards Dawesley Creek.
- All on-site soil sampling locations reported elevated PFAS concentrations. All locations reported PFOS above the adopted interim criteria for ecological indirect exposure, except for SB02 in the main store building.

### Storage tank water

- PFAS concentrations in all seven water storage tanks at the south-western corner of the CFS site exceeded the adopted catchment specific WQG for PFOS and PFHxS in freshwater, as well as the health screening level for drinking water.
- The water in the storage tanks is considered a potential PFAS source as it could infiltrate
  the subsurface or run off into the surface water of Dawesley Creek during high rainfall
  events where excess water is discharged from the tanks.
- There is the potential for the PFAS to be absorbed by the tank walls, as shown by the
  concrete leaching test results for Tank 4. Additional concrete tanks core samples were
  being tested for PFAs (including leachability) at the time of completion of this report and the
  results will be included into the revised 2021 DSI report.

#### Sludge, seepage water and leachability test

- PFAS impact was detected in 51 out of 61 sludge stockpiles samples analysed and five of
  these samples exceeded the adopted PFOS interim criterion for ecological indirect
  exposure. Leachate results indicated that sludge material is acting as a source of PFAS to
  surface water and groundwater above the catchment specific WQG for PFOS and PFHxS.
- PFAS concentrations in five seepage water samples collected from the Brukunga mine
  waste rock dump to the west of Dawesley Creek exceeded the adopted catchment specific
  WQG, with two of these samples also exceeding the adopted health screening level for
  drinking water. The source of PFAS in the seepage water is likely from the sludge waste
  stockpiles. PFAS contaminated seepage water is potentially impacting Dawesley Creek
  surface water and groundwater.

 PFAS were found to readily leach from sludge and concrete with PFAS concentrations in the leachates being proportional to the PFAS concentrations in the solid sample.

#### **Diversion drain**

PFAS concentrations in the diversion drain were below the LOR. As surface water samples
collected above the inlet to the diversion drain reported PFOS and PFHxS concentrations
below the catchment specific WQG, it is considered unlikely that PFAS concentrations in
water within the diversion drain exceed these criteria.

#### Groundwater

- Groundwater flow in February and June 2020 was inferred to flow from higher elevated
  areas to the east and west of the CFS site towards Dawesley Creek, and in a generally
  southerly direction from the CFS site. Dawesley Creek generally flows towards the south
  and discharges into Mt Barker Creek located over 10 km south of the CFS site.
- An assessment of groundwater salinity indicated fresh to hyper-saline groundwater in the vicinity of the CFS site which may be suitable for potable use, irrigation, recreation and aesthetics, primary industries, livestock drinking water and aquaculture purposes (Gov SA 2019a).
- Groundwater PFHxS and PFOS concentrations exceeded the drinking water screening
  criterion in 7 out of a total of 26 tested groundwater monitoring wells in the vicinity of
  Brukunga Mine and in two out of five residential bores. The highest PFAS concentrations
  were reported in February 2020 for well H02, located adjacent the southern (down hydraulic
  gradient) boundary of the CFS site.
- Based on the February 2020 and June 2020 groundwater monitoring rounds results, PFAS
  in groundwater has been delineated in all directions against the drinking water screening
  criteria. However, based on surface water results it is considered likely that PFAS impacts
  in groundwater, associated with surface water bodies, are localised to impacted creek
  alignments.
- A Section 83A notification was submitted for the residential property on 296 Pyrites Road, Brukunga, SA (CT6053/276) in accordance with the Environmental Protection Act 1993 to the South Australian Protection Authority via email on 14 September 2020.

#### **Surface water**

- Background PFOS concentrations reported for Nairne Creek and upstream reaches of Mt Barker Creek and Bremer River, which were not impacted by Dawesley Creek, exceeded the PFAS NEMP fresh water 99% species protection level, indicating widespread PFAS impacts independent of the CFS site. Background concentrations in individual samples collected from upstream locations in Bremer River exceeded the PFAS NEMP drinking water guideline level, showing high variability between sampling locations and sampling events.
- Catchment specific WQG for PFOS and PFHxS were derived in accordance with ANZG (2018) using data from Mt Barker Creek as reference sites. The catchment specific WQG for slightly to moderately and highly disturbed systems were calculated using the 80<sup>th</sup> and 90<sup>th</sup> percentile of the PFOS and PFHxS concentrations in Mt Barker Creek, respectively, and were adopted in lieu of the PFAS NEMP fresh water 99% species protection level for PFOS.
- PFAS impacts associated with the CFS site, above the catchment specific WQG, were observed to extend beyond the South Eastern Freeway and beyond Jaensch Road in Hartley (between Callington Road and North Bremer Road), approximately 37 km

- downstream from the CFS site and have not yet been delineated. It is noted that Nairne Creek, Bremer River and Mt Barker Creek are also contributing to PFAS in surface waters.
- The available flow data indicates that Dawesley Creek typically only contributes ≤ 20% to the flow in the downstream sections of Bremer River. However, the substantially higher PFOS and PFHxS concentrations measured in Dawesley Creek, relative to the upstream reaches of Mt Barker Creek, suggest that the majority of PFOS and PFHxS found downstream of the confluence of Mt Barker Creek and Bremer River is likely to be related to the CFS site.

#### **Sediment**

- Sediment within Dawesley Creek downstream of the CFS site exceeded the adopted assessment criteria for interim ecological indirect exposure and the health screening level for residential land use with access to soil.
- Impacts of PFAS concentrations in sediment have been delineated upstream of the CFS site at sampling location DC-UP01 and downstream of the CFS site at sampling location DC17A in Mt Barker Creek. The sediment impacts were confined to Dawesley Creek between the CFS site and the confluence of Dawesley Creek with Mt Barker Creek.

#### Risk assessment

- Incidental ingestion of sediment within Dawesley Creek by land owners and occupants of and visitors to properties located in the vicinity of Dawesley Creek downstream of the CFS site was the only identified potential SPR linkage where human receptors are exposed to PFAS concentrations above the adopted human health criteria. However, it is considered unlikely that human receptors will come into contact with PFAS quantities detrimental to their health. As a precaution, potential human receptors should be advised to avoid contact with identified PFAS sources.
- The risk to human receptors from consumption of fruit, vegetables and meat from livestock grown in the vicinity of Dawesley Creek downstream of the CFS site using contaminated surface water or groundwater could not be conclusively assessed due to lack of data.
- The risk to human receptors from consumption of fish and yabbies caught in PFASimpacted surface water could not be assessed due to lack of data.
- For ecological receptors four potentially complete SPR linkages where ecosystems are exposed to PFAS concentrations above the adopted criteria have been identified. These include (1) ecosystems at the CFS site and the area between Dawesley Creek and the CFS site with access to / in contact with contaminated soil, (2) ecosystems within Dawesley Creek and the downstream reaches of Mt Barker Creek and Bremer River exposed to contaminated surface water and sediment (Dawesley Creek only), (3) ecosystems at locations where contaminated sludge originating from the water treatment plant has been or is being placed and (4) ecosystems at locations exposed to seepage water impacted with PFAS.

## 11. Recommendations

Based on the results of the PFAS investigations completed to date, the following recommendations were provided:

- Undertake community information sessions on the results of PFAS investigations in the Brukunga area in accordance with the VSCAP milestone; advise stakeholders (landowners / occupants of properties located in the vicinity of Dawesley Creek downstream of the CFS STC) of PFAS impact in surface water and sediment in Dawesley Creek.
- 2. Conduct an Environmental Risk Assessment (ERA) to assess the potential risks to the environment that may be associated with the presence of PFAS in soil, sediment, biota, surface water, concrete, sludge and groundwater, both on-site and off-site within the wider Investigation Area. If data collected as part of the ERA indicates PFAS has bioaccumulated in biota that is being caught and/or consumed by the public such as fish, yabbies, eggs, meat, poultry etc; a Human Health Risk Assessment (HHRA) may also be warranted depending on the concentrations detected. The results of the ERA (and HHRA if required) will inform the development of Remediation Options Assessments (ROA) and Site Remediation Plans (SRP).
- 3. Prepare a remediation options assessment (ROA) to address mass flux from PFAS impacted infrastructure, soils and sludge.
- 4. Prepare a SRP to execute the selected remedial technologies to address PFAS mass flux from the site causing environmental harm and harm to human health (if warranted).
- 5. Undertake on-going monitoring of the CFS STC PFAS water filtration system in accordance with the developed SRP.
- 6. Further sampling of surface water and sediment downstream of the CFS State Training Centre site in Dawesley Creek, Mt Barker Creek and Bremer River to delineate PFAS impacts; as well as upstream reference locations to develop a temporal robust data set, to determine seasonal trends and to derive reliable catchment specific assessment criteria. Further sampling will be undertaken in accordance with the SAQP to be reviewed and endorsed by the CFS and the auditor.
- 7. Undertake "fingerprint" analysis of future surface water samples for the full "long" PFAS analytical suite to distinguish between different PFAS sources and to identify the relative contribution of the various PFAS sources to the PFAS load in Bremer River down gradient of its confluence with Mt Barker Creek.
- 8. Develop and instigate of a Construction Environment Management Plan (CEMP) if any intrusive works proposed in areas of the site where PFAS-impacted soils have been identified.

## 12. Limitations

This report has been prepared by GHD for SA Country Fire Service and may only be used and relied on by SA Country Fire Service and the auditor for the purpose agreed between GHD and the SA Country Fire Service as set out in section 1.2 of this report.

GHD otherwise disclaims responsibility to any person other than SA Country Fire Service arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

GHD has prepared this report on the basis of information provided by SA Country Fire Service and others who provided information to GHD (including Government authorities)], which GHD has not independently verified or checked beyond the agreed scope of work. GHD does not accept liability in connection with such unverified information, including errors and omissions in the report which were caused by errors or omissions in that information.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

## 13. References

ANZG, 2018, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, online resource www.waterquality.gov.au/anz-guidelines, Australian and New Zealand Governments, August 2018, updated 15/10/2019 (AWQG)

Australian/New Zealand Standard 1998, Water Quality – Sampling Guidance on the Design of Sampling Programs, Sampling Techniques and the Preservation and Handling of Samples. AS/NZS 5667.1:1998, Standards Australia

Australian/New Zealand Standard 1998, Water Quality – Sampling Guidance on Sampling of Rivers and Streams. AS/NZS 5667.6:1998, Standards Australia

Australian/New Zealand Standard 1998, Water Quality – Sampling Guidance on Sampling of Groundwaters. AS/NZS 5667.11:1998, Standards Australia

Australian/New Zealand Standard 1999, Water Quality – Sampling Guidance on Sampling of Bottom Sediments. AS/NZS 5667.12:1999, Standards Australia

Australian Standard 2005, Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil – Part 1: Non-volatile and semi-volatile compounds, AS 4482.1:2005, Standards Australia

Australian Standard 2017, Geotechnical Site Investigations, AS 1726:2017, Standards Australia

Australian Standard 2019, Wastes, sediments and contaminated soils, Part 3: Preparation of leachates - Bottle leaching procedure. AS 4439.3:2019, Standards Australia

ASTM (Former American Society for Testing and Materials) International 2017, D7968-17a Standard test method for determination of polyfluorinated compounds in soil by liquid chromatography tandem mass spectrometry (LC/MS/MS)

Banks, EW, Wilson, T, Green, G & Love, AJ 2006, Groundwater recharge investigations in the Eastern Mount Lofty Ranges, South Australia, Report DWLBC 2007/20, Government of South Australia, through Department of Water, Land and Biodiversity Conservation, Adelaide

BOM 2020, Monthly rainfall data for Nairne, Station number 023739, Climate Data Online, Bureau of Meteorology, Australian Government, http://www.bom.gov.au/climate/data (accessed 17 July 2020)

DEM 2014, PIRSA Mining Operations Unit, Summary of Brukunga Groundwater Results (Excel spreadsheet file), Department of Energy and Mining, South Australia, 2014

DEW 2020, WaterConnect online data base for groundwater and surface water, Department for Environment and Water, South Australia, accessed via <a href="www.waterconnect.sa.gov.au">www.waterconnect.sa.gov.au</a>, July to October 2020

EES 2019, Site Contamination Audit Report (Restricted Scope): Brukunga Mine Site, Earth Environmental Sciences, October 2019

EPA Victoria 2000, Groundwater Sampling Guidelines GHD 2019a, CFS Brukanga State Training Centre Environmental Investigation, Report for SA Country Fire Service, November 2019

GHD 2009 Brukunga Mine Rehabilitation - Site Water Balance Model. Report for Primary Industries and Resources South Australia

GHD 2019b, CFS Brukunga State Training Centre Voluntary Site Contamination Assessment Proposal, Report for SA Country Fire Service, December 2019

GHD 2020a, CFS Brukunga State Training Centre Preliminary Site Investigation, Report for SA Country Fire Service, 27 March 2020

GHD 2020b, CFS Brukunga State Training Centre Off-site Groundwater Investigation, Report for SA Country Fire Service, April 2020

GHD 2020c, CFS Brukunga State Training Centre Sampling and Analysis Quality Plan, Report for SA Country Fire Service, 24 April 2020

GHD 2020d, CFS Brukunga State Training Centre Engagement & Water Use Survey Outcomes Report, Report for SA Country Fire Service, September 2020

Golder 2016, Three dimensional regional groundwater flow modelling – Brukunga Mine Remediation Program. Report 127666011-R-005-RevA prepared for the Department of State Development, Golder Associates, 26 February 2016

Gov SA 1993, Environment Protection Act 1993, Version 22.2.2018, Government of South Australia

Gov SA 2015, Environment Protection (Water Quality) Policy 2015 (WQEPP), Version 30.1.2018, Government of South Australia, 2018

HEPA 2020, PFAS National Environment Management Plan (Version 2.0), Heads of Environment Protection Authorities Australia and New Zealand, January 2020 (PFAS NEMP)

Hydrasleeve (2019). Standard Operating Procedure: Sampling Groundwater with a Hydrasleeve

Littleboy, M., D.M. Silburn, D.M. Freebairn, D.R. Woodruff and G.L. Hammer (1989), PERFECT: A computer simulation model of productivity erosion runoff functions to evaluate conservation techniques, Dept. Primary Ind., Qld., Brisbane, Qld., Training Series QE93010: 119 pp

McWorter, D. and Sunada, D. 1977, Groundwater Hydrology and Hydraulics, Water Resources Publications Colorado, USA, 1977

Mortimer, L., Love, A.J., Aydin, A., and Simmons, C.T. 2008, Stress-Dependent Permeability within Fractured Rock Aquifers and its Role on Flow and Transport in Groundwater, Water Down Under 2008, Adelaide, 14-17 April 2008

NEPC 1999, National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013, National Environment Protection Council (ASC NEPM)

NHMRC/NRMMC 2011, Australian Drinking Water Guidelines, Version 3.5 Updated August 2018, National Health and Medical Research Council and Natural Resource Management Ministerial Council, Australian Government, Canberra, 2011

NHMRC 2008, Guidelines for Managing Risks in Recreational Water, National Health and Medical Research Council, Australian Government, Canberra, 2008

NHMRC 2019, Guidance on Per and Polyfluoroalkyl substances (PFAS) in Recreational Water, National Health and Medical Research Council, Australian Government, Canberra, 2019

Rural Solutions 2009, Rural Lands Investigations Report – Land Use and Economics, District Council of Mount Barker, Rural Solutions SA

SA DEH 2001, South Australia 1:50 000 topographic series, map sheet 6627-1 Echunga and map sheet 6628-2 Onkaparinga, Environmental and Geographic Information Division, Department for Environment and Heritage, South Australia, Adelaide, 2001

SA EPA 2018, Site Contamination: Guideline for communication and engagement, Environment Protection Authority, South Australia

SA EPA 2017, Site Contamination Regulatory and Orphan Site Management Framework, Environment Protection Authority, South Australia

SA EPA 2019a, Guidelines for the Assessment and Remediation (GAR) of Site Contamination, Environment Protection Authority, South Australia, revised November 2019

SA EPA 2019b, Guidelines for Regulatory Monitoring and Testing – Groundwater Sampling, Environment Protection Authority, South Australia, revised 2019

SA DME 1979, Onkaparinga special geological map sheet, 1:50 000 Geological Series, Geological Survey South Australia, S. A. Department of Mines and Energy, plan number 200471-229, 1979, accessed via https://map.sarig.sa.gov.au/

SA DME 1985, Echunga special geological map sheet, 1:50 000 Geological Series, Geological Survey South Australia, S. A. Department of Mines and Energy, plan number 200471-224, 1985, accessed via <a href="https://map.sarig.sa.gov.au/">https://map.sarig.sa.gov.au/</a>

SKM 2008. Final Report - Brukunga Water Review (Part One) SINCLAIR KNIGHT MERZ

South Australian Housing Trust, 1993, Investigation of the health risk to residents of SAHT Housing at Brukunga

Tonkin Consulting 2009, Update of the Hydrogeological Conceptual Model at Brukunga Mine Site. Reference No 20090489LA2. Prepared for Primary Industries and Resources SA.

USEPA 2018, Method 537.1-1, Identifying and measuring selected PFAS in drinking water, United States Environmental Protection Agency

USEPA 2019, Test Methods for Evaluating Solid Waste: Physical/Chemical Methods Compendium, SW 846 Update VII, methods 1313, 1314, 1315 and 1316, United States Environmental Protection Agency

WA DER 2017, Interim Guideline of Assessment and Management of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), Version 2.1, Contaminated Sites Guidelines, Department of Environment Regulation, Western Australia, Perth, January 2017

Western, A. and N. McKenzie (2004). SHPA - Soil Hydrological Properties of Australia. Australia, Technical Report prepared for Cooperative Research Centre for Catchment Hydrology, www.toolkit.net.au

# **Analytical Results Tables**

- Table 1 Concrete Analytical Results
- Table 2 Flux Analytical Results
- Table 3 Water Storage Tank Analytical Results
- Table 4 Soil Analytical Results
- Table 5 Sludge Analytical Results
- Table 6a Sludge Leaching Test Analytical Results
- Table 6b Concrete Core Leaching Test Analytical Results
- Table 7 Seepage Water Analytical Results
- Table 8 Surface Water Field Parameters
- Table 9 Surface Water Analytical Results
- Table 10 Groundwater Gauging Data
- Table 11 Groundwater Field Parameters
- Table 12 Groundwater Analytical Results
- Table 13 Sediment Analytical Results
- Table 14 Pre and Post TOPA Groundwater Analytical Results
- Table 15 Biota Analytical Results
- Table 16 Blank Analytical Results
- Table 17 Water RPD Results
- Table 18 Sediment RPD Results
- Table 19 Soil RPD Results

< 0.1

< 0.1

|                                                     |          |                 |                    | DEAS in Congrete Short                   |                                         |                                  |                                          |                                              |                     |                       |                                      |
|-----------------------------------------------------|----------|-----------------|--------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|---------------------|-----------------------|--------------------------------------|
|                                                     |          |                 |                    |                                          | PFAS in Concrete Short                  |                                  |                                          |                                              |                     |                       |                                      |
|                                                     |          |                 |                    | Perfluorohexane sulfonic<br>acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer sulfonic<br>acid (8:2 FTS) | PFAS (Sum of Total) | Sum of PFHxS and PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* |
| T                                                   |          |                 |                    | μg/kg                                    | μg/kg                                   | μg/kg                            | μg/kg                                    | μg/kg                                        | μg/kg               | μg/kg                 | μg/kg                                |
| EQL                                                 |          |                 |                    | 0.1                                      | 0.1                                     | 0.1                              | 0.1                                      | 0.2                                          | 0.1                 | 0.1                   | 0.1                                  |
| PFAS NEMP 2020 Health Industrial/Commercial (HIL D) |          |                 |                    | 20,000                                   | 20,000                                  | 50,000                           |                                          |                                              |                     | 20,000                |                                      |
| PFAS NEMP 2020 Interim Ecological Direct Exposure   |          |                 |                    |                                          | 1,000                                   | 10,000                           |                                          |                                              |                     |                       |                                      |
| PFAS NEMP 2020 Interim Ecological Indirect Exposure |          |                 |                    |                                          | 10                                      |                                  |                                          |                                              |                     |                       |                                      |
| Location                                            | Date     | Location Code   | Field ID           |                                          |                                         |                                  |                                          |                                              |                     |                       |                                      |
| Hotpad A (concrete)                                 | 02/10/19 | Hotpad A        | CONCRETE 1         | 66                                       | 47                                      | 5.1                              | 0.6                                      | <0.1                                         | 190                 | 110                   | 52                                   |
|                                                     | 06/05/20 | SB06            | SB06 Concrete      | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                  | <0.1                                 |
|                                                     |          | SB08            | SB08 Concrete      | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                  | <0.1                                 |
|                                                     |          | HPA1            | HPA1               | 1.9                                      | 2                                       | 0.2                              | 0.1                                      | <0.2                                         | 4.2                 | 3.9                   | 2.2                                  |
|                                                     | 17/11/20 | HPA2            | HPA2               | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                  | <0.1                                 |
|                                                     |          | HPA3            | HPA3               | <0.1                                     | 0.4                                     | <0.1                             | <0.2                                     | <0.2                                         | 0.4                 | 0.4                   | 0.4                                  |
|                                                     |          | HPA4            | HPA4               | <0.1                                     | <0.1                                    | <0.1                             | <0.2                                     | <0.2                                         | <0.1                | <0.1                  | <0.1                                 |
|                                                     |          | HPA5            | HPA5               | <0.1                                     | 0.1                                     | <0.1                             | 0.9                                      | <0.2                                         | 1                   | 0.1                   | 0.1                                  |
| Hotpad B<br>(concrete brick<br>pavers)              | 02/10/19 | Hotpad B        | CONCRETE 2         | 0.9                                      | 4.3                                     | <0.1                             | <0.1                                     | <0.1                                         | 7.9                 | 5.2                   | 4.3                                  |
|                                                     | 06/05/20 | SB05            | SB05 Concrete      | 200                                      | 1,200                                   | 16                               | 8.9                                      | 7.9                                          | 1,400               | 1,400                 | 1,200                                |
|                                                     | 24/11/20 | HPB1            | HPB1               | 44                                       | 140                                     | 4.8                              | 1.6                                      | 2                                            | 190                 | 180                   | 140                                  |
|                                                     |          | HPB2            | HPB2               | 71                                       | 190                                     | 12                               | 1.1                                      | 2                                            | 280                 | 260                   | 200                                  |
|                                                     |          | HPB3            | HPB3               | 55                                       | 150                                     | 7.6                              | 2.1                                      | 1                                            | 220                 | 200                   | 160                                  |
|                                                     |          | HPB4            | HPB4               | 23                                       | 65                                      | 2.7                              | 7.3                                      | 2                                            | 100                 | 88                    | 68                                   |
|                                                     |          | HPB5            | HPB5               | 0.2                                      | 3.7                                     | 0.1                              | 3.8                                      | 1                                            | 9.4                 | 4                     | 3.9                                  |
| Main Store                                          | 06/05/20 | SB02            | SB02_Concrete      | 0.2                                      | 0.2                                     | < 0.1                            | <0.1                                     | <0.2                                         | 0.3                 | 0.3                   | 0.2                                  |
| Tank 1                                              | 24/11/20 | Tank1/01        | 12516828/Tank1/01b | 1.9                                      | 18                                      | 0.3                              | 2.2                                      | 0.8                                          | 23                  | 20                    | 18                                   |
|                                                     |          | Tank1/02        | 12516828/Tank1/02b | 2                                        | 9.3                                     | 0.4                              | 2.2                                      | 2                                            | 15                  | 11                    | 9.7                                  |
|                                                     |          | Tank1/03        | 12516828/Tank1/03b | 0.7                                      | 0.5                                     | <0.1                             | <0.1                                     | <0.2                                         | 1.2                 | 1.2                   | 0.5                                  |
| Tank 4                                              | 08/07/20 | Tank 4 Concrete | Tank 4 Concrete    | 11                                       | 59                                      | 2.8                              | 4.0                                      | 6.0                                          | 82                  | 70                    | 62                                   |
|                                                     | 24/11/20 | Tank4/01        | 12516828/Tank4/01b | 3.4                                      | 28                                      | 0.8                              | 1.3                                      | 1                                            | 35                  | 32                    | 29                                   |
|                                                     |          | Tank4/02        | 12516828/Tank4/02b | 2.5                                      | 38                                      | 0.7                              | 1.1                                      | 2.5                                          | 45                  | 41                    | 39                                   |
| <del></del>                                         | 00/07/05 | Tank4/03        | 12516828/Tank4/03b | <0.1                                     | 0.2                                     | <0.1                             | <0.1                                     | <0.2                                         | 0.2                 | 0.2                   | 0.2                                  |
| Tank 5                                              | 08/07/20 | Tank 5 Concrete | Tank 5 Concrete    | <0.1                                     | 0.7                                     | <0.1                             | 1.2                                      | <0.2                                         | 1.9                 | 0.7                   | 0.7                                  |
| Tank 7                                              | 18/11/20 | Tank7/01        | 12516828/Tank7/01b | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                  | <0.1                                 |
|                                                     |          | Tank7/02        | 12516828/Tank7/02b | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                  | <0.1                                 |

< 0.1

< 0.1

< 0.1

< 0.1

< 0.2

< 0.1

Tank7/03

12516828/Tank7/03b

|                    |               |               |              |                                          |                                         |                                  | PFAS in W                                | aters Short                                  |                     |                       |                                     |
|--------------------|---------------|---------------|--------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|---------------------|-----------------------|-------------------------------------|
|                    |               |               |              | Perfluorohexane sulfonic<br>acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer sulfonic<br>acid (8:2 FTS) | PFAS (Sum of Total) | Sum of PFHxS and PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA) |
| EQL                |               |               |              | μg/L<br>0.01                             | μg/L<br>0.01                            | μg/L<br>0.01                     | μg/L                                     | μg/L                                         | μg/L<br>0.01        | µg/L                  | μg/L                                |
| NHMRC 2019 Red     | reational Wat | er PEAS Guide | lines        | 0.01                                     | 0.01                                    | 10                               | 0.01                                     | 0.02                                         | 0.01                | 0.01                  | 0.01                                |
| PFAS NEMP 2020     |               |               |              | 0.07                                     | 0.07                                    | 0.56                             |                                          |                                              |                     | 0.07                  |                                     |
| PFAS NEMP 2020     |               |               | level (1)    |                                          | 0.00023 §                               | 19                               |                                          |                                              |                     |                       |                                     |
| Catchment specific |               |               | ` '          | 0.0046                                   | 0.0066                                  |                                  |                                          |                                              |                     |                       |                                     |
| Location Code      | Date          | Field ID      | Time (min) * | •                                        |                                         |                                  |                                          |                                              |                     |                       |                                     |
| Hotpad A           | 07/05/20      | FX01          | 10 ^         | 0.01                                     | 0.01                                    | 0.01                             | < 0.01                                   | <0.02                                        | 0.04                | 0.03                  | 0.03                                |
| Hotpad A           | 07/05/20      | FX02          | 20           | 0.01                                     | 0.03                                    | < 0.01                           | < 0.01                                   | <0.02                                        | 0.05                | 0.05                  | 0.03                                |
| Hotpad A           | 07/05/20      | FX03          | 30           | 0.02                                     | 0.04                                    | 0.01                             | < 0.01                                   | <0.02                                        | 0.07                | 0.06                  | 0.05                                |
| Hotpad A           | 07/05/20      | FX04          | 40           | <0.01 #                                  | 0.01                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.01                | 0.01                  | 0.01                                |
| Hotpad A           | 07/05/20      | FX05          | 50           | 0.02                                     | 0.06                                    | <0.01                            | <0.01                                    | <0.02                                        | 0.08                | 0.08                  | 0.06                                |
| Hotpad A           | 07/05/20      | FX06          | 60           | <0.01 #                                  | 0.02                                    | < 0.01                           | < 0.01                                   | <0.02                                        | 0.02                | 0.02                  | 0.02                                |
| Hotpad A           | 07/05/20      | FX07          | 70           | <0.01 #                                  | 0.01                                    | < 0.01                           | < 0.01                                   | <0.02                                        | 0.01                | 0.01                  | 0.01                                |
| Hotpad B           | 18/05/20      | FX08          | 30 ^         | 0.13                                     | 0.82                                    | 0.04                             | 0.11                                     | 0.1                                          | 1.2                 | 0.95                  | 0.86                                |
| Hotpad B           | 18/05/20      | FX13          | 82           | 0.06                                     | 0.42                                    | 0.01                             | <0.01                                    | <0.02                                        | 0.49                | 0.48                  | 0.44                                |

<sup>(1) 99%</sup> species protection level - applies to bioaccumulation risk to slightly to moderately disturbed systems and to direct ecological risk to high conservation value systems. (2) Catchment specific WQG for highly disturbed systems - 90th percentile of background concentrations in reference subcatchment - applies to Dawesley Creek.

<sup>§</sup> The PFAS NEMP Freshwater 99% species protection level for PFOS was not applied. It was replaced with the catchment specific WQG.

<sup>\*</sup> Elapsed time since start of simulated rainfall event in minutes.

<sup>^</sup> Time when run-off from hotpad reached the sampling point.

<sup>&</sup>lt;sup>#</sup>Concentration below the standard LOR (0.01 μg/L) may potentially exeed the catchment specific WQG.

|                    |                    |                      |                                          |                                         |                               | PFAS in W                                | aters Shor                                   | t                     |                                     |                     |                               |                                 |                                | PFAS - Pe                       | erfluoroall                   | kyl Carbox                    | ylic Acids                        | ;                                 |                                    |                                         |
|--------------------|--------------------|----------------------|------------------------------------------|-----------------------------------------|-------------------------------|------------------------------------------|----------------------------------------------|-----------------------|-------------------------------------|---------------------|-------------------------------|---------------------------------|--------------------------------|---------------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------------------------|------------------------------------|-----------------------------------------|
|                    |                    |                      | Perfluorohexane sulfonic acid<br>(PFHxS) | Perfluorooctane sulfonic acid<br>(PFOS) | Perfluorooctanoic acid (PFOA) | 6:2 Fluorotelomer Sulfonate<br>(6:2 FTS) | 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | Sum of PFHxS and PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA) | PFAS (Sum of Total) | Perfluorobutanoic acid (PFBA) | Perfluoropentanoic acid (PFPeA) | Perfluorohexanoic acid (PFHxA) | Perfluoroheptanoic acid (PFHpA) | Perfluorononanoic acid (PFNA) | Perfluorodecanoic acid (PFDA) | Perfluoroundecanoic acid (PFUnDA) | Perfluorododecanoic acid (PFDoDA) | Perfluorotridecanoic acid (PFTrDA) | Perfluorotetradecanoic acid<br>(PFTeDA) |
|                    |                    |                      | μg/L                                     | μg/L                                    | μg/L                          | μg/L                                     | μg/L                                         | μg/L                  | μg/L                                | μg/L                | μg/L                          | μg/L                            | μg/L                           | μg/L                            | μg/L                          | μg/L                          | μg/L                              | μg/L                              | μg/L                               | μg/L                                    |
| EQL                |                    |                      | 0.01                                     | 0.01                                    | 0.01                          | 0.01                                     | 0.02                                         | 0.01                  | 0.01                                | 0.01                | 0.02                          | 0.02                            | 0.01                           | 0.01                            | 0.01                          | 0.02                          | 0.02                              | 0.02                              | 0.02                               | 0.05                                    |
| NHMRC 2019 Reci    | eational Water PF  | AS Guidelines        |                                          |                                         | 10                            |                                          |                                              | 2                     |                                     |                     |                               |                                 |                                |                                 |                               |                               |                                   |                                   |                                    |                                         |
| PFAS NEMP 2020     | Health Drinking Wa | ater                 | 0.07                                     | 0.07                                    | 0.56                          |                                          |                                              | 0.07                  |                                     |                     |                               |                                 |                                |                                 |                               |                               |                                   |                                   |                                    |                                         |
| PFAS NEMP 2020     | Freshwater - 99% ı | orotection level (1) |                                          | 0.00023 §                               | 19                            |                                          |                                              |                       |                                     |                     |                               |                                 |                                |                                 |                               |                               |                                   |                                   |                                    |                                         |
| Catchment specific |                    |                      | 0.0046                                   | 0.0066                                  |                               |                                          |                                              |                       |                                     |                     |                               |                                 |                                |                                 |                               |                               |                                   |                                   |                                    |                                         |
| Location Code      | Date               | Field ID             |                                          |                                         |                               |                                          |                                              |                       |                                     |                     |                               |                                 |                                |                                 |                               |                               |                                   |                                   |                                    |                                         |
| Tank1              | 28/10/20           | Tank-1               | 0.08                                     | 0.41                                    | 0.02                          | 0.02                                     | < 0.02                                       | 0.49                  | 0.43                                | 0.61                | < 0.02                        | < 0.02                          | 0.05                           | < 0.01                          | < 0.01                        | < 0.02                        | < 0.02                            | < 0.05                            | < 0.1                              | < 0.5                                   |
| Tank2              | 28/10/20           | Tank-2               | 0.09                                     | 0.36                                    | 0.02                          | 0.02                                     | < 0.02                                       | 0.46                  | 0.38                                | 0.62                | < 0.02                        | 0.02                            | 0.06                           | 0.01                            | < 0.01                        | < 0.02                        | < 0.02                            | < 0.05                            | < 0.1                              | < 0.5                                   |
| Tank3              | 28/10/20           | Tank-3               | 0.08                                     | 0.34                                    | 0.02                          | 0.01                                     | < 0.02                                       | 0.42                  | 0.36                                | 0.53                | < 0.02                        | < 0.02                          | 0.05                           | < 0.01                          | < 0.01                        | < 0.02                        | < 0.02                            | < 0.05                            | < 0.1                              | < 0.5                                   |
| Tank4              | 02/10/19           | WATER_4              | 0.07                                     | 0.21                                    | 0.01                          | 0.02                                     | < 0.01                                       | 0.28                  | 0.22                                | 0.37                | -                             | -                               | -                              | -                               | -                             | -                             | -                                 | -                                 | -                                  | -                                       |
| Tank4              | 28/10/20           | Tank-4               | 0.07                                     | 0.25                                    | 0.01                          | < 0.01                                   | < 0.02                                       | 0.32                  | 0.26                                | 0.39                | < 0.02                        | < 0.02                          | 0.04                           | 0.01                            | < 0.01                        | < 0.02                        | < 0.02                            | < 0.05                            | < 0.1                              | < 0.5                                   |
| Tank5              | 28/10/20           | Tank-5               | 0.09                                     | 0.37 *                                  | 0.02                          | 0.01                                     | <0.05 *                                      | 0.45                  | 0.37                                | 0.61                | <0.10 *                       | 0.02                            | 0.06                           | 0.01                            | <0.02 *                       | < 0.02                        | < 0.02                            | < 0.05                            | < 0.1                              | < 0.5                                   |
| Tank6              | 28/10/20           | Tank-6               | 0.08                                     | 0.32                                    | 0.02                          | 0.01                                     | < 0.02                                       | 0.41                  | 0.34                                | 0.55                | < 0.02                        | 0.02                            | 0.05                           | 0.01                            | < 0.01                        | < 0.02                        | < 0.02                            | < 0.05                            | < 0.1                              | < 0.5                                   |
| Tank7              | 28/10/20           | Tank-7               | 0.07                                     | 0.28                                    | 0.02                          | 0.01                                     | < 0.02                                       | 0.36                  | 0.30                                | 0.47                | < 0.02                        | < 0.02                          | 0.05                           | < 0.01                          | < 0.01                        | < 0.02                        | < 0.02                            | < 0.05                            | < 0.1                              | < 0.5                                   |

<sup>(1) 99%</sup> species protection level - applies to bioaccumulation risk to slightly to moderately disturbed systems and to direct ecological risk to high conservation value systems.

<sup>(2)</sup> Catchment specific WQG for highly disturbed systems - 90th percentile of background concentrations in reference subcatchment - applies to Dawesley Creek.

<sup>§</sup> The PFAS NEMP Freshwater 99% species protection level for PFOS was not applied. It was replaced with the catchment specific WQG.

<sup>\*</sup> Higher value adopted from QA/QC analysis

## Table 3 Water Storage Tank Analytical Results

|                    |                  |                        | PFAS -                               | Perfluoroa                                | alkyl Sulfo                               | nic Acids                              |                                       | PF                                               | AS - Perf                                       | luoroalkyl                                                   | Sulfonam                                                | ide                                                    |                                                             | Fluoro                                       | AS -<br>telomer<br>ic Acids                    |
|--------------------|------------------|------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|------------------------------------------------|
|                    |                  |                        | Perfluorobutane sulfonic acid (PFBS) | Perfluoropentane sulfonic acid<br>(PFPeS) | Perfluoroheptane sulfonic acid<br>(PFHpS) | Perfluorodecanesulfonic acid<br>(PFDS) | Perfluorooctane sulfonamide<br>(FOSA) | N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | N-Ethyl perfluorooctane sulfonamide<br>(EtFOSA) | N-Methyl perfluorooctane<br>sulfonamidoacetic acid (MeFOSAA) | N-Methyl perfluorooctane<br>sulfonamidoethanol (MEFOSE) | N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE) | N-Ethyl perfluorooctane<br>sulfonamidoacetic acid (EtFOSAA) | 4:2 Fluorotelomer sulfonic acid (4:2<br>FTS) | 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS) |
| <b>-</b>           |                  |                        | μg/L                                 | μg/L                                      | μg/L                                      | μg/L                                   | μg/L                                  | μg/L                                             | μg/L                                            | μg/L                                                         | μg/L                                                    | μg/L                                                   | μg/L                                                        | μg/L                                         | μg/L                                           |
| EQL                |                  |                        | 0.01                                 | 0.01                                      | 0.01                                      | 0.02                                   | 0.02                                  | 0.05                                             | 0.05                                            | 0.02                                                         | 0.05                                                    | 0.05                                                   | 0.02                                                        | 0.01                                         | 0.02                                           |
| NHMRC 2019 Rec     |                  |                        |                                      |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                              |                                                         |                                                        |                                                             |                                              |                                                |
| PFAS NEMP 2020     | Health Drinking  | Water                  |                                      |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                              |                                                         |                                                        |                                                             |                                              |                                                |
| PFAS NEMP 2020     | Freshwater - 99  | % protection level (1) |                                      |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                              |                                                         |                                                        |                                                             |                                              |                                                |
| Catchment specific | : WQG - highly d | isturbed systems (2)   |                                      |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                              |                                                         |                                                        |                                                             |                                              |                                                |
| Location Code      | Date             | Field ID               |                                      |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                              |                                                         |                                                        |                                                             |                                              |                                                |
| Tank1              | 28/10/20         | Tank-1                 | 0.02                                 | 0.01                                      | < 0.01                                    | < 0.02                                 | < 0.1                                 | < 0.05                                           | < 0.1                                           | < 0.02                                                       | < 0.05                                                  | < 0.5                                                  | < 0.02                                                      | < 0.01                                       | < 0.02                                         |
| Tank2              | 28/10/20         | Tank-2                 | 0.02                                 | 0.01                                      | < 0.01                                    | < 0.02                                 | <0.1                                  | < 0.05                                           | < 0.1                                           | < 0.02                                                       | < 0.05                                                  | < 0.5                                                  | < 0.02                                                      | < 0.01                                       | < 0.02                                         |
| Tank3              | 28/10/20         | Tank-3                 | 0.02                                 | 0.01                                      | < 0.01                                    | < 0.02                                 | < 0.1                                 | < 0.05                                           | < 0.1                                           | < 0.02                                                       | < 0.05                                                  | < 0.5                                                  | < 0.02                                                      | < 0.01                                       | < 0.02                                         |
| Tank4              | 02/10/19         | WATER_4                |                                      |                                           |                                           |                                        | -                                     | -                                                |                                                 |                                                              |                                                         |                                                        | -                                                           | -                                            | -                                              |
| Tank4              | 28/10/20         | Tank-4                 | 0.01                                 | < 0.01                                    | < 0.01                                    | < 0.02                                 | < 0.1                                 | < 0.05                                           | < 0.1                                           | < 0.02                                                       | < 0.05                                                  | < 0.5                                                  | < 0.02                                                      | < 0.01                                       | < 0.02                                         |
| Tank5              | 28/10/20         | Tank-5                 | 0.02                                 | 0.02                                      | <0.02 *                                   | < 0.02                                 | < 0.1                                 | < 0.05                                           | < 0.1                                           | < 0.02                                                       | < 0.05                                                  | < 0.5                                                  | < 0.02                                                      | <0.05 *                                      | <0.05 *                                        |
| Tank6              | 28/10/20         | Tank-6                 | 0.02                                 | 0.01                                      | < 0.01                                    | < 0.02                                 | < 0.1                                 | < 0.05                                           | < 0.1                                           | < 0.02                                                       | < 0.05                                                  | < 0.5                                                  | < 0.02                                                      | < 0.01                                       | < 0.02                                         |
| Tank7              | 28/10/20         | Tank-7                 | 0.02                                 | 0.01                                      | < 0.01                                    | < 0.02                                 | < 0.1                                 | < 0.05                                           | < 0.1                                           | < 0.02                                                       | < 0.05                                                  | < 0.5                                                  | < 0.02                                                      | < 0.01                                       | < 0.02                                         |

|                                         |               |                     |               |                      |          | Moisture                   |                              |                                                 |                          | PFAS in S                                        | Soils Short                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
|-----------------------------------------|---------------|---------------------|---------------|----------------------|----------|----------------------------|------------------------------|-------------------------------------------------|--------------------------|--------------------------------------------------|------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| EQL<br>PFAS NEMP 2020<br>PFAS NEMP 2020 |               | ial/Commercial (HIL | •             |                      |          | 1.0 % Moisture Content (%) | Double Sulfonic acid (PFHxS) | DO0,000 Berfluorooctane sulfonic by acid (PFOS) | DO0,000<br>(PFOA)<br>100 | O 중 6:2 Fluorotelomer<br>나 중 Sulfonate (6:2 FTS) | o 급 8:2 Fluorotelomer<br>> 중 sulfonic acid (8:2 FTS) | DEAS (Sum of Total) | рив Somm of PFHxS and half be possible by the sound of the possible by the sound of the possible by the possi | O (급 Sum of US EPA PFAS<br>다 (PFOS + PFOA) |
|                                         |               | ical Direct Exposur |               |                      |          |                            |                              | 1,000                                           | 10,000                   |                                                  |                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| PFAS NEMP 2020                          | Interim Ecolo | gical Indirect Exp  | osure         |                      |          |                            |                              | 10                                              |                          |                                                  |                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| Location Code                           | Dato          | Field ID            | Depth (m bgl) | Location             | Criteria |                            |                              |                                                 |                          |                                                  |                                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| Soil 1                                  | 02/10/19      | Soil 1              | surface       | On-site              | HIL D    | 4.5                        | <0.1                         | 0.4                                             | <0.1                     | < 0.1                                            | <0.1                                                 | 0.4                 | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4                                        |
| Soil 2                                  | 02/10/19      | Soil 2              | surface       | On-site              | HIL D    | 2.3                        | 1.0                          | 11                                              | 0.3                      | 0.1                                              | <0.1                                                 | 22                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                         |
| Soil 3                                  | 02/10/19      | Soil 3              | surface       | On-site              | HIL D    | 4.6                        | 0.1                          | 1.1                                             | <0.1                     | 0.1                                              | 0.1                                                  | 4.5                 | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1                                        |
| SB01                                    | 06/05/20      | SB01_0-0.2          | 0.0-0.2       | Off-site industrial  | HIL D    | 11                         | 210                          | 1,400                                           | 27                       | 0.3                                              | 0.6                                                  | 1,600               | 1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,400                                      |
| SB01                                    | 06/05/20      | SB01_0.2-0.4        | 0.2-0.4       | Off-site industrial  | HIL D    | 16                         | 210                          | 1,300                                           | 30                       | 0.6                                              | 1                                                    | 1,500               | 1,500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,300                                      |
| SB01                                    | 06/05/20      | SB01_0.9-1.1        | 0.9-1.1       | Off-site industrial  | HIL D    | 33                         | 62                           | 2,100                                           | 14                       | 0.4                                              | 21                                                   | 2,200               | 2,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,100                                      |
| SB02                                    | 06/05/20      | SB02_0.1-0.3        | 0.1-0.3       | On-site Main Store   | HIL D    | 6.3                        | 0.4                          | 1.9                                             | <0.1                     | <0.1                                             | <0.2                                                 | 2.3                 | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.9                                        |
| SB02                                    | 06/05/20      | SB02_0.6-0.8        | 0.6-0.8       | On-site Main Store   | HIL D    | 44                         | 0.6                          | 3                                               | <0.2                     | <0.2                                             | < 0.4                                                | 3.6                 | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                        |
| SB03                                    | 06/05/20      | SB03_0-0.2          | 0.0-0.2       | On-site              | HIL D    | 4.0                        | 130                          | 130                                             | 14                       | 2.1                                              | 2.6                                                  | 280                 | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140                                        |
| SB03                                    | 06/05/20      | SB03_0.4-0.6        | 0.4-0.6       | On-site              | HIL D    | 11                         | 2.3                          | 3.6                                             | 0.3                      | <0.1                                             | <0.2                                                 | 6.2                 | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.9                                        |
| SB03                                    | 06/05/20      | SB03_0.9-1.1        | 0.9-1.1       | On-site              | HIL D    | 12                         | < 0.1                        | 0.1                                             | <0.1                     | <0.1                                             | < 0.2                                                | 0.1                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                        |
| SB04                                    | 06/05/20      | SB04_0-0.2          | 0.0-0.2       | Off-site industrial  | HIL D    | 14                         | 4.3                          | 19                                              | 2.0                      | <0.1                                             | 2.9                                                  | 29                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                                         |
| SB05                                    | 06/05/20      | SB05_0.1-0.2        | 0.1-0.2       | On-site Hotpad B     | HIL D    | 12                         | 1.7                          | 27                                              | 0.3                      | 0.2                                              | 5.9                                                  | 35                  | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                                         |
| SB05                                    | 06/05/20      | SB05_0.3-0.4        | 0.3-0.4       | On-site Hotpad B     | HIL D    | 15                         | 2.7                          | 250                                             | 1.4                      | 0.6                                              | 1                                                    | 260                 | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250                                        |
| SB05                                    | 06/05/20      | SB05_0.8-1.0        | 0.8-1.0       | On-site Hotpad B     | HIL D    | 11                         | 15                           | 0.5                                             | <0.1                     | <0.1                                             | < 0.2                                                | 15                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                        |
| SB06                                    | 06/05/20      | SB06_0.4-0.6        | 0.4-0.6       | On-site Hotpad A     | HIL D    | 13                         | 0.3                          | 25                                              | <0.1                     | 0.1                                              | < 0.2                                                | 26                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25                                         |
| SB06                                    | 06/05/20      | SB06_0.23-0.4       | 0.23-0.4      | On-site Hotpad A     | HIL D    | 9.3                        | <0.1                         | 0.9                                             | <0.1                     | <0.1                                             | <0.2                                                 | 0.9                 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9                                        |
| SB06                                    | 06/05/20      | SB06_1.0-1.2        | 1.0-1.2       | On-site Hotpad A     | HIL D    | 11                         | 0.5                          | 26                                              | 0.2                      | < 0.1                                            | <0.2                                                 | 27                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26                                         |
| SB07                                    | 06/05/20      | SB07_0-0.2          | 0.0-0.2       | Off-site industrial  | HIL D    | 16                         | 18*                          | 170*                                            | 3.3*                     | < 0.1                                            | 0.4                                                  | 190*                | 190*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 170*                                       |
| SB07                                    | 06/05/20      | SB07_0.4-0.6        | 0.4-0.6       | Off-site industrial  | HIL D    | 9.0                        | 19                           | 740                                             | 2.9                      | 0.2                                              | 0.5                                                  | 760                 | 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 740                                        |
| SB08                                    | 06/05/20      | SB08_0.2-0.4        | 0.2-0.4       | On-site Hotpad A     | HIL D    | 11                         | 6.5                          | 33                                              | 0.9                      | <0.1                                             | <0.2                                                 | 40                  | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                                         |
| SB08                                    | 06/05/20      | SB08_0.4-0.6        | 0.4-0.6       | On-site Hotpad A     | HIL D    | 6.4                        | 4.8                          | 0.8                                             | 0.2                      | 0.1                                              | <0.2                                                 | 6.0                 | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                                        |
| Garden1                                 | 17/09/20      | Garden1             | surface       | Off-site residential | HIL A    | 15                         | <0.1                         | 0.3                                             | <0.1                     | <0.1                                             | <0.2                                                 | 0.3                 | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                        |
| Garden2                                 | 17/09/20      | Garden2             | surface       | Off-site residential | HIL A    | 24                         | <0.2*                        | 0.5*                                            | <0.2*                    | <0.5*                                            | <0.5*                                                | 0.5*                | 0.5*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5*                                       |
| Garden3                                 | 17/09/20      | Garden3             | surface       | Off-site residential | HIL A    | 7.5                        | <0.1                         | 0.3                                             | <0.1                     | <0.1                                             | <0.2                                                 | 0.3                 | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                                        |

15

< 0.1

1.4

< 0.1

< 0.1

< 0.2

1.4

1.4

1.4

HIL A

Off-site residential

17/09/20

Garden4

surface

Garden4

<sup>^</sup> If the concentration of PFHxS > PFOS this guideline value needs to be adjusted accordingly. Please refer to Section 8.5.2.1 of the PFAS NEMP 2.0 guideline for further information.

<sup>\*</sup> Higher value adopted from QA/QC analysis

|                                  |                      |              |                               | Moisture             |                                          | I                                       |                                  | PFAS in S                                | Soils Short                                  | 1                   |                          | I                                    |
|----------------------------------|----------------------|--------------|-------------------------------|----------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|---------------------|--------------------------|--------------------------------------|
|                                  |                      |              |                               | Moisture Content (%) | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane<br>sulfonic acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | PFAS (Sum of Total) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* |
| -                                |                      |              |                               | %                    | μg/kg                                    | μg/kg                                   | μg/kg                            | μg/kg                                    | μg/kg                                        | μg/kg               | μg/kg                    | μg/kg                                |
| EQL                              |                      | -1/0         | D                             | 0.1                  | 0.1                                      | 0.1                                     | 0.1                              | 0.1                                      | 0.2                                          | 0.1                 | 0.1                      | 0.1                                  |
| PFAS NEMP 2020<br>PFAS NEMP 2020 |                      | •            | •                             |                      | 20,000                                   | 20,000<br>1,000                         | 50,000<br>10,000                 |                                          |                                              |                     | 20,000                   |                                      |
| PFAS NEMP 2020                   |                      |              |                               |                      |                                          | 10                                      | 10,000                           |                                          |                                              |                     |                          |                                      |
| •                                |                      | •            |                               | •                    |                                          |                                         | •                                |                                          |                                              |                     |                          |                                      |
| Location Code                    | Date                 | Field ID     | Location                      | 1                    | T                                        | T                                       | T                                |                                          |                                              | 1                   |                          | T                                    |
| Sludge_1                         | 02/10/19             | Sludge_1     | Southern Bench                |                      | 0.3                                      | 0.5                                     | <0.1                             | <0.1                                     | <0.1                                         | 0.8                 | 0.8                      | 0.5                                  |
| SS01                             | 08/05/20             | SS01         | Northern Bench                | 50                   | 0.2                                      | 0.2                                     | <0.2                             | <0.2                                     | < 0.4                                        | 0.4                 | 0.4                      | 0.2                                  |
| SS02                             | 08/05/20             | SS02         | Northern Bench                | 18                   | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                     | <0.1                                 |
| SS03                             | 08/05/20             | SS03         | Northern Bench                | 12                   | <0.1                                     | 0.1                                     | <0.1                             | <0.1                                     | <0.2                                         | 0.1                 | 0.1                      | 0.1                                  |
| SS04                             | 08/05/20             | SS04         | Northern Bench                | 19                   | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                     | <0.1                                 |
| SS05                             | 08/05/20             | SS05         | Northern Bench                | 13                   | <0.1                                     | 0.4                                     | <0.1                             | <0.1                                     | <0.2                                         | 0.4                 | 0.4                      | 0.4                                  |
| SS06                             | 08/05/20             | SS06         | Northern Bench                | 19                   | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                     | <0.1                                 |
| SS07                             | 08/05/20             | SS07         | Northern Bench                | 11                   | <0.1                                     | 0.2                                     | <0.1                             | <0.1                                     | <0.2                                         | 0.2                 | 0.2                      | 0.2                                  |
| SS08                             | 08/05/20             | SS08         | Northern Bench                | 12                   | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                     | <0.1                                 |
| SS09<br>SS10                     | 08/05/20<br>08/05/20 | SS09<br>SS10 | Northern Bench Northern Bench | 20<br>13             | <0.1                                     | 2.3                                     | 0.2                              | <0.1<br><0.1                             | <0.2<br><0.2                                 | 2.4<br>3.4          | 2.3<br>2.4               | 2.4<br>3.1                           |
| SS10                             | 08/05/20             | SS10<br>SS11 | Northern Bench                | 18                   | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                     | <0.1                                 |
| SS12                             | 08/05/20             | SS12         | Northern Bench                | 18                   | <0.1                                     | 3.6                                     | 0.8                              | <0.1                                     | <0.2                                         | 4.4                 | 3.6                      | 4.4                                  |
| SS13                             | 08/05/20             | SS13         | Northern Bench                | 18                   | <0.1                                     | 0.3                                     | <0.1                             | <0.1                                     | <0.2                                         | 0.3                 | 0.3                      | 0.3                                  |
| SS14                             | 08/05/20             | SS14         | Northern Bench                | 17                   | <0.1                                     | 0.2                                     | 0.1                              | <0.1                                     | <0.2                                         | 0.3                 | 0.2                      | 0.3                                  |
| SS15                             | 08/05/20             | SS15         | Northern Bench                | 16                   | 0.7                                      | 65                                      | 5.6                              | <0.1                                     | <0.2                                         | 71                  | 66                       | 71                                   |
| SS16                             | 08/05/20             | SS16         | Northern Bench                | 23                   | 0.2                                      | 18                                      | 1.3                              | <0.1                                     | <0.2                                         | 19                  | 18                       | 19                                   |
| SS17                             | 08/05/20             | SS17         | Northern Bench                | 19                   | 0.3                                      | 36                                      | 2.2                              | <0.1                                     | <0.2                                         | 39                  | 36                       | 38                                   |
| SS18                             | 08/05/20             | SS18         | Northern Bench                | 39                   | <0.2                                     | 0.3                                     | <0.2                             | <0.2                                     | <0.4                                         | 0.3                 | 0.3                      | 0.3                                  |
| SS19                             | 08/05/20             | SS19         | Northern Highwall             | 51                   | <0.2                                     | < 0.2                                   | <0.2                             | <0.2                                     | <0.4                                         | <0.2                | <0.2                     | < 0.2                                |
| SS20                             | 08/05/20             | SS20         | Northern Highwall             | 38                   | <0.2                                     | 0.4                                     | < 0.2                            | < 0.2                                    | < 0.4                                        | 0.4                 | 0.4                      | 0.4                                  |
| SS21                             | 08/05/20             | SS21         | Northern Highwall             | 43                   | <0.2                                     | 1.9                                     | <0.2                             | < 0.2                                    | < 0.4                                        | 1.9                 | 1.9                      | 1.9                                  |
| SS22                             | 08/05/20             | SS22         | Northern Highwall             | 34                   | <0.2                                     | 0.5                                     | <0.2                             | < 0.2                                    | < 0.4                                        | 0.5                 | 0.5                      | 0.5                                  |
| SS23                             | 08/05/20             | SS23         | South Extension WRD           | 36                   | <0.2                                     | 0.3                                     | < 0.2                            | < 0.2                                    | < 0.4                                        | 0.3                 | 0.3                      | 0.3                                  |
| SS24                             | 08/05/20             | SS24         | South Extension WRD           | 42                   | <0.2                                     | 0.3                                     | <0.2                             | <0.2                                     | < 0.4                                        | 0.3                 | 0.3                      | 0.3                                  |
| SS25                             | 08/05/20             | SS25         | South Extension WRD           | 13                   | < 0.1                                    | 0.2                                     | <0.1                             | < 0.1                                    | <0.2                                         | 0.2                 | 0.2                      | 0.2                                  |
| SS26                             | 08/05/20             | SS26         | South Extension WRD           | 14                   | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                         | <0.1                | <0.1                     | <0.1                                 |
| SS27                             | 08/05/20             | SS27         | South Extension WRD           | 9.7                  | 0.4                                      | 18                                      | 0.1                              | <0.1                                     | <0.2                                         | 19                  | 18                       | 18                                   |
| SS28                             | 08/05/20             | SS28         | South Extension WRD           | 38                   | <0.2                                     | < 0.2                                   | <0.2                             | <0.2                                     | < 0.4                                        | <0.2                | <0.2                     | < 0.2                                |
| SS29                             | 08/05/20             | SS29         | South Extension WRD           | 45                   | <0.2                                     | 0.8                                     | <0.2                             | < 0.2                                    | < 0.4                                        | 0.8                 | 0.8                      | 0.8                                  |
| SS30                             | 08/05/20             | SS30         | South Extension WRD           | 42                   | <0.2                                     | 0.2                                     | <0.2                             | <0.2                                     | <0.4                                         | 0.2                 | 0.2                      | 0.2                                  |
| SW01                             | 07/05/20             | SW01_0.1-0.3 | Southern Bench                | 36                   | 0.3                                      | 0.6                                     | <0.2                             | < 0.2                                    | < 0.4                                        | 0.9                 | 0.9                      | 0.6                                  |

|                |                 |                              |                                | Moisture               |                                              |                                                 |            | PFAS in S                                        | Soils Short                                        |                                |                              |                                           |
|----------------|-----------------|------------------------------|--------------------------------|------------------------|----------------------------------------------|-------------------------------------------------|------------|--------------------------------------------------|----------------------------------------------------|--------------------------------|------------------------------|-------------------------------------------|
|                |                 |                              |                                | % Moisture Content (%) | চ Perfluorohexane<br>ত sulfonic acid (PFHxS) | ত্ৰ Perfluorooctane<br>ক্ৰ sulfonic acid (PFOS) | ਨੂੰ (PFOA) | ਨੂੰ 6:2 Fluorotelomer<br>ਨੂੰ Sulfonate (6:2 FTS) | සි 8:2 Fluorotelomer<br>යි sulfonic acid (8:2 FTS) | 요<br>장<br>BPFAS (Sum of Total) | 6 Sum of PFHxS and<br>장 PFOS | 효<br>Sum of US EPA PFAS<br>(PFOS + PFOA)* |
| EQL            |                 |                              |                                | 0.1                    | 0.1                                          | 0.1                                             | 0.1        | 0.1                                              | 0.2                                                | 0.1                            | 0.1                          | 0.1                                       |
| PFAS NEMP 2020 | Health Industri | al/Commercial HIL I          | D)                             | <b>U</b>               | 20,000                                       | 20,000                                          | 50,000     | J                                                | U                                                  | <b>U</b>                       | 20,000                       | <b>U</b>                                  |
| PFAS NEMP 2020 |                 |                              | · ·                            |                        | ·                                            | 1,000                                           | 10,000     |                                                  |                                                    |                                | ,                            |                                           |
| PFAS NEMP 2020 | Interim Ecolog  | ical Indirect Exposu         | re                             |                        |                                              | 10                                              |            |                                                  |                                                    |                                |                              |                                           |
| Location Code  | Date            | Field ID                     | Location                       |                        |                                              |                                                 |            |                                                  |                                                    |                                |                              |                                           |
| SW01           | 07/05/20        | SW01_1.9-2.0                 | Southern Bench                 | 20                     | 0.3                                          | 0.3                                             | <0.1       | <0.1                                             | <0.2                                               | 0.6                            | 0.6                          | 0.3                                       |
| SW02           | 07/05/20        | SW01_1.9-2.0<br>SW02_0.1-0.3 | Southern Bench                 | 32                     | 0.3                                          | 0.5                                             | <0.1       | <0.1                                             | <0.4                                               | 0.6                            | 0.6                          | 0.5                                       |
| SW02           | 07/05/20        | SW02_0.1-0.3                 | Southern Bench                 | 38                     | 0.5                                          | 0.5                                             | <0.2       | <0.2                                             | <0.4                                               | 1.2                            | 1.2                          | 0.5                                       |
| SW03           | 06/05/20        | SW03_0-0.2                   | Southern Bench                 | 44                     | 0.4                                          | 0.6                                             | <0.2       | <0.2                                             | <0.4                                               | 1.1                            | 1.1                          | 0.6                                       |
| SW03           | 06/05/20        | SW03_0-0.2<br>SW03 1.5-1.7   | Southern Bench                 | 41                     | 0.4                                          | 0.0                                             | <0.2       | <0.2                                             | <0.4                                               | 0.6                            | 0.6                          | 0.4                                       |
| SW04           | 06/05/20        | SW04 1.0-1.3                 | Southern Bench                 | 44                     | 0.6                                          | 1.1                                             | <0.2       | <0.2                                             | <0.4                                               | 1.7                            | 1.7                          | 1.1                                       |
| SW04           | 06/05/20        | SW04_1.0-1.3                 | Southern Bench                 | 44                     | 0.3                                          | 0.8                                             | <0.2       | <0.2                                             | <0.4                                               | 1.7                            | 1.7                          | 0.8                                       |
| SW04           | 06/05/20        | SW04_2.0-2.1                 | Southern Bench                 | 50                     | <0.2                                         | 0.6                                             | <0.2       | <0.2                                             | <0.4                                               | 0.4                            | 0.4                          | 0.8                                       |
| SW05           | 06/05/20        | SW05 0-0.2                   | Southern Bench                 | 48                     | 0.4                                          | 0.4                                             | <0.2       | <0.2                                             | <0.4                                               | 0.4                            | 0.4                          | 0.4                                       |
| SW05           | 06/05/20        |                              | Southern Bench                 | 52                     |                                              | 0.6                                             | <0.2       | <0.2                                             | <0.4                                               | 1.1                            | 1.1                          | 0.6                                       |
| SW06           | _               | SW05_1.0-1.1                 |                                |                        | 0.5                                          |                                                 |            |                                                  |                                                    |                                |                              |                                           |
|                | 06/05/20        | SW06_4.1-4.2                 | Southern Bench                 | 40                     |                                              | 0.8                                             | <0.2       | <0.2                                             | <0.4                                               | 1.0                            | 1.0                          | 0.8                                       |
| SW06           | 06/05/20        | SW06_4.3-4.4                 | Southern Bench                 | 13                     | <0.1                                         | <0.1                                            | <0.1       | <0.1                                             | <0.2                                               | <0.1                           | <0.1                         | <0.1                                      |
| SW07           | 07/05/20        | SW07_0.2-0.3                 | Southern Bench                 | 41                     | <0.2                                         | 0.3                                             | <0.2       | <0.2                                             | <0.4                                               | 0.3                            | 0.3                          | 0.3                                       |
| SW07           | 07/05/20        | SW07_2.5-2.8                 | Southern Bench                 | 39                     | 0.4                                          | 1.1                                             | <0.2       | <0.2                                             | <0.4                                               | 1.6*                           | 1.6*                         | 1.1                                       |
| SW08           | 07/05/20        | SW08_0.5-0.6                 | Southern Bench                 | 50                     | 0.4                                          | 1                                               | <0.2       | <0.2                                             | <0.4                                               | 1.4                            | 1.4                          | 1.0                                       |
| SW08           | 07/05/20        | SW08_2.3-2.4                 | Southern Bench                 | 58                     | <0.2                                         | <0.2                                            | <0.2       | <0.2                                             | <0.4                                               | <0.2                           | <0.2                         | <0.2                                      |
| SW09           | 07/05/20        | SW09_0.1-0.2                 | Southern Bench                 | 44                     | 0.9                                          | 1.6                                             | <0.2       | <0.2                                             | < 0.4                                              | 2.5                            | 2.5                          | 1.6                                       |
| SW09           | 07/05/20        | SW09_5.5-5.7                 | Southern Bench                 | 13                     | <0.1                                         | 0.3                                             | <0.1       | <0.1                                             | <0.2                                               | 0.3                            | 0.3                          | 0.3                                       |
| SW10           | 07/05/20        | SW10_0.8-0.9                 | Emergency Sludge Overflow Pond | 24                     | 3.9                                          | 1.2                                             | 0.4        | <0.1                                             | <0.2                                               | 5.5                            | 5.1                          | 1.7                                       |
| SW10           | 07/05/20        | SW10_1.5-1.7                 | Emergency Sludge Overflow Pond | 54                     | 0.7                                          | <0.2                                            | <0.2       | <0.2                                             | < 0.4                                              | 0.7                            | 0.7                          | <0.2                                      |
| SW11           | 07/05/20        | SW11_0-0.1                   | Emergency Sludge Overflow Pond | 16                     | 0.6                                          | 1.2                                             | 0.1        | <0.1                                             | <0.2                                               | 1.9                            | 1.8                          | 1.3                                       |
| SW11           | 07/05/20        | SW11_2.0-2.3                 | Emergency Sludge Overflow Pond | 65*                    | 0.6*                                         | 0.4*                                            | <0.2       | <0.2                                             | <0.4                                               | 1.0*                           | 1.0*                         | 0.4*                                      |
| SW12           | 07/05/20        | SW12_0-0.2                   | Emergency Sludge Overflow Pond | 30                     | <0.2                                         | 1.2                                             | <0.2       | <0.2                                             | <0.4                                               | 1.2                            | 1.2                          | 1.2                                       |
| SW13           | 07/05/20        | SW13_0-0.2                   | Emergency Sludge Overflow Pond | 41                     | 1.6                                          | 5                                               | <0.2       | < 0.2                                            | < 0.4                                              | 6.6                            | 6.6                          | 5.0                                       |
| SW14           | 07/05/20        | SW14_0-0.2                   | Emergency Sludge Overflow Pond | 32                     | 0.3                                          | 2.1                                             | 0.2        | <0.2                                             | <0.4                                               | 2.6                            | 2.4                          | 2.3                                       |
| SW15           | 07/05/20        | SW15_0-0.1                   | Emergency Sludge Overflow Pond | 58                     | 1.8                                          | 29                                              | 0.3        | < 0.2                                            | 0.4                                                | 31                             | 31                           | 29                                        |
| SW16           | 07/05/20        | SW16_0-0.2                   | Sludge Drying Ponds            | 42                     | 0.5                                          | 2.6                                             | <0.2       | < 0.2                                            | <0.4                                               | 3.1                            | 3.1                          | 2.6                                       |
| SW17           | 07/05/20        | SW17_0-0.2                   | Sludge Drying Ponds            | 36                     | 1.0                                          | 1.3                                             | <0.2       | <0.2                                             | <0.4                                               | 2.4                            | 2.4                          | 1.3                                       |
| SW18           | 07/05/20        | SW18_0-0.2                   | Sludge Drying Ponds            | 33                     | 0.5                                          | 0.8                                             | <0.2       | <0.2                                             | <0.4                                               | 1.3                            | 1.3                          | 0.8                                       |
| SW19           | 07/05/20        | SW19_0-0.2                   | Sludge Drying Ponds            | 40                     | < 0.2                                        | 0.5                                             | < 0.2      | < 0.2                                            | < 0.4                                              | 0.5                            | 0.5                          | 0.5                                       |

SW19 07/05/20 SW19
\*Higher value adopted from QAQC results

|                         |                      |               |              |                                          |                                         |                                  | PFAS in S                                | Soils Short                                  |                     |                          |                                      |                                          |                                         |                                  | PFAS in A                                | SLP Short                                    |                     |                          |                                      |
|-------------------------|----------------------|---------------|--------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|---------------------|--------------------------|--------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|---------------------|--------------------------|--------------------------------------|
|                         |                      |               |              | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | PFAS (Sum of Total) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | PFAS (Sum of Total) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* |
| I=a.                    |                      |               |              | μg/kg                                    | μg/kg                                   | μg/kg                            | μg/kg                                    | μg/kg                                        | μg/kg               | μg/kg                    | μg/kg                                | μg/L                                     | μg/L                                    | μg/L                             | μg/L                                     | μg/L                                         | μg/L                | μg/L                     | μg/L                                 |
| EQL                     |                      |               |              | 0.1                                      | 0.1                                     | 0.1                              | 0.1                                      | 0.2                                          | 0.1                 | 0.1                      | 0.1                                  | 0.01                                     | 0.01                                    | 0.01                             | 0.01                                     | 0.02                                         | 0.01                | 0.01                     | 0.01                                 |
| PFAS NEMP 2020 Healt    |                      | 0)            | 20,000       | 20,000                                   | 50,000                                  |                                  |                                          |                                              | 20,000              |                          |                                      |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      |
| PFAS NEMP 2020 Interior |                      | •             |              |                                          | 1,000                                   | 10,000                           |                                          |                                              |                     |                          |                                      |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      |
| PFAS NEMP 2020 Interior |                      |               | 9            |                                          | 10                                      |                                  |                                          |                                              |                     |                          |                                      | _                                        | _                                       |                                  |                                          |                                              |                     | _                        |                                      |
| NHMRC 2019 Recreation   |                      | uidelines     |              |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      | 2                                        | 2                                       | 10                               |                                          |                                              |                     | 2                        |                                      |
| PFAS NEMP 2020 Healt    |                      |               |              |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      | 0.07                                     | 0.07                                    | 0.56                             |                                          |                                              |                     | 0.07                     |                                      |
| PFAS NEMP 2020 Fresh    | nwater - 99% protec  | ction level ( | 1)           |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      |                                          | 0.00023 §                               | 19                               |                                          |                                              |                     |                          |                                      |
| Catchment specific WQ0  | G - highly disturbed | systems (2    | 2)           |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      | 0.0046                                   | 0.0066                                  |                                  |                                          |                                              |                     |                          |                                      |
| Sample Type             | Location Code        | Date          | Field ID     |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      |
| Surface sludge          |                      | 08/05/20      | SS15         | 0.7                                      | 65                                      | 5.6                              | < 0.1                                    | < 0.2                                        | 71                  | 66                       | 71                                   | 0.03                                     | 0.59                                    | 0.21                             | < 0.01                                   | < 0.02                                       | 0.82                | 0.61                     | 0.80                                 |
|                         |                      | 08/05/20      | SS17         | 0.3                                      | 36                                      | 2.2                              | < 0.1                                    | < 0.2                                        | 39                  | 36                       | 38                                   | 0.01                                     | 0.32                                    | 0.09                             | < 0.01                                   | < 0.02                                       | 0.42                | 0.33                     | 0.41                                 |
|                         | SS27                 | 08/05/20      | SS27         | 0.4                                      | 18                                      | 0.1                              | < 0.1                                    | < 0.2                                        | 19                  | 18                       | 18                                   | <0.01 *                                  | 0.29                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.29                | 0.29                     | 0.29                                 |
| Waste stockpile sludge  | SW04                 | 06/05/20      | SW04_1.0-1.3 | 0.6                                      | 1.1                                     | < 0.2                            | < 0.2                                    | < 0.4                                        | 1.7                 | 1.7                      | 1.1                                  | 0.01                                     | 0.02                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.03                | 0.03                     | 0.02                                 |
|                         | SW09                 | 07/05/20      | SW09_0.1-0.2 | 0.9                                      | 1.6                                     | < 0.2                            | < 0.2                                    | < 0.4                                        | 2.5                 | 2.5                      | 1.6                                  | 0.02                                     | 0.02                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.04                | 0.04                     | 0.02                                 |
|                         | SW13                 | 07/05/20      | SW13         | 1.6                                      | 5.0                                     | < 0.2                            | < 0.2                                    | < 0.4                                        | 6.6                 | 6.6                      | 5.0                                  | 0.05                                     | 0.08                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.13                | 0.13                     | 0.08                                 |

<sup>(1) 99%</sup> species protection level - applies to bioaccumulation risk to slightly to moderately disturbed systems and to direct ecological risk to high conservation value systems.

<sup>(2)</sup> Catchment specific WQG for highly disturbed systems - 90th percentile of background concentrations in reference subcatchment - applies to Dawesley Creek.

<sup>§</sup> The PFAS NEMP Freshwater 99% species protection level for PFOS was not applied. It was replaced with the catchment specific WQG.

<sup>\*</sup> Concentration below the standard LOR (0.01 µg/L) may potentially exeed the catchment specific WQG.

|                         |                 |                      |                   |                                          |                                         | F                                | PFAS in Co                               | ncrete Sho                              | rt             |                          |                             |                                          |                                         |                                  | PFAS in A                                | SLP Short                             |                |                |                             |
|-------------------------|-----------------|----------------------|-------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|-----------------------------------------|----------------|--------------------------|-----------------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|---------------------------------------|----------------|----------------|-----------------------------|
|                         |                 |                      |                   | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane<br>sulfonic acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | : Fluorotelomer<br>fonic acid (8:2 FTS) | (Sum of Total) | Sum of PFHxS and<br>PFOS | f US EPA PFAS<br>; + PFOA)* | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane<br>sulfonic acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | Fluorotelomer<br>fonic acid (8:2 FTS) | (Sum of Total) | f PFHxS and    | f US EPA PFAS<br>; + PFOA)* |
|                         |                 |                      |                   |                                          |                                         |                                  |                                          | 8:2<br>sul                              | PFAS           |                          | Sum of<br>(PFOS             |                                          |                                         |                                  |                                          | 8:2<br>sul                            | PFAS           | Sum of<br>PFOS | Sum of<br>(PFOS             |
| FOI                     |                 |                      |                   | μg/kg                                    | μg/kg                                   | μg/kg                            | µg/kg                                    | μg/kg                                   | μg/kg          | μg/kg                    | μg/kg                       | µg/L                                     | µg/L                                    | μg/L                             | μg/L                                     | μg/L                                  | µg/L           | μg/L           | μg/L                        |
| EQL                     | olth Industrial | Commercial (IIII D)  |                   | 0.1                                      | 0.1                                     | 0.1                              | 0.1                                      | 0.2                                     | 0.1            | 0.1                      | 0.1                         | 0.01                                     | 0.01                                    | 0.01                             | 0.01                                     | 0.02                                  | 0.01           | 0.01           | 0.01                        |
| PFAS NEMP 2020 Hea      |                 | , ,                  |                   | 20,000                                   | 20,000                                  | 50,000                           |                                          |                                         |                | 20,000                   |                             |                                          |                                         |                                  |                                          |                                       |                |                |                             |
| PFAS NEMP 2020 Inte     |                 | -                    |                   |                                          | 1,000                                   | 10,000                           |                                          |                                         |                |                          |                             |                                          |                                         |                                  |                                          |                                       |                |                |                             |
| PFAS NEMP 2020 Inte     |                 |                      |                   |                                          | 10                                      |                                  |                                          |                                         |                |                          |                             | 0                                        | 0                                       | 40                               |                                          |                                       |                |                |                             |
| NHMRC 2019 Recreati     |                 |                      |                   |                                          |                                         |                                  |                                          |                                         |                |                          |                             | 2                                        | 2                                       | 10                               |                                          |                                       |                | 2              |                             |
| PFAS NEMP 2020 Hea      |                 |                      |                   |                                          |                                         |                                  |                                          |                                         |                |                          |                             | 0.07                                     | 0.07                                    | 0.56                             |                                          |                                       |                | 0.07           |                             |
| PFAS NEMP 2020 Free     | shwater - 99%   | protection level (1) |                   |                                          |                                         |                                  |                                          |                                         |                |                          |                             |                                          | 0.00023 §                               | 19                               |                                          |                                       |                |                |                             |
| Catchment specific WC   | QG - highly dis | sturbed systems (2)  |                   |                                          |                                         |                                  |                                          |                                         |                |                          |                             | 0.0046                                   | 0.0066                                  |                                  |                                          |                                       |                |                |                             |
| Sampling Location       | Date            | HPA1                 | HPA1              | 1.9                                      | 2                                       | 0.2                              | 0.1                                      | <0.2                                    | 4.2            | 3.9                      | 2.2                         | 0.087                                    | 0.071                                   | 0.0099                           | 0.011                                    | <0.002                                | 0.18           | 0.16           | 0.081                       |
| Hotpad A                | 47/44/00        | HPA2                 | HPA2              | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                    | <0.1           | < 0.1                    | <0.1                        | 0.002                                    | 0.003                                   | <0.001                           | 0.005                                    | <0.002                                | 0.01           | 0.004          | 0.003                       |
| (concrete slab)         | 17/11/20        | HPA3                 | HPA3              | <0.1                                     | 0.4                                     | <0.1                             | <0.2                                     | <0.2                                    | 0.4            | 0.4                      | 0.4                         | 0.003                                    | 0.011                                   | < 0.001                          | 0.005                                    | < 0.002                               | 0.019          | 0.015          | 0.011                       |
| ,                       |                 | HPA4                 | HPA4              | <0.1                                     | <0.1                                    | <0.1                             | <0.2                                     | <0.2                                    | <0.1           | < 0.1                    | <0.1                        | 0.002                                    | 0.002                                   | <0.001                           | 0.006                                    | <0.002                                | 0.01           | 0.004          | 0.002                       |
|                         |                 | HPA5                 | HPA5              | <0.1                                     | 0.1                                     | <0.1                             | 0.9                                      | <0.2                                    | 1              | 0.1                      | 0.1                         | 0.005                                    | 0.005                                   | 0.004                            | 0.063                                    | 0.005                                 | 0.082          | 0.010          | 0.008                       |
|                         |                 | HPB1                 | HPB1              | 44                                       | 140                                     | 4.8                              | 1.6                                      | 2                                       | 190            | 180                      | 140                         | 2.1                                      | 5.0                                     | 0.18                             | 0.058                                    | 0.039                                 | 7.3            | 7.0            | 5.1                         |
| Hotpad B                | 24/44/20        | HPB2                 | HPB2              | 71                                       | 190                                     | 12                               | 1.1                                      | 2                                       | 280            | 260                      | 200                         | 3.7                                      | 3.8                                     | 0.32                             | 0.032                                    | 0.02                                  | 7.9            | 7.5            | 4.1                         |
| (concrete brick pavers) | 24/11/20        | HPB3                 | HPB3              | 55                                       | 150                                     | 7.6                              | 2.1                                      |                                         | 220            | 200                      | 160                         | 2.6                                      | 4.5                                     | 0.23                             | 0.056                                    | 0.023                                 | 7.4            | 7.1            | 4.7                         |
|                         |                 | HPB4<br>HPB5         | HPB4<br>HPB5      | 23<br>0.2                                | 65<br>3.7                               | 2.7                              | 7.3<br>3.8                               | 2                                       | 100            | 88                       | 68<br>3.9                   | 0.90                                     | 1.6<br>0.064                            | 0.090<br>0.006                   | 0.21                                     | 0.02                                  | 2.8            | 2.5            | 1.7                         |
|                         |                 | Tank1/01             | 12516828/Tank1/01 |                                          | 18                                      | 0.1                              | 2.2                                      | 0.8                                     | 9.4<br>23      | 4<br>20                  | 18                          | 0.011                                    | 0.064                                   | 0.006                            | 0.11<br>0.018                            | 0.02<br>0.01                          | 0.2<br>0.23    | 0.075<br>0.19  | 0.069<br>0.16               |
| Tank 1                  | 24/11/20        | Tank 1/01            | 12516828/Tank1/01 | 1.9<br>2                                 | 9.3                                     | 0.3                              | 2.2                                      | 2                                       | 23<br>15       | 11                       | 9.7                         | 0.032                                    | 0.16                                    | 0.007                            |                                          | 0.01                                  | 0.23           | 0.19           | 0.16                        |
| Talik I                 | 24/11/20        | Tank1/03             | 12516828/Tank1/03 | 0.7                                      | 0.5                                     | <0.1                             | <0.1                                     | <0.2                                    | 1.2            | 1.2                      | 0.5                         | 0.024                                    | 0.069                                   | 0.005                            | 0.007<br>0.025                           | 0.01                                  | 0.12           | 0.093          | 0.074                       |
|                         | 08/07/20        |                      | <u> </u>          |                                          |                                         | 2.8                              |                                          |                                         |                | 1                        |                             |                                          |                                         | 0.009                            |                                          |                                       | 0.27           |                |                             |
|                         | 06/07/20        | Tank 4 Concrete      | Tank 4 Concrete   | 11                                       | 59<br>28                                |                                  | 4.0<br>1.3                               | 6.0                                     | 82<br>35       | 70                       | 62                          | 0.20                                     | 0.61                                    | 1                                | 0.03                                     | <0.02                                 |                | 0.81           | 0.65                        |
| Tank 4                  | 24/11/20        | Tank4/01             | 12516828/Tank4/01 | 3.4                                      |                                         | 0.8                              |                                          | 2.5                                     |                | 32                       | 29                          | 0.75                                     | 0.56                                    | 0.065                            | 0.057                                    | 0.083                                 | 1.5            | 1.3            | 0.63                        |
|                         | 24/11/20        | Tank4/02             | 12516828/Tank4/02 | 2.5                                      | 38                                      | 0.7                              | 1.1                                      | 2.5                                     | 45             | 41                       | 39                          | 0.064                                    | 0.66                                    | 0.015                            | 0.026                                    | 0.027                                 | 0.79           | 0.72           | 0.68                        |
| Tonk F                  | 00/07/20        | Tank4/03             | 12516828/Tank4/03 | <0.1                                     | 0.2                                     | <0.1                             | <0.1                                     | <0.2                                    | 0.2            | 0.2                      | 0.2                         | 0.024                                    | 0.13                                    | 0.006                            | 0.005                                    | 0.01                                  | 0.17           | 0.15           | 0.13                        |
| Tank 5                  | 08/07/20        |                      | Tank 5 Concrete   | <0.1                                     | 0.7                                     | <0.1                             | 1.2                                      | <0.2                                    | 1.9            | 0.7                      | 0.7                         | <0.01 *                                  | 0.01                                    | < 0.01                           | 0.01                                     | <0.02                                 | 0.03           | 0.01           | 0.01                        |
| Tonk 7                  | 10/11/00        | Tank7/01             | 12516828/Tank7/01 | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                    | <0.1           | <0.1                     | <0.1                        | <0.001                                   | <0.001                                  | <0.001                           | <0.001                                   | <0.002                                | <0.001         | <0.001         | <0.001                      |
| Tank 7                  | 18/11/20        | Tank7/02             | 12516828/Tank7/02 | <0.1                                     | <0.1                                    | <0.1                             | <0.1                                     | <0.2                                    | <0.1           | <0.1                     | <0.1                        | < 0.001                                  | <0.001                                  | <0.001                           | <0.001                                   | < 0.002                               | <0.001         | <0.001         | <0.001                      |
|                         |                 | Tank7/03             | 12516828/Tank7/03 | < 0.1                                    | < 0.1                                   | < 0.1                            | < 0.1                                    | < 0.2                                   | < 0.1          | < 0.1                    | < 0.1                       | < 0.001                                  | < 0.001                                 | < 0.001                          | < 0.001                                  | < 0.001                               | < 0.001        | < 0.001        | < 0.001                     |

<sup>(1) 99%</sup> species protection level - applies to bioaccumulation risk to slightly to moderately disturbed systems and to direct ecological risk to high conservation value systems.

<sup>(2)</sup> Catchment specific WQG for highly disturbed systems - 90th percentile of background concentrations in reference subcatchment - applies to Dawesley Creek.

<sup>§</sup> The PFAS NEMP Freshwater 99% species protection level for PFOS was not applied. It was replaced with the catchment specific WQG.

<sup>\*</sup>Concentration below the standard LOR (0.01 µg/L) may potentially exeed the catchment specific WQG.

|                   |              |                 |                                 |                                              |                                            |               | PFAS in W                                    | aters Short                                    |                        |                            |                                          |
|-------------------|--------------|-----------------|---------------------------------|----------------------------------------------|--------------------------------------------|---------------|----------------------------------------------|------------------------------------------------|------------------------|----------------------------|------------------------------------------|
|                   |              |                 |                                 | E Perfluorohexane<br>  Sulfonic acid (PFHxS) | E Perfluorooctane sulfonic<br>Facid (PFOS) | Б<br>Б (PFOA) | E 6:2 Fluorotelomer<br>→ Sulfonate (6:2 FTS) | B:2 Fluorotelomer<br>  sulfonic acid (8:2 FTS) | ති PFAS (Sum of Total) | 5 Sum of PFHxS and<br>PFOS | 도 Sum of US EPA PFAS<br>庁 (PFOS + PFOA)* |
| EQL               |              |                 |                                 | 0.0002                                       | 0.0002                                     | 0.0002        | 0.0004                                       | 0.0004                                         | 0.0002                 | 0.0002                     | 0.0002                                   |
| NHMRC 2019 Red    | reational Wa | iter PFAS Gu    | idelines                        | 2                                            | 2                                          | 10            |                                              | 0.000                                          | 0.000                  | 2                          | 0.000                                    |
| PFAS NEMP 2020    | Health Drink | king Water      |                                 | 0.07                                         | 0.07                                       | 0.56          |                                              |                                                |                        | 0.07                       |                                          |
| PFAS NEMP 2020    | ) Freshwater | - 99% protect   | ion level (1)                   |                                              | 0.00023 §                                  | 19            |                                              |                                                |                        |                            |                                          |
| Catchment specifi | c WQG - high | nly disturbed s | systems (2)                     | 0.0046                                       | 0.0066                                     |               |                                              |                                                |                        |                            |                                          |
| Location Code     | Date         | Field ID        | Location Description            |                                              |                                            |               |                                              |                                                |                        |                            |                                          |
| WW01              | 08/07/20     | WW01            | Foot of TSF dam, east of ASP #  | 0.0009                                       | <0.0002                                    | 0.0003        | < 0.0004                                     | <0.0004                                        | 0.001                  | 0.0009                     | 0.0003                                   |
| WW02              | 08/07/20     | WW02            | Foot of TSF dam, east of ASP #  | 0.0025*                                      | 0.0003                                     | 0.001         | < 0.0004                                     | <0.0004                                        | 0.0037*                | 0.0028*                    | 0.001                                    |
| WW03              | 08/07/20     | WW03            | Foot of South WRD, west of DC ^ | 0.001                                        | 0.0071                                     | 0.0004        | <0.0004                                      | <0.0004                                        | 0.0088                 | 0.0085                     | 0.0075                                   |
| WW04              | 08/07/20     | WW04            | Foot of South WRD, west of DC ^ | 0.028                                        | 0.12                                       | 0.037         | <0.0004                                      | 0.0005                                         | 0.19                   | 0.15                       | 0.16                                     |
| WW05              | 08/07/20     | WW05            | North Cut, west of DC ^         | 0.0049                                       | 0.0004                                     | 0.0039        | <0.0004                                      | <0.0004                                        | 0.0091                 | 0.0053                     | 0.0043                                   |
| WW06              | 08/07/20     | WW06            | North Cut, west of DC ^         | 0.0078                                       | 0.035                                      | 0.0094        | <0.0004                                      | <0.0004                                        | 0.052                  | 0.043                      | 0.045                                    |
| WW07              | 08/07/20     | WW07            | South Cut, west of DC ^         | 0.088                                        | 0.023                                      | 0.083         | < 0.0004                                     | <0.0004                                        | 0.19                   | 0.11                       | 0.11                                     |

<sup>(1) 99%</sup> species protection level - applies to bioaccumulation risk to slightly to moderately disturbed systems and to direct ecological risk to high conservation value systems.

<sup>(2)</sup> Catchment specific WQG for highly disturbed systems - 90th percentile of background concentrations in reference subcatchment - applies to Dawesley Creek.

<sup>§</sup> The PFAS NEMP Freshwater 99% species protection level for PFOS was not applied. It was replaced with the catchment specific WQG.

<sup>&</sup>lt;sup>#</sup> At the foot of the dam of the former tailings storage facility to the east of the acid seepage ponds and east of Dawesley Creek.

<sup>\*</sup> Higher value adopted from QA/QC analysis

<sup>^</sup> DC - Dawesley Creek

|            |                                    | Fie                                                       | ld Paramet                             | ers           |              |                     |
|------------|------------------------------------|-----------------------------------------------------------|----------------------------------------|---------------|--------------|---------------------|
| pH (Field) | Electrical conductivity<br>(Field) | Total Dissolved Solids<br>(TDS) (Calculated) <sup>#</sup> | Dissolved Oxygen<br>(Field) (filtered) | Redox (Field) | Redox (SHE)* | Temperature (Field) |
| nH Units   | uS/cm                              | ma/l                                                      | ma/l                                   | mV            | mⅥ           | °C                  |

|                   |                      |               |                  |                                                                       | pri Onits    | μο/σπ           | IIIg/L         | I IIIg/L      | IIIV         | IIIV       |            |
|-------------------|----------------------|---------------|------------------|-----------------------------------------------------------------------|--------------|-----------------|----------------|---------------|--------------|------------|------------|
| Location Code     | Date                 | Location ID   | Field ID         | Location Description                                                  |              |                 |                |               |              |            |            |
| DIV01             | 18/05/20             | DIV01         | 1                | Underground diversion drain at CFS site                               | 7.52         | 725             | 471            | 7.26          | 224          | 423        | 11.3       |
| DC-UP01           | 23/07/20             | DC-UP01       | DC-UP01          | Dawesley Ck - up gradient CFS site                                    | 7.96         | 1,301           | 846            | 8.78          | 188          | 387        | 10.3       |
| DC-UP02           | 23/07/20             | DC-UP02       |                  | Dawesley Ck - up gradient CFS site                                    | 7.96         | 1,340           | 871            | 9.98          | 182          | 381        | 10.7       |
| Creek 4           | 08/05/20             | Creek 4       | Creek 4          | Dawesley Ck - adjacent CFS site                                       | 5.29         | 7,570           | 4,921          | 3.55          | 361          | 560        | 15.4       |
| Creek 5           | 08/05/20             | Creek 5       | Creek 5          | Dawesley Ck - adjacent CFS site                                       | 4.59         | 6,360           | 4,134          | 6.15          | 373          | 572        | 13.3       |
| Creek 6           | 08/05/20             | Creek 6       | Creek 6          | Dawesley Ck - adjacent CFS site                                       | 5.25         | 7,915           | 5,145          | 2.55          | 394          | 593        | 13.6       |
| DC01              | 12/02/20             | DC01          | DC01             | Dawesley Ck - adjacent CF3 site  Dawesley Ck - down gradient CFS site | 4.73         | 3,590           | 2,334          | 5.20          | 324          | 523        | 19.2       |
| BV01              | 12/02/20             | BV01          | BV01             | Dawesley Ck - down gradient CFS site                                  | 7.19         | 3,800           | 2,470          | 6.04          | 195          | 394        | 20.4       |
| DC02              | 07/05/20             | DC02          | DC02             | , j                                                                   | 8.57         | 1,170           | 761            | 8.57          | 133          | 212        | 14.8       |
| DC02A             | 17/08/20             | DC02<br>DC02A | DC02A            | Dawesley Ck - down gradient CFS site                                  | 7.63         | 2,843           | 1,848          | 8.97          | 36           | 235        | 10.2       |
| DC02A             | 08/05/20             | DC02A         | DC02A            | Dawesley Ck - down gradient CFS site                                  | 9.44         | 1,492           | 970            | 12.82         | 0            | 199        | 14.4       |
| DC03              | 08/05/20             | DC03          | DC03             | Dawesley Ck - down gradient CFS site                                  | 9.47         | 1,492           | 787            | 9.99          | -2           | 197        | 14.4       |
| DC04              | 08/05/20             | DC04<br>DC05  | DC04             | Dawesley Ck - down gradient CFS site                                  | 7.85         | 1,792           | 1,165          | 7.49          | - <u>-</u> 2 | 203        | 12.4       |
| DC05              |                      |               |                  | Dawesley Ck - down gradient CFS site                                  |              |                 |                | 8.32          | 247          | 446        | 8.4        |
| DC06<br>DC06A     | 18/05/20             | DC06          | DC06<br>DC06A    | Dawesley Ck - down gradient CFS site                                  | 7.34         | 2,587           | 1,682          |               |              | 446        |            |
|                   | 18/05/20             | DC06A         |                  | Dawesley Ck - down gradient CFS site                                  | 7.33         | 2,995           | 1,947          | 8.20          | 230          |            | 8.5        |
| DC06B             | 18/05/20             | DC06B         | DC06B            | Dawesley Ck - down gradient CFS site                                  | 7.39         | 2,559           | 1,663          | 8.58          | 226          | 425        | 9.1        |
| DC07              | 08/05/20             | DC07          | DC07             | Dawesley Ck - down gradient CFS site                                  | 8.65         | 1,979           | 1,286          | 7.03          | 4<br>170 A   | 203        | 12.8       |
| DC08              | 09/06/20             | DC08          | DC08             | Dawesley Ck - down gradient CFS site                                  | 7.64 ^       | 1,411 ^         | 917 ^          | 17.95 ^       | 170 ^        | 369 ^      | 2.7 ^      |
| DC09              | 09/06/20             | DC09          | DC09             | Dawesley Ck - down gradient CFS site                                  | 7.28         | 2,456           | 1,596          | 9.78          | 119          | 318        | 8.3        |
| DC10              | 09/06/20             | DC10          | DC10             | Dawesley Ck - down gradient CFS site                                  | 7.46         | 2,404           | 1,563          | 9.99          | 125          | 324        | 8.2        |
| DC11              | 09/06/20             | DC11          | +                | Dawesley Ck - down gradient CFS site                                  | 7.61         | 2,411           | 1,567          | 10.00         | 145          | 344        | 9.3        |
| DC13              | 09/06/20             | DC13          | DC13             | Dawesley Ck - down gradient CFS site                                  | 7.74         | 1,960           | 1,274          | 6.67          | 120          | 319        | 10.6       |
| DC14              | 09/06/20             | DC14          | DC14             | Dawesley Ck - down gradient CFS site                                  | 8.31         | 1,982           | 1,288          | 9.31          | 199          | 398        | 10.2       |
| DC15              | 09/06/20             | DC15          | +                | Dawesley Ck - down gradient CFS site                                  | 8.23         | 1,658           | 1,078          | 10.91         | 180          | 379        | 10.6       |
| DC16              | 23/07/20             | DC16          | DC 16            | Dawesley Ck - down gradient CFS site                                  | 7.41         | 2,202           | 1,431          | 8.91          | 231          | 430        | 9.3        |
| DC17              | 23/07/20             | DC17          | DC 17            | Dawesley Ck - down gradient CFS site                                  | 7.54         | 2,166           | 1,408          | 6.97          | 237          | 436        | 10.0       |
| DC17A             | 10/08/20             | DC17A         | DC17A            | Mt Barker Ck - down gradient CFS site                                 | 8.04         | 1,297           | 843            | 8.78          | -160         | 39         | 8.9        |
| DC18              | 23/07/20             | DC18          | DC 18            | Bremer River - down gradient CFS site                                 | 7.82         | 1,917           | 1,246          | 6.88          | 223          | 422        | 11.1       |
| DC19              | 23/07/20             | DC19          | DC 19            | Bremer River - down gradient CFS site                                 | 7.73         | 1,407           | 915            | 9.03          | 215          | 414        | 10.7       |
| BR01              | 23/07/20             | BR01          | BR01             | Bremer River - background **                                          | 9.21         | 2,975           | 1,934          | 12.88         | 220          | 419        | 16.2       |
| BR02              | 23/07/20             | BR02          |                  | Bremer River - background **                                          | 8.06         | 6,820           | 4,433          | 5.47          | 236          | 435        | 11.5       |
|                   | 11/09/20             | BR02_A        |                  | Bremer River - background **                                          | 7.57         | 5,642           | 3,667          | 8.42          | -137         | 62         | 13.6       |
|                   | 17/09/20             |               | BR02_2A          | Bremer River - background **                                          | 8.08         | 7,002           | 4,551          | 3.87          | -10          | 189        | 13.8       |
|                   | 11/09/20             | BR02_B        |                  | Bremer River - background **                                          | 7.47         | 5,503           | 3,577          | 5.63          | -181         | 18         | 12.8       |
|                   | 17/09/20             |               |                  | Bremer River - background **                                          | 7.87         | 8,844           | 5,749          | 1.10          | -46          | 153        | 13.7       |
|                   | 11/09/20             | BR02_C        |                  | Bremer River - background **                                          | 7.47         | 5,457           | 3,547          | 9.24          | -157         | 42         | 12.5       |
| DDOO              | 17/09/20             | DD00 A        |                  | Bremer River - background **                                          | 8.01         | 6,923           | 4,500          | 4.97          | -50          | 149        | 13.6       |
| BR03              | 11/09/20             | BR03_A        |                  | Bremer River - background **                                          | 7.84         | 6,283           | 4,084          | 8.29          | -73          | 126        | 14.8       |
|                   | 17/09/20             | DD00 D        | BR03_2A          | Bremer River - background **                                          | 8.75         | 9,402           | 6,111          | 8.21          | 72           | 271        | 16.9       |
|                   | 11/09/20             | BR03_B        | BR03_1B          | Bremer River - background **                                          | 7.80         | 6,265           | 4,072          | 11.43         | -100         | 99         | 14.8       |
|                   | 17/09/20             | DD02 C        | BR03_2B          | Bremer River - background **                                          | 8.65         | 9,953           | 6,469          | 8.86          | 76           | 275        | 17.2       |
|                   | 11/09/20             | BR03_C        |                  | Bremer River - background **                                          | 7.68         | 6,213           | 4,038          | 9.40          | -66<br>-74   | 134        | 14.7       |
| MBC01             | 17/09/20<br>23/07/20 | MBC01         | BR03_2C<br>MBC01 | Bremer River - background **                                          | 8.47<br>8.04 | 15,330<br>1,966 | 9,965<br>1,278 | 2.03<br>10.89 | 74<br>234    | 273<br>433 | 19<br>11.6 |
| INIDCUT           | 11/09/20             | MBC01_A       |                  | Mt Barker Ck - background ^^ Mt Barker Ck - background ^^             | 7.92         | 1,474           | 958            | 9.46          | -69          | 130        | 16.8       |
|                   | 17/09/20             | 10001_7       |                  | Mt Barker Ck - background ^^                                          | 8.29         | 1,546           | 1,005          | 8.42          | 108          | 307        | 15.5       |
|                   | 11/09/20             | MBC01_B       |                  | Mt Barker Ck - background ^^                                          | 7.86         | 1,472           | 957            | 10.40         | -76          | 123        | 16.7       |
|                   | 17/09/20             | 1 -           |                  | Mt Barker Ck - background ^^                                          | 8.80         | 1,511           | 982            | 10.30         | 98           | 297        | 15.5       |
|                   | 11/09/20             | MBC01_C       |                  | Mt Barker Ck - background ^^                                          | 7.77         | 1,474           | 958            | 10.47         | -87          | 112        | 16.7       |
|                   | 17/09/20             | 1 -           |                  | Mt Barker Ck - background ^^                                          | 8.34         | 1,548           | 1,006          | 7.84          | 16           | 215        | 15.6       |
| MBC02             | 23/07/20             | MBC02         |                  | Mt Barker Ck - background ^^                                          | 7.88         | 1,735           | 1,128          | 12.15         | 190          | 389        | 9.2        |
|                   | 11/09/20             | MBC02_A       |                  | Mt Barker Ck - background ^^                                          | 7.76         | 1,224           | 796            | 11.10         | -134         | 65         | 15.8       |
|                   | 17/09/20             |               | MBC02_2A         | Mt Barker Ck - background ^^                                          | 8.07         | 1,150           | 748            | 9.30          | 126          | 325        | 14.1       |
|                   | 11/09/20             | MBC02_B       |                  | Mt Barker Ck - background ^^                                          | 7.80         | 1,225           | 796            | 11.19         | -126         | 73         | 15.8       |
|                   | 17/09/20             | 1             |                  | Mt Barker Ck - background ^^                                          | 8.14         | 1,150           | 748            | 9.71          | 115          | 314        | 14.7       |
|                   | 11/09/20             | MBC02_C       |                  | Mt Barker Ck - background ^^                                          | 7.64         | 1,209           | 786            | 11.59         | -121         | 78         | 15.3       |
|                   | 17/09/20             | 1_            |                  | Mt Barker Ck - background ^^                                          | 8.06         | 1,150           | 748            | 7.83          | 111          | 310        | 14.1       |
| NC01              | 23/07/20             | NC01          |                  | Nairne Ck - background <sup>##</sup>                                  | 8.45         | 1,342           | 872            | 10.55         | 224          | 423        | 12.4       |
| NC02              | 23/07/20             | NC02          | NC02             | Nairne Ck - background ##                                             | 8.03         | 1,187           | 772            | 10.36         | 229          | 428        | 11.1       |
| # TDC values were | · · - •              | 1             | _                | J                                                                     | -1005        | ,               | ·              |               |              |            |            |

<sup>#</sup> TDS values were calculated by multiplying the electrical conductivity values with a conversion factor of 0.65

<sup>\*</sup> Redox potential relative to the standard hydrogen electrode (SHE). Redox potential (SHE) = field redox potential (Ag/AgCl electrode with saturated KCl solution) + 199 mV

WQM reading taken from sample on ice days later, results could be inaccurate. Not included in minimum or maximum values.

<sup>\*\*</sup> Bremer River up gradient of confluence with Mt Barker Creek (between DC17A and DC18)

<sup>^^</sup> Mt Barker Creek up gradient of confluence with Dawesley Creek (between DC17 and DC17A)

<sup>\*\*\*</sup> Nairne Creek up gradient of confluence with Dawesley Creek (between DC11 and DC13)

DSI

|                    |                                    |                | ſ                                                         |                                          |                                         |                                  | PFAS in W                          | aters Short                  |                          |                         |                 |                    |                                    | PFAS -                            | Perfluoroa                         | alkyl Carbo                      | xylic Acids                      | (PFCA)                               |                                     |                                       |
|--------------------|------------------------------------|----------------|-----------------------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------|------------------------------|--------------------------|-------------------------|-----------------|--------------------|------------------------------------|-----------------------------------|------------------------------------|----------------------------------|----------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|
|                    |                                    |                | •                                                         | U                                        |                                         |                                  | ,                                  |                              |                          |                         |                 |                    |                                    |                                   |                                    |                                  | ., / 10100                       | <u> </u>                             | <u>.</u>                            | 70                                    |
|                    |                                    |                |                                                           | Perfluorohexane sulfonic<br>acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | Fluorotelomer<br>Ifonate (6:2 FTS) | orotelomer<br>acid (8:2 FTS) | Sum of PFHxS and<br>PFOS | US EPA PFAS<br>+ PFOA)* | (Sum of Total)  | obutanoic acid     | Perfluoropentanoic acid<br>(PFPeA) | Perfluorohexanoic acid<br>(PFHxA) | Perfluoroheptanoic acid<br>(PFHpA) | Perfluorononanoic acid<br>(PFNA) | odecanoic acid                   | Perfluoroundecanoic acid<br>(PFUnDA) | Perfluorododecanoic aci<br>(PFDoDA) | Perfluorotridecanoic acid<br>(PFTrDA) |
|                    |                                    |                |                                                           | Derfluor<br>→ acid (PF                   | Derfluor<br>  Perfluor<br>  Acid (PF    | Perfluor<br>7 (PFOA)             | 6:2 Fluo                           | 6:2 Fluor<br>7∕ sulfonic     | hg/r                     | Jg Sum of I             | hg/r            | Perfluor<br>(PFBA) | Perfluor                           | Perfluor                          | Perfluor<br>P (PFHpA               | E Perfluor                       | Perfluorode<br>[주<br> <br>  PFDA | E Perfluor                           | Perfluor<br>P (PFDoD                | Derfluor<br> >  (PFTrD/               |
| EQL                |                                    |                |                                                           | 0.01                                     | 0.01                                    | 0.01                             | 0.01                               | 0.01                         | 0.01                     | 0.01                    | 0.01            | 0.002              | 0.002                              | 0.0004                            | 0.0004                             | 0.001                            | 0.002                            | 0.002                                | 0.002                               | 0.002                                 |
|                    | ecreational Water PFAS             | Guidelines     |                                                           | 2                                        | 2                                       | 10                               | 0.01                               | 0.01                         | 2                        | 0.01                    | 0.01            | 0.002              | 0.002                              | 0.0004                            | 0.0004                             | 0.001                            | 0.002                            | 0.002                                | 0.002                               | 0.002                                 |
|                    | 20 Health Drinking Water           |                |                                                           | 0.07                                     | 0.07                                    | 0.56                             |                                    |                              | 0.07                     |                         |                 |                    |                                    |                                   |                                    |                                  |                                  |                                      |                                     |                                       |
|                    | 20 Freshwater - 99% prot           |                |                                                           |                                          | 0.00023 §                               | 19                               |                                    |                              |                          |                         |                 |                    |                                    |                                   |                                    |                                  |                                  |                                      |                                     |                                       |
|                    | cific WQG - highly disturbe        |                |                                                           | 0.0046                                   | 0.0066                                  | .0                               |                                    |                              |                          |                         |                 |                    |                                    |                                   |                                    |                                  |                                  |                                      |                                     |                                       |
|                    | cific WQG - slightly to mod        |                | ed systems (3)                                            | 0.0044                                   | 0.0048                                  |                                  |                                    |                              |                          |                         |                 |                    |                                    |                                   |                                    |                                  |                                  |                                      |                                     |                                       |
|                    |                                    | -              |                                                           |                                          | ·!                                      | !                                | !                                  | !                            | !                        | !                       |                 |                    |                                    |                                   |                                    |                                  |                                  |                                      |                                     |                                       |
| Location Cod       |                                    | ID Field ID    | Location Description                                      | 0.00                                     | 0.40                                    | 0.05                             | 40.04 #                            | -0.04#                       | 4.0                      | 0.50                    | 4.0             | 1                  |                                    |                                   |                                    | 1                                |                                  |                                      |                                     |                                       |
| ASP<br>ATP         | 02/10/19 ASP<br>02/10/19 ATP       | ASP_1<br>ATP 1 | Acid seepage pond Acid treatment plant discharge channel  | 0.68                                     | 0.48<br>0.28                            | 0.05<br>0.03                     | <0.01 <sup>#</sup> <0.01           | <0.01 <sup>#</sup> <0.01     | 1.2<br>0.72              | 0.52<br>0.32            | 1.8<br>1.2      | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
|                    | +                                  | DD01           |                                                           | <0.01 #                                  | <0.01 #                                 |                                  |                                    |                              |                          |                         | +               | -                  | -                                  |                                   | -                                  |                                  |                                  | -                                    | -                                   |                                       |
| DIV01<br>DC-UP01 ^ | 18/05/20 DIV01<br>23/07/20 DC-UP01 | DC-UP01        | UG diversion drain at CFS site  Dawesley Ck - up gradient | 0.0024                                   | 0.0021                                  | <0.01<br>0.0023                  | <0.01<br><0.0004                   | <0.01                        | <0.01<br>0.0046          | <0.01<br>0.0044         | <0.01<br>0.0069 | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC-UP02 ^          | 23/07/20 DC-UP02                   | DC-UP02        | Dawesley Ck - up gradient  Dawesley Ck - up gradient      | 0.0024                                   | 0.0021                                  | 0.0025                           | <0.0004                            | <0.0004                      | 0.0040                   | 0.0044                  | 0.0069          | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| PB 1               | 02/10/19 PB 1                      | PB 1           | Dawesley Ck - up gradient                                 | <0.0022                                  | <0.01                                   | <0.01                            | <0.01                              | <0.01                        | <0.01                    | <0.01                   | <0.01           | _                  | _                                  |                                   |                                    | _                                | _                                | _                                    | _                                   | _                                     |
| PB 2               | 02/10/19 PB 2                      | PB 2           | Dawesley Ck - up gradient                                 | 0.04                                     | <0.01                                   | <0.01                            | <0.01                              | <0.01                        | 0.04                     | <0.01                   | 0.38            | -                  | _                                  |                                   |                                    | _                                | _                                | _                                    | -                                   |                                       |
| Creek 1            | 02/10/19 FB_2<br>02/10/19 Creek 1  | CREEK 1        | Dawesley Ck - adjacent CFS site                           | 0.04                                     | <0.01                                   | <0.01                            | <0.01                              | <0.01                        | 0.04                     | <0.01                   | 0.38            | -                  | _                                  | -                                 | -                                  | _                                | -                                | _                                    | -                                   |                                       |
| Creek 4            | 06/05/20 Creek 4                   | Creek 4        | Dawesley Ck - adjacent CFS site                           | 0.00                                     | 0.12                                    | 0.01                             | <0.01                              | <0.01                        | 0.00                     | 0.13                    | 0.26            | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| Creek 2            | 02/10/19 Creek 2                   | CREEK 2        | Dawesley Ck - adjacent CFS site                           | 1.6                                      | 0.12                                    | 0.01                             | <0.01                              | <0.02                        | 1.8                      | 0.13                    | 3.4             | -                  | -                                  | -                                 |                                    | -                                | _                                | -                                    | -                                   |                                       |
| Creek 5            | 06/05/20 Creek 5                   | Creek 5        | Dawesley Ck - adjacent CFS site                           | 2.2                                      | 0.10                                    | 0.03                             | <0.01                              | <0.01                        | 3.1                      | 1.2                     | 3.4             | -                  | _                                  | -                                 |                                    | _                                | _                                |                                      | _                                   |                                       |
| Creek 6            | 06/05/20 Creek 6                   | Creek 6        | Dawesley Ck - adjacent CFS site                           | 2                                        | 0.66                                    | 0.14                             | <0.01                              | <0.02                        | 2.6                      | 0.8                     | 2.8             | _                  | _                                  | -                                 | _                                  | -                                | _                                | _                                    | -                                   | _                                     |
| Creek 3            | 02/10/19 Creek 3                   | CREEK 3        | Dawesley Ck - adjacent CFS site                           | 2.4                                      | 6.5                                     | 0.23                             | 0.02                               | <0.01                        | 8.9                      | 6.7                     | 11              | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| Pond 4             | 02/10/19 Pond 4                    | POND 4         | Old Dawesley Ck alignment                                 | 1.4                                      | 1.4                                     | 0.11                             | < 0.01                             | < 0.01                       | 2.8                      | 1.5                     | 3.8             | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| Pond_0             | 02/10/19 Pond_0                    | POND_0         | Old Dawesley Ck alignment                                 | 0.14                                     | 0.14                                    | 0.01                             | < 0.01                             | < 0.01                       | 0.28                     | 0.15                    | 0.38            | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC01               | 11/02/20 DC01                      | DC01w          | Dawesley Ck - down gradient                               | 0.16                                     | 0.099                                   | 0.02                             | < 0.01                             | < 0.01                       | 0.26                     | 0.12                    | 0.28            | 0.04               | 0.05                               | 0.15                              | 0.02                               | < 0.01                           | < 0.02                           | < 0.02                               | < 0.05                              | < 0.1                                 |
| BV01               | 11/02/20 BV01                      | BV01w          | Dawesley Ck - down gradient                               | 0.22                                     | 0.11                                    | 0.02                             | < 0.01                             | < 0.01                       | 0.33                     | 0.13                    | 0.35            | -                  | -                                  | •                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC02               | 08/05/20 DC02                      | DC02           | Dawesley Ck - down gradient                               | 0.01                                     | 0.03                                    | <0.01                            | < 0.01                             | < 0.02                       | 0.04                     | 0.03                    | 0.04            | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC02A ^            | 17/08/20 DC02A                     | DC02A          | Dawesley Ck - down gradient                               | 0.07                                     | 0.06                                    | 0.01                             | <0.0004                            | <0.0004                      | 0.13                     | 0.067                   | 0.14            | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC03               | 08/05/20 DC03                      | DC03           | Dawesley Ck - down gradient                               | 0.02                                     | 0.05                                    | <0.01                            | <0.01                              | <0.02                        | 0.07                     | 0.05                    | 0.07            | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC04               | 08/05/20 DC04                      | DC04           | Dawesley Ck - down gradient                               | 0.02                                     | 0.06                                    | <0.02                            | <0.02                              | <0.02                        | 0.08                     | 0.06                    | 0.08            | -                  |                                    | -                                 |                                    | -                                | -                                | -                                    | -                                   | -                                     |
| DC05               | 08/05/20 DC05                      | DC05           | Dawesley Ck - down gradient                               | 2.23 *                                   | 0.98 *                                  | 0.19 *                           | <0.05 *                            | <0.05 *                      | 3.21 *                   | 1.17 *                  | 3.4 *           | <0.1*              | 0.12*                              | 0.35*                             | 0.12*                              | -                                | -                                | -                                    | -                                   | -                                     |
| DC06<br>DC06A      | 18/05/20 DC06<br>18/05/20 DC06A    | DC06<br>DC06A  | Dawesley Ck - down gradient  Dawesley Ck - down gradient  | 0.08 *                                   | 0.17<br>0.09                            | <0.02<br><0.02                   | <0.02<br><0.02                     | <0.02<br><0.02               | 0.24<br>0.16             | 0.17<br>0.09            | 0.24<br>0.16    | <0.1*              | <0.02*                             | 0.06*                             | <0.02*                             | -                                | -                                | -                                    | -                                   | -                                     |
| DC06B              | 18/05/20 DC06A                     | DC06A          | Dawesley Ck - down gradient  Dawesley Ck - down gradient  | 0.07                                     | 0.09                                    | <0.02                            | <0.02                              | <0.02                        | 0.16                     | 0.09                    | 0.16            | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC07               | 08/05/20 DC07                      | DC07           | Dawesley Ck - down gradient                               | 0.05                                     | 0.00                                    | <0.02                            | <0.02                              | <0.02                        | 0.14                     | 0.00                    | 0.14            | -                  | -                                  |                                   |                                    | _                                | _                                | _                                    | -                                   |                                       |
| DC08               | 09/06/20 DC08                      | DC08           | Dawesley Ck - down gradient                               | 0.06                                     | 0.08                                    | <0.02                            | <0.02                              | <0.02                        | 0.14                     | 0.08                    | 0.14            | _                  | _                                  | -                                 | _                                  | _                                | _                                | _                                    | _                                   | _                                     |
| DC09               | 08/07/20 DC09                      | DC09           | Dawesley Ck - down gradient                               | 0.12 *                                   | 0.13                                    | 0.0092 *                         | <0.0004                            | <0.0004                      | 0.25 *                   | 0.14                    | 0.26 *          | 0.01*              | 0.012*                             | 0.030*                            | 0.005*                             | -                                | -                                | -                                    | -                                   | -                                     |
| DC10               | 08/07/20 DC10                      | DC10           | Dawesley Ck - down gradient                               | 0.11                                     | 0.11                                    | 0.0080                           | <0.0004                            | <0.0004                      | 0.22                     | 0.12                    | 0.23            | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC11               | 08/07/20 DC11                      | DC11           | Dawesley Ck - down gradient                               | 0.11                                     | 0.13                                    | 0.0086                           | <0.0004                            | <0.0004                      | 0.24                     | 0.14                    | 0.25            | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC13               | 08/07/20 DC13                      | DC13           | Dawesley Ck - down gradient                               | 0.088                                    | 0.097                                   | 0.0065                           | <0.0004                            | <0.0004                      | 0.18                     | 0.10                    | 0.19            | -                  | -                                  | -                                 | -                                  | -                                | -                                | -                                    | -                                   | -                                     |
| DC14               | 08/07/20 DC14                      | DC14           | Dawesley Ck - down gradient                               | 0.081                                    | 0.081                                   | 0.0062                           | <0.0004                            | <0.0004                      | 0.16                     | 0.087                   | 0.17            | 0.01               | 0.01                               | 0.02                              | 0.0048                             | < 0.001                          | <0.002                           | <0.002                               | <0.005                              | <0.01                                 |
| DC15               | 08/07/20 DC15                      | DC15           | Dawesley Ck - down gradient                               | 0.066                                    | 0.08                                    | 0.0057                           | <0.0004                            | <0.0004                      | 0.15                     | 0.085                   | 0.15            | 0.01               | 0.009                              | 0.016                             | 0.0045                             | <0.001                           | <0.002                           | <0.002                               | <0.005                              | <0.01                                 |
| DC16 ^             | 23/07/20 DC16                      | DC 16          | Dawesley Ck - down gradient                               | 0.072                                    | 0.087                                   | 0.0062                           | <0.0004                            | <0.0004                      | 0.16                     | 0.093                   | 0.17            | 0.01               | 0.008                              | 0.021                             | 0.0048                             | <0.001                           | < 0.002                          | <0.002                               | < 0.005                             | <0.01                                 |
| DC17 ^             | 23/07/20 DC17                      | DC 17          | Dawesley Ck - down gradient                               | 0.070                                    | 0.078                                   | 0.0054                           | <0.0004                            | <0.0004                      | 0.15                     | 0.083                   | 0.15            | 0.01               | 0.008                              | 0.018                             | 0.0046                             | <0.001                           | <0.002                           | <0.002                               | <0.005                              | <0.01                                 |
| DC17A ^            | 10/08/20 DC17A                     | DC17A          | Mt Barker Ck - down gradient                              | 0.0064                                   | 0.0140                                  | 0.0029 *                         | <0.0004                            | <0.0004                      | 0.021                    | 0.017                   | 0.024           | <0.01*             | 0.004*                             | 0.006*                            | <0.002*                            | -                                | -                                | -                                    | -                                   | -                                     |
| DC18 ^             | 23/07/20 DC18                      | DC 18          | Bremer River - down gradient                              | 0.014                                    | 0.0120                                  | 0.0032                           | <0.0004                            | <0.0004                      | 0.027                    | 0.016                   | 0.030           | 0.008              | 0.003                              | 0.0064                            | 0.002                              | <0.001                           | <0.002                           | <0.002                               | <0.005                              | <0.01                                 |
| DC19 ^             | 23/07/20 DC19                      | DC 19          | Bremer River - down gradient                              | 0.015 *                                  | 0.020 *                                 | 0.0034 *                         | <0.005 *                           | <0.005 *                     | 0.035 *                  | 0.016 *                 | 0.049 *         | 0.006              | 0.003                              | 0.0070*                           | 0.002                              | <0.002*                          | <0.002                           | <0.002                               | <0.005                              | <0.01                                 |

|                                                                       |                                          |                                         |                                  | PFAS in W                                | /aters Short                                 |                          |                                      |                     |                                  |                                    | PFAS -                            | - Perfluoroa                       | alkyl Carbo                      | xylic Acids                      | (PFCA)                               |                                      |                                    |
|-----------------------------------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|--------------------------|--------------------------------------|---------------------|----------------------------------|------------------------------------|-----------------------------------|------------------------------------|----------------------------------|----------------------------------|--------------------------------------|--------------------------------------|------------------------------------|
|                                                                       | Perfluorohexane sulfonic<br>acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* | PFAS (Sum of Total) | Perfluorobutanoic acid<br>(PFBA) | Perfluoropentanoic acid<br>(PFPeA) | Perfluorohexanoic acid<br>(PFHxA) | Perfluoroheptanoic acid<br>(PFHpA) | Perfluorononanoic acid<br>(PFNA) | Perfluorodecanoic acid<br>(PFDA) | Perfluoroundecanoic acid<br>(PFUnDA) | Perfluorododecanoic acid<br>(PFDoDA) | Perfluorotridecanoic acid (PFTrDA) |
|                                                                       | μg/L                                     | μg/L                                    | μg/L                             | μg/L                                     | μg/L                                         | μg/L                     | μg/L                                 | μg/L                | μg/L                             | μg/L                               | μg/L                              | μg/L                               | μg/L                             | μg/L                             | μg/L                                 | μg/L                                 | μg/L                               |
| EQL                                                                   | 0.01                                     | 0.01                                    | 0.01                             | 0.01                                     | 0.01                                         | 0.01                     | 0.01                                 | 0.01                | 0.002                            | 0.002                              | 0.0004                            | 0.0004                             | 0.001                            | 0.002                            | 0.002                                | 0.002                                | 0.002                              |
| NHMRC 2019 Recreational Water PFAS Guidelines                         | 2                                        | 2                                       | 10                               |                                          |                                              | 2                        |                                      |                     |                                  |                                    |                                   |                                    |                                  |                                  |                                      |                                      |                                    |
| PFAS NEMP 2020 Health Drinking Water                                  | 0.07                                     | 0.07                                    | 0.56                             |                                          |                                              | 0.07                     |                                      |                     |                                  |                                    |                                   |                                    |                                  |                                  |                                      |                                      |                                    |
| PFAS NEMP 2020 Freshwater - 99% protection level (1)                  |                                          | 0.00023 §                               | 19                               |                                          |                                              |                          |                                      |                     |                                  |                                    |                                   |                                    |                                  |                                  |                                      |                                      |                                    |
| Catchment specific WQG - highly disturbed systems (2)                 | 0.0046                                   | 0.0066                                  |                                  |                                          |                                              |                          |                                      |                     |                                  |                                    |                                   |                                    |                                  |                                  |                                      |                                      |                                    |
| Catchment specific WQG - slightly to moderately disturbed systems (3) | 0.0044                                   | 0.0048                                  |                                  |                                          |                                              |                          |                                      |                     |                                  |                                    |                                   |                                    |                                  |                                  |                                      |                                      |                                    |

| BR01 ^  | 23/07/20 | BR01    | BR01    | Bremer River - background ** | 0.0440  | 0.0270  | 0.0036   | < 0.0004 | < 0.0004 | 0.0710  | 0.0300  | 0.0750  | -       | -         | -         | -         | -       | -       | -       | -       | -       |
|---------|----------|---------|---------|------------------------------|---------|---------|----------|----------|----------|---------|---------|---------|---------|-----------|-----------|-----------|---------|---------|---------|---------|---------|
| BR02 ^  | 23/07/20 | BR02    | BR02    | Bremer River - background ** | 0.0002  | <0.0002 | <0.0002  | <0.0004  | <0.0004  | 0.0002  | <0.0002 | 0.0002  | -       | -         | -         | -         | -       | -       | -       | -       | -       |
|         | 11/09/20 | BR02_A  | BR02_1A | Bremer River - background ** | 0.0038  | 0.0008  | < 0.0002 | < 0.0004 | < 0.0004 | 0.0046  | 0.0008  | 0.0046  | 0.006 ^ | <0.0002 ^ | <0.0004 ^ | <0.0004 ^ | < 0.001 | < 0.002 | < 0.002 | < 0.005 | < 0.01  |
|         |          | BR02_B  | BR02_1B | Bremer River - background ** | 0.0036  | 0.0007  | < 0.0002 | < 0.0004 | < 0.0004 | 0.0043  | 0.0007  | 0.0043  | 0.006   | < 0.002   | < 0.0004  | <0.0004   | < 0.001 | < 0.002 | < 0.002 | < 0.005 | < 0.01  |
|         |          | BR02_C  | BR02_1C | Bremer River - background ** | 0.0034  | 0.0006  | < 0.0002 | <0.0004  | <0.0004  | 0.0040  | 0.0006  | 0.0040  | 0.006   | < 0.002   | <0.0004   | <0.0004   | < 0.001 | < 0.002 | < 0.002 | <0.005  | < 0.01  |
|         | 17/09/20 | BR02_A  | BR02_2A | Bremer River - background ** | 0.0032  | 0.0007  | < 0.0002 | <0.0004  | <0.0004  | 0.0039  | 0.0007  | 0.0039  | 0.005   | < 0.002   | <0.0004   | <0.0004   | < 0.001 | < 0.002 | < 0.002 | <0.005  | < 0.01  |
|         |          | BR02_B  | BR02_2B | Bremer River - background ** | 0.0027  | 0.0006  | < 0.0002 | <0.0004  | <0.0004  | 0.0033  | 0.0006  | 0.0033  | 0.005   | < 0.002   | <0.0004   | <0.0004   | < 0.001 | < 0.002 | < 0.002 | <0.005  | < 0.01  |
|         |          | BR02_C  | BR02_2C | Bremer River - background ** | 0.0026  | 0.0007  | <0.0002  | <0.0004  | <0.0004  | 0.0033  | 0.0007  | 0.0033  | 0.006   | < 0.002   | <0.0004   | <0.0004   | < 0.001 | < 0.002 | < 0.002 | <0.005  | < 0.01  |
| BR03 ^  | 11/09/20 | BR03_A  | BR03_1A | Bremer River - background ** | 0.0330  | 0.0072  | 0.0010   | <0.0004  | <0.0004  | 0.0400  | 0.0085  | 0.0420  | 0.01    | < 0.002   | 0.0048    | <0.0004   | < 0.001 | <0.002  | < 0.002 | <0.005  | < 0.01  |
|         |          | BR03_B  | BR03_1B | Bremer River - background ** | 0.0310  | 0.0074  | 0.0010   | <0.0004  | <0.0004  | 0.0380  | 0.0085  | 0.0390  | 0.01    | < 0.002   | 0.0049    | <0.0004   | < 0.001 | < 0.002 | < 0.002 | <0.005  | < 0.01  |
|         |          | BR03_C  | BR03_1C | Bremer River - background ** | 0.0380* | 0.0108* | 0.0010   | <0.005 * | <0.005 * | 0.0480* | 0.0108* | 0.0580* | 0.01    | < 0.002   | 0.0060*   | 0.0004*   | <0.002* | < 0.002 | < 0.002 | <0.005  | < 0.01  |
|         | 17/09/20 | BR03_A  | BR03_2A | Bremer River - background ** | 0.0730* | 0.0160* | 0.0022   | <0.005 * | <0.005 * | 0.0890* | 0.0160  | 0.1120* | 0.01    | < 0.002   | 0.011*    | 0.0006*   | < 0.001 | < 0.002 | < 0.002 | < 0.005 | < 0.01  |
|         |          | BR03_B  | BR03_2B | Bremer River - background ** | 0.0610  | 0.0160  | 0.0020   | <0.0004  | <0.0004  | 0.0770  | 0.0180  | 0.0790  | 0.01    | < 0.002   | 0.0092    | 0.0006    | < 0.001 | < 0.002 | < 0.002 | <0.005  | <0.01   |
|         |          | BR03_C  | BR03_2C | Bremer River - background ** | 0.0600  | 0.0160  | 0.0020   | <0.0004  | <0.0004  | 0.0760  | 0.0180  | 0.0780  | 0.01    | <0.002    | 0.0091    | 0.0005    | < 0.001 | <0.002  | <0.002  | < 0.005 | <0.01   |
| MBC01 ^ | 23/07/20 | MBC01   | MBC01   | Mt Barker Ck - background ^^ | 0.0021  | 0.0025  | 0.0031   | <0.0004  | <0.0004  | 0.0046  | 0.0055  | 0.0076  | -       | -         | -         | -         | -       | -       | -       | -       |         |
|         | 11/09/20 | MBC01_A |         | Mt Barker Ck - background ^^ | 0.0037  | 0.0038  | 0.0032   | <0.0004  | <0.0004  | 0.0075  | 0.0070  | 0.0110  | 0.007   | 0.003     | 0.0053    | 0.0008    | <0.001  | <0.002  | < 0.002 | < 0.005 | <0.01   |
|         |          | MBC01_B |         | Mt Barker Ck - background ^^ | 0.0037  | 0.0040  | 0.0032   | <0.0004  | <0.0004  | 0.0078  | 0.0072  | 0.0110  | 0.007   | 0.003     | 0.0048    | 0.001     | <0.001  | < 0.002 | < 0.002 | < 0.005 | <0.01   |
|         |          | MBC01_C |         | Mt Barker Ck - background ^^ | 0.0040  | 0.0032  | 0.0035   | <0.0004  | <0.0004  | 0.0072  | 0.0067  | 0.0110  | 0.007   | 0.003     | 0.0048    | 0.001     | < 0.001 | < 0.002 | <0.002  | <0.005  | <0.01   |
|         | 17/09/20 | MBC01_A |         | Mt Barker Ck - background ^^ | 0.0050* | 0.0070* | 0.0043   | <0.005 * | <0.005 * | 0.0120* | 0.0110* | 0.0230* | 0.008   | 0.003     | 0.0070*   | 0.001     | <0.002* | < 0.002 | <0.002  | <0.005  | <0.01   |
|         |          | MBC01_B |         | Mt Barker Ck - background ^^ | 0.0046  | 0.0045  | 0.0042   | <0.0004  | <0.0004  | 0.0091  | 0.0087  | 0.0130  | 0.008   | 0.002     | 0.0047    | 0.001     | <0.001  | <0.002  | <0.002  | <0.005  | <0.01   |
|         |          | MBC01_C |         | Mt Barker Ck - background ^^ | 0.0044  | 0.0040  | 0.0044   | <0.0004  | <0.0004  | 0.0084  | 0.0084  | 0.0130  | 0.008   | 0.003     | 0.005     | 0.001     | <0.001  | <0.002  | <0.002  | <0.005  | <0.01   |
| MBC02 ^ | 23/07/20 | MBC02   | MBC02   | Mt Barker Ck - background ^^ | 0.0040* | 0.0040* | 0.0034   | <0.005 * | <0.005 * | 0.0080* | 0.0065* | 0.0210* | <0.01*  | <0.002*   | 0.005*    | <0.002*   | <0.002* | <0.002* | <0.002* | <0.002* | <0.002* |
|         | 11/09/20 | MBC02_A |         | Mt Barker Ck - background ^^ | 0.0040* | 0.0050* | 0.0043*  | <0.005 * | <0.005 * | 0.0090* | 0.0090* | 0.0220* | 0.006   | 0.003*    | 0.0090*   | 0.0010*   | <0.002* | <0.002  | <0.002  | <0.005  | <0.01   |
|         |          | MBC02_B |         | Mt Barker Ck - background ^^ | 0.0037  | 0.0045  | 0.0040   | <0.0004  | <0.0004  | 0.0082  | 0.0085  | 0.0120  | 0.006   | 0.003     | 0.0063    | 0.0009    | <0.001  | <0.002  | <0.002  | <0.005  | < 0.01  |
|         | 47/00/00 | MBC02_C |         | Mt Barker Ck - background ^^ | 0.0036  | 0.0042  | 0.0038   | <0.0004  | <0.0004  | 0.0078  | 0.0080  | 0.0120  | 0.006   | 0.003     | 0.0065    | 0.001     | <0.001  | <0.002  | <0.002  | <0.005  | <0.01   |
|         | 17/09/20 | MBC02_A |         | Mt Barker Ck - background ^^ | 0.0038  | 0.0071  | 0.0050   | <0.0004  | <0.0004  | 0.0110  | 0.0120  | 0.0160  | 0.007   | 0.003     | 0.0066    | 0.001     | <0.001  | <0.002  | <0.002  | <0.005  | <0.01   |
|         |          | MBC02_B |         | Mt Barker Ck - background ^^ | 0.0035  | 0.0066  | 0.0049   | <0.0004  | <0.0004  | 0.0100  | 0.0120  | 0.0150  | 0.007   | 0.003     | 0.0056    | 0.001     | <0.001  | <0.002  | <0.002  | <0.005  | <0.01   |
| NOO4 A  |          | MBC02_C |         | Mt Barker Ck - background ^^ | 0.0032  | 0.0042  | 0.0043   | <0.0004  | <0.0004  | 0.0075  | 0.0086  | 0.0120  | 0.007   | 0.003     | 0.0057    | 0.001     | <0.001  | <0.002  | <0.002  | <0.005  | <0.01   |
| NC01 ^  | 23/07/20 | NC01    | NC01    | Nairne Ck - background ##    | 0.0049  | 0.0054  | 0.0009   | <0.0004  | <0.0004  | 0.0100  | 0.0062  | 0.0110  | -       | -         | -         | -         | -       | -       | -       | -       |         |
| NC02 ^  | 23/07/20 | NC02    | NC02    | Nairne Ck - background ##    | 0.0047  | 0.0061  | 0.0010   | <0.0004  | <0.0004  | 0.0110  | 0.0071  | 0.0120  | -       | -         | -         |           | -       | -       | -       | -       |         |

<sup>(1) 99%</sup> species protection level - applies to bioaccumulation risk in slightly to moderately disturbed systems and to direct ecological risk in high conservation value systems.

<sup>(2)</sup> Catchment specific WQG for highly disturbed systems - 90th percentile of background concentrations in reference subcatchment - applies to Dawesley Creek.

<sup>(3)</sup> Catchment specific WQG for slightly to moderately disturbed systems - 80th percentile of background concentrations in reference subcatchment - applies to Nairne Ck, Mt Barker Ck and Bremer River.

<sup>§</sup> The PFAS NEMP Freshwater 99% species protection level for PFOS was not applied. It was replaced with the catchment specific WQG.

 $<sup>^{\#}</sup>$ Concentration below the standard LOR (0.01  $\mu$ g/L) may potentially exeed the catchment specific WQG for PFOS and PFHxS.

<sup>^</sup> Trace level analysis; EQL =  $0.0002 \, \mu g/L$  for PFHxS, PFOS, PFOA and sums; EQL =  $0.0004 \, \mu g/L$  or  $0.005 \, \mu g/L$  for  $6:2 \, FTS$  and  $8:2 \, FTS$ 

<sup>\*</sup> Higher value adopted from QA/QC analysis

<sup>\*\*</sup> Bremer River up gradient of confluence with Mt Barker Creek (between DC17A and DC18)

<sup>^^</sup> Mt Barker Creek up gradient of confluence with Dawesley Creek (between DC17 and DC17A)

<sup>\*\*\*</sup> Nairne Creek up gradient of confluence with Dawesley Creek (between DC11 and DC13)

DS

|                                |                      |                    |                 |                                                            | PF                                     | CA                                            | PFAS -                           | Perfluoroa                         | lkyl Sulfon            | c Acids                         |                                       | P                                                | PFAS - Per                                      | fluoroalkyl                                                     | Sulfonamid                                                 | le                                                        |                                                                | PFAS -                                    | Fluorotelo                               | mer Sulfon                                   | ic Acids                                    |
|--------------------------------|----------------------|--------------------|-----------------|------------------------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------|------------------------------------|------------------------|---------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------|---------------------------------------------|
|                                |                      |                    |                 |                                                            | anoic                                  | ъ                                             | sulfonic                         | sulfonic                           | sulfonic               | esulfonic                       | 3A)                                   | ooctane<br>·OSA)                                 | octane<br>OSA)                                  | ooctane<br>s acid                                               | ooctane                                                    | octane                                                    | octane<br>s acid                                               | FTS)                                      | s)                                       | FTS)                                         | er<br>2 FTS)                                |
|                                |                      |                    |                 |                                                            | Perfluorotetradecanoi<br>acid (PFTeDA) | Perfluoro-n-<br>hexadecanoic acid<br>(PFHxDA) | Perfluorobutane s<br>acid (PFBS) | Perfluoropentane s<br>acid (PFPeS) | uoroheptane<br>(PFHpS) | Perfluorodecanes<br>acid (PFDS) | Perfluorooctane<br>sulfonamide (FOSA) | N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA) | N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | N-Methyl perfluorooctane<br>sulfonamidoethanol<br>(MEFOSE) | N-Ethyl perfluorooctane<br>sulfonamidoethanol<br>(EtFOSE) | N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA) | 4:2 Fluorotelomer<br>sulfonic acid (4:2 F | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | 10:2 Fluorotelomer<br>sulfonic acid (10:2 F |
|                                |                      |                    |                 |                                                            | Perfli<br>acid (                       | Perfl<br>nexa<br>(PFF                         | Perfl<br>acid                    | ⊃erfl<br>acid                      | Perflı<br>acid (       | Perfl<br>acid                   | Perfl                                 | N-Me<br>sulfo                                    | V-Et                                            | N-Me<br>Sulfo<br>(MeF                                           | N-Me                                                       | Sulfo<br>(Eff)                                            | N-Etl<br>sulfo<br>(EtF)                                        | 4:2 F<br>sulfo                            | 3:2 F<br>Sulfo                           | 3:2 F<br>sulfo                               | 10:2<br>sulfo                               |
|                                |                      |                    |                 |                                                            | μg/L                                   | μg/L                                          | μg/L                             | μg/L                               | μg/L                   | μg/L                            | μg/L                                  | μg/L                                             | μg/L                                            | μg/L                                                            | μg/L                                                       | μg/L                                                      | μg/L                                                           | μg/L                                      | μg/L                                     | μg/L                                         | μg/L                                        |
| EQL                            |                      |                    |                 |                                                            | 0.005                                  | 0.005                                         | 0.0004                           | 0.001                              | 0.001                  | 0.002                           | 0.002                                 | 0.005                                            | 0.005                                           | 0.002                                                           | 0.005                                                      | 0.005                                                     | 0.002                                                          | 0.001                                     | 0.0004                                   | 0.0004                                       | 0.002                                       |
| NHMRC 2019 Re                  |                      |                    | iidelines       |                                                            |                                        |                                               |                                  |                                    |                        |                                 |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                           |                                          |                                              |                                             |
| PFAS NEMP 202                  |                      |                    | tion lovel (4)  |                                                            |                                        |                                               |                                  |                                    |                        |                                 |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                           |                                          |                                              |                                             |
| PFAS NEMP 202 Catchment specif |                      |                    |                 |                                                            |                                        |                                               |                                  |                                    |                        |                                 |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                           |                                          |                                              |                                             |
| Catchment specific             |                      |                    |                 | ed systems (3)                                             |                                        |                                               |                                  |                                    |                        |                                 |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                           |                                          |                                              |                                             |
|                                |                      | ,                  |                 | ()                                                         |                                        |                                               |                                  |                                    |                        |                                 |                                       |                                                  |                                                 | ļ                                                               | ļ                                                          |                                                           | ļ                                                              |                                           |                                          |                                              |                                             |
| <b>Location Code</b>           | Date                 | Location ID        | Field ID        | Location Description                                       |                                        |                                               |                                  |                                    |                        |                                 |                                       |                                                  |                                                 |                                                                 | •                                                          |                                                           |                                                                |                                           |                                          |                                              |                                             |
| ASP                            | 02/10/19             | ASP                | ASP_1           | Acid seepage pond                                          | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            |                                             |
| ATP                            | 02/10/19             | ATP                | ATP_1           | Acid treatment plant discharge channel                     | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DIV01                          | 18/05/20             | DIV01              | DD01            | UG diversion drain at CFS site                             | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DC-UP01 ^                      | 23/07/20             | DC-UP01<br>DC-UP02 | DC-UP01         | Dawesley Ck - up gradient  Dawesley Ck - up gradient       | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| PB 1                           | 23/07/20<br>02/10/19 | PB 1               | DC-UP02<br>PB 1 | Dawesley Ck - up gradient  Dawesley Ck - up gradient       | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
|                                | 02/10/19             | PB 2               | PB_1<br>PB_2    | , ,                                                        | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| PB_2<br>Creek 1                | 02/10/19             | Creek 1            | CREEK 1         | Dawesley Ck - up gradient  Dawesley Ck - adjacent CFS site | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            |                                             |
| Creek 4                        | 06/05/20             | Creek_4            | Creek 4         | Dawesley Ck - adjacent CFS site                            |                                        | _                                             | -                                | -                                  |                        |                                 | -                                     | _                                                | -                                               |                                                                 | _                                                          | -                                                         | _                                                              | -                                         | -                                        | _                                            | -                                           |
| Creek 2                        | 02/10/19             | Creek 2            | CREEK 2         | Dawesley Ck - adjacent CFS site                            |                                        | _                                             | -                                | -                                  | -                      | -                               | _                                     | _                                                | _                                               | _                                                               | _                                                          | _                                                         | _                                                              | -                                         | _                                        | _                                            | _                                           |
| Creek 5                        | 06/05/20             | Creek 5            | Creek 5         | Dawesley Ck - adjacent CFS site                            | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| Creek_6                        | 06/05/20             | Creek_6            | Creek 6         | Dawesley Ck - adjacent CFS site                            | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| Creek_3                        | 02/10/19             | Creek_3            | CREEK_3         | Dawesley Ck - adjacent CFS site                            | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| Pond_4                         | 02/10/19             | Pond_4             | POND_4          | Old Dawesley Ck alignment                                  | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              |                                           | -                                        | -                                            | -                                           |
| Pond_0                         | 02/10/19             | Pond_0             | POND_0          | Old Dawesley Ck alignment                                  | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DC01                           | 11/02/20             | DC01               | DC01w           | Dawesley Ck - down gradient                                | <0.5                                   | -                                             | 0.03                             | 0.03                               | <0.01                  | <0.02                           | <0.1                                  | <0.05                                            | <0.1                                            | <0.02                                                           | <0.05                                                      | <0.5                                                      | <0.02                                                          | <0.01                                     | <0.01                                    | <0.01                                        | <0.01                                       |
| BV01<br>DC02                   | 11/02/20<br>08/05/20 | BV01<br>DC02       | BV01w<br>DC02   | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DC02A ^                        | 17/08/20             | DC02A              | DC02A           | Dawesley Ck - down gradient                                |                                        | _                                             | -                                | -                                  | -                      | -                               | _                                     | _                                                | _                                               | _                                                               | _                                                          | _                                                         | _                                                              | -                                         | _                                        | _                                            | _                                           |
| DC03                           | 08/05/20             | DC03               |                 | Dawesley Ck - down gradient                                | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | _                                           |
| DC04                           | 08/05/20             | DC04               | DC04            | Dawesley Ck - down gradient                                | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DC05                           | 08/05/20             | DC05               | DC05            | Dawesley Ck - down gradient                                | -                                      | -                                             | 0.11*                            | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | <0.05*                                    | <0.05*                                   | <0.05*                                       | <0.05*                                      |
| DC06                           | 18/05/20             | DC06               | DC06            | Dawesley Ck - down gradient                                | -                                      | -                                             | <0.02*                           | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | <0.05*                                    | <0.05*                                   | <0.05*                                       | <0.05*                                      |
| DC06A                          | 18/05/20             | DC06A              | DC06A           | Dawesley Ck - down gradient                                | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DC06B<br>DC07                  | 18/05/20<br>08/05/20 | DC06B<br>DC07      | DC06B<br>DC07   | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DC07                           | 09/06/20             | DC07               | DC07<br>DC08    | Dawesley Ck - down gradient  Dawesley Ck - down gradient   |                                        | -                                             | -                                | -                                  | <u> </u>               | -                               |                                       | -                                                | -                                               | -                                                               |                                                            | -                                                         | -                                                              | -                                         | -                                        |                                              | -                                           |
| DC09                           | 08/07/20             | DC09               | DC09            | Dawesley Ck - down gradient                                |                                        | _                                             | 0.011*                           | -                                  | -                      | -                               | _                                     | _                                                | _                                               | _                                                               | _                                                          | _                                                         | _                                                              | <0.005*                                   | <0.005*                                  | <0.005*                                      | <0.005*                                     |
| DC10                           | 08/07/20             | DC10               | DC10            | Dawesley Ck - down gradient                                | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DC11                           | 08/07/20             | DC11               | DC11            | Dawesley Ck - down gradient                                | -                                      | -                                             | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DC13                           | 08/07/20             | DC13               | DC13            | Dawesley Ck - down gradient                                | -                                      |                                               | -                                | -                                  | -                      | -                               | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                         | -                                        | -                                            | -                                           |
| DC14                           | 08/07/20             | DC14               | DC14            | Dawesley Ck - down gradient                                | <0.05                                  | -                                             | 0.0088                           | 0.009                              | 0.003                  | <0.002                          | <0.01                                 | <0.005                                           | <0.01                                           | <0.002                                                          | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                    | <0.0004                                  | <0.0004                                      | <0.002                                      |
| DC15                           | 08/07/20             | DC15               | DC15            | Dawesley Ck - down gradient                                | <0.05                                  | -                                             | 0.0071                           | 0.007                              | 0.002                  | <0.002                          | <0.01                                 | <0.005                                           | <0.01                                           | <0.002                                                          | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                    | <0.0004                                  | <0.0004                                      | <0.002                                      |
| DC16 ^                         | 23/07/20             |                    | DC 16           | Dawesley Ck - down gradient                                | <0.05                                  | -                                             | 0.0087                           | 0.009                              | 0.003                  | <0.002                          | <0.01                                 | <0.005                                           | <0.01                                           | <0.002                                                          | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                   | <0.0004                                  | <0.0004                                      | <0.002                                      |
| DC17 ^<br>DC17A ^              | 23/07/20<br>10/08/20 | DC17               | DC 17<br>DC17A  | Dawesley Ck - down gradient                                | <0.05                                  | -                                             | 0.0087                           | 0.009                              | 0.003                  | <0.002                          | <0.01                                 | <0.005                                           | <0.01                                           | <0.002                                                          | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                    | <0.0004<br><0.005*                       | <0.0004                                      | <0.002                                      |
| DC17A ^                        | 23/07/20             | DC17A<br>DC18      | DC17A<br>DC 18  | Mt Barker Ck - down gradient Bremer River - down gradient  | <0.05                                  | -                                             | 0.002*<br>0.003                  | 0.002                              | <0.001                 | <0.002                          | <0.01                                 | <0.005                                           | <0.01                                           | <0.002                                                          | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.005*<br><0.001                         | <0.005^                                  | <0.005*<br><0.0004                           | <0.005*<br><0.002                           |
| DC19 ^                         | 23/07/20             | DC18               |                 | Bremer River - down gradient                               | <0.05                                  | <0.005*                                       | 0.003                            | 0.002                              | <0.001                 | <0.002                          | <0.01                                 | <0.005                                           | <0.01                                           | <0.002                                                          | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                    | <0.0004                                  | <0.005*                                      | <0.002                                      |
| 2010                           | 20,01120             | 20.0               | 20 10           | Bromor ravor - down gradient                               | -0.00                                  | -0.000                                        | 0.004                            | 0.002                              | -0.002                 | -0.002                          | -0.01                                 | -0.000                                           | -0.01                                           | -0.002                                                          | -0.000                                                     | -0.00                                                     | -0.002                                                         | -0.000                                    | -0.000                                   | -0.000                                       | -0.000                                      |

DSI

|                |              |                  |               |                              | PF                                      | CA                                            | PFAS -                                  | - Perfluoroa                              | ılkyl Sulfon                              | ic Acids                               |                                       | F                                                | PFAS - Per                                      | fluoroalkyl                                                     | Sulfonamio                                                 | de                                                        |                                                                | PFAS -                                       | - Fluorotelo                             | mer Sulfor                                   | nic Acids                                      |
|----------------|--------------|------------------|---------------|------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------------|------------------------------------------------|
|                |              |                  |               |                              | Perfluorotetradecanoic<br>acid (PFTeDA) | Perfluoro-n-<br>hexadecanoic acid<br>(PFHxDA) | Perfluorobutane sulfonic<br>acid (PFBS) | Perfluoropentane sulfonic<br>acid (PFPeS) | Perfluoroheptane sulfonic<br>acid (PFHpS) | Perfluorodecanesulfonic<br>acid (PFDS) | Perfluorooctane<br>sulfonamide (FOSA) | N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA) | N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | N-Methyl perfluorooctane<br>sulfonamidoethanol<br>(MEFOSE) | N-Ethyl perfluorooctane<br>sulfonamidoethanol<br>(EtFOSE) | N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA) | 4:2 Fluorotelomer<br>sulfonic acid (4:2 FTS) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | 10:2 Fluorotelomer<br>sulfonic acid (10:2 FTS) |
|                |              |                  |               |                              | μg/L                                    | μg/L                                          | μg/L                                    | μg/L                                      | μg/L                                      | μg/L                                   | μg/L                                  | μg/L                                             | μg/L                                            | μg/L                                                            | μg/L                                                       | μg/L                                                      | μg/L                                                           | μg/L                                         | μg/L                                     | μg/L                                         | μg/L                                           |
| EQL            |              |                  |               |                              | 0.005                                   | 0.005                                         | 0.0004                                  | 0.001                                     | 0.001                                     | 0.002                                  | 0.002                                 | 0.005                                            | 0.005                                           | 0.002                                                           | 0.005                                                      | 0.005                                                     | 0.002                                                          | 0.001                                        | 0.0004                                   | 0.0004                                       | 0.002                                          |
| NHMRC 2019 R   |              |                  | uidelines     |                              |                                         |                                               |                                         |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                              |                                          |                                              |                                                |
| PFAS NEMP 20:  | 20 Health D  | rinking Water    |               |                              |                                         |                                               |                                         |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                              |                                          |                                              |                                                |
| PFAS NEMP 20:  |              |                  |               | •                            |                                         |                                               |                                         |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                              |                                          |                                              |                                                |
| Catchment spec | ific WQG - I | highly disturbed | systems (2)   |                              |                                         |                                               |                                         |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                              |                                          |                                              |                                                |
| Catchment spec | ific WQG - s | slightly to mode | rately distur | ped systems (3)              |                                         |                                               |                                         |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                              |                                          |                                              |                                                |
|                |              |                  |               |                              |                                         |                                               |                                         |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           |                                                                |                                              |                                          |                                              |                                                |
| Location Code  |              | Location ID      | _             | Location Description         |                                         |                                               |                                         |                                           | 1                                         |                                        | 1                                     |                                                  | 1                                               |                                                                 |                                                            |                                                           | 1                                                              |                                              |                                          |                                              | т                                              |
| BR01 ^         | 23/07/20     | BR01             | BR01          | Bremer River - background ** | -                                       | -                                             | -                                       | -                                         | -                                         | -                                      | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                            | <0.0004                                  | <0.0004                                      | -                                              |
| BR02 ^         | 23/07/20     | BR02             | BR02          | Bremer River - background ** | -                                       | -                                             | -                                       | -                                         | -                                         | -                                      | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                            | <0.0004                                  | <0.0004                                      | -                                              |
|                | 11/09/20     | BR02_A           | BR02_1A       | Bremer River - background ** | <0.05                                   | -                                             | 0.0010                                  | <0.001                                    | <0.001                                    | <0.002                                 | <0.01                                 | <0.005                                           | <0.01                                           | <0.002                                                          | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                       | <0.0004                                  | <0.0004                                      | < 0.002                                        |
|                |              | BR02_B           | BR02_1B       | Bremer River - background ** | <0.05                                   | -                                             | 0.0010                                  | < 0.001                                   | < 0.001                                   | < 0.002                                | <0.01                                 | <0.005                                           | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | < 0.002                                        |
|                |              | BR02_C           | BR02_1C       | Bremer River - background ** | <0.05                                   | -                                             | 0.0010                                  | <0.001                                    | <0.001                                    | <0.002                                 | <0.01                                 | <0.005                                           | <0.01                                           | <0.002                                                          | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                       | <0.0004                                  | <0.0004                                      | < 0.002                                        |
|                | 17/09/20     | BR02_A           | BR02_2A       | Bremer River - background ** | <0.05                                   | -                                             | 0.0009                                  | < 0.001                                   | < 0.001                                   | < 0.002                                | <0.01                                 | < 0.005                                          | < 0.01                                          | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | < 0.002                                        |
|                |              | BR02_B           | BR02_2B       | Bremer River - background ** | <0.05                                   | -                                             | 0.0008                                  | <0.001                                    | <0.001                                    | <0.002                                 | <0.01                                 | <0.02                                            | <0.05                                           | <0.002                                                          | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                       | <0.0004                                  | <0.0004                                      | <0.002                                         |
|                |              | BR02_C           | BR02_2C       | Bremer River - background ** | <0.05                                   | -                                             | 0.0007                                  | < 0.001                                   | < 0.001                                   | < 0.002                                | <0.01                                 | < 0.005                                          | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | < 0.002                                        |
| BR03 ^         | 11/09/20     | BR03_A           | BR03_1A       | Bremer River - background ** | <0.05                                   | -                                             | 0.0030                                  | 0.003                                     | 0.001                                     | < 0.002                                | <0.01                                 | < 0.005                                          | < 0.01                                          | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | < 0.002                                        |
|                |              | BR03_B           | BR03_1B       | Bremer River - background ** | <0.05                                   | -                                             | 0.0030                                  | 0.003                                     | 0.001                                     | <0.002                                 | <0.01                                 | < 0.005                                          | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | < 0.002                                        |
|                |              | BR03_C           | BR03_1C       | Bremer River - background ** | <0.05                                   | <0.005*                                       | 0.0030*                                 | 0.003                                     | 0.001                                     | <0.002                                 | <0.01                                 | < 0.005                                          | <0.05*                                          | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | <0.005*                                      | <0.005*                                  | <0.005*                                      | <0.005                                         |
|                | 17/09/20     | BR03_A           | BR03_2A       | Bremer River - background ** | <0.05                                   | -                                             | 0.0047                                  | 0.005                                     | 0.003*                                    | <0.002                                 | <0.01                                 | < 0.005                                          | < 0.01                                          | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | <0.005*                                      | <0.005*                                  | <0.005*                                      | <0.005                                         |
|                |              | BR03_B           | BR03_2B       | Bremer River - background ** | <0.05                                   | -                                             | 0.0047                                  | 0.005                                     | 0.003                                     | < 0.002                                | <0.01                                 | < 0.005                                          | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | < 0.002                                        |
|                |              | BR03_C           | BR03_2C       | Bremer River - background ** | <0.05                                   | -                                             | 0.0044                                  | 0.005                                     | 0.002                                     | <0.002                                 | <0.01                                 | < 0.005                                          | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | < 0.002                                        |
| MBC01 ^        | 23/07/20     | MBC01            | MBC01         | Mt Barker Ck - background ^^ | -                                       | -                                             | -                                       | -                                         | -                                         | -                                      | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                            | <0.0004                                  | <0.0004                                      | -                                              |
|                | 11/09/20     | MBC01_A          |               | Mt Barker Ck - background ^^ | <0.05                                   | -                                             | 0.0020                                  | < 0.001                                   | < 0.001                                   | < 0.002                                | <0.01                                 | < 0.005                                          | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | <0.002                                         |
|                |              | MBC01_B          |               | Mt Barker Ck - background ^^ | <0.05                                   | -                                             | 0.0020                                  | <0.001                                    | < 0.001                                   | <0.002                                 | <0.01                                 | <0.005                                           | <0.01                                           | < 0.002                                                         | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                       | <0.0004                                  | <0.0004                                      | <0.002                                         |
|                |              | MBC01_C          |               | Mt Barker Ck - background ^^ | <0.05                                   | -                                             | 0.0020                                  | < 0.001                                   | < 0.001                                   | < 0.002                                | <0.01                                 | <0.005                                           | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | < 0.002                                        |
|                | 17/09/20     | MBC01_A          |               | Mt Barker Ck - background ^^ | <0.05                                   | -                                             | 0.0030                                  | 0.001                                     | <0.002*                                   | < 0.002                                | < 0.01                                | < 0.005                                          | < 0.01                                          | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | <0.005*                                      | <0.005*                                  | <0.005*                                      | <0.005                                         |
|                |              | MBC01_B          |               | Mt Barker Ck - background ^^ | <0.05                                   | -                                             | 0.0030                                  | 0.001                                     | <0.001                                    | <0.002                                 | <0.01                                 | <0.005                                           | <0.01                                           | < 0.002                                                         | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                       | <0.0004                                  | <0.0004                                      | <0.002                                         |
|                |              | MBC01_C          |               | Mt Barker Ck - background ^^ | <0.05                                   | -                                             | 0.0030                                  | 0.001                                     | <0.001                                    | <0.002                                 | <0.01                                 | <0.005                                           | <0.01                                           | < 0.002                                                         | <0.005                                                     | <0.05                                                     | <0.002                                                         | <0.001                                       | <0.0004                                  | <0.0004                                      | <0.002                                         |
| MBC02 ^        | 23/07/20     | MBC02            | MBC02         | Mt Barker Ck - background ^^ | <0.005*                                 | <0.005*                                       | 0.0050*                                 | <0.002*                                   | <0.002*                                   | <0.002*                                | <0.002*                               | <0.005*                                          | <0.005*                                         | <0.002*                                                         | <0.005*                                                    | <0.005*                                                   | <0.002*                                                        | <0.005*                                      | <0.005*                                  | <0.005*                                      | <0.005*                                        |
|                | 11/09/20     | MBC02_A          |               | Mt Barker Ck - background ^^ | < 0.05                                  | <0.005*                                       | 0.0020                                  | <0.002*                                   | <0.002*                                   | < 0.002                                | <0.01                                 | < 0.005                                          | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | <0.005*                                      | <0.005*                                  | <0.005*                                      | <0.005*                                        |
|                |              | MBC02_B          |               | Mt Barker Ck - background ^^ | < 0.05                                  | -                                             | 0.0020                                  | < 0.001                                   | < 0.001                                   | < 0.002                                | <0.01                                 | < 0.005                                          | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | <0.002                                         |
|                |              | MBC02_C          |               | Mt Barker Ck - background ^^ | < 0.05                                  | -                                             | 0.0020                                  | < 0.001                                   | < 0.001                                   | < 0.002                                | <0.01                                 | < 0.005                                          | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | <0.001                                       | <0.0004                                  | <0.0004                                      | <0.002                                         |
|                | 17/09/20     | MBC02_A          |               | Mt Barker Ck - background ^^ | < 0.05                                  | -                                             | 0.0020                                  | <0.001                                    | <0.001                                    | <0.002                                 | <0.01                                 | <0.005                                           | <0.01                                           | < 0.002                                                         | < 0.005                                                    | <0.05                                                     | <0.002                                                         | <0.001                                       | <0.0004                                  | <0.0004                                      | <0.002                                         |
|                |              | MBC02_B          |               | Mt Barker Ck - background ^^ | < 0.05                                  | -                                             | 0.0020                                  | < 0.001                                   | < 0.001                                   | < 0.002                                | < 0.01                                | < 0.005                                          | < 0.01                                          | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | < 0.002                                                        | < 0.001                                      | <0.0004                                  | <0.0004                                      | < 0.002                                        |
|                |              | MBC02_C          | MBC02_20      | Mt Barker Ck - background ^^ | <0.05                                   | -                                             | 0.0020                                  | < 0.001                                   | <0.001                                    | <0.002                                 | <0.01                                 | < 0.005                                          | <0.01                                           | < 0.002                                                         | < 0.005                                                    | < 0.05                                                    | <0.002                                                         | < 0.001                                      | <0.0004                                  | <0.0004                                      | <0.002                                         |
| NC01 ^         | 23/07/20     | NC01             | NC01          | Nairne Ck - background ##    | -                                       | -                                             | -                                       | -                                         | -                                         | -                                      | -                                     | -                                                | -                                               | -                                                               | -                                                          | -                                                         | -                                                              | -                                            | -                                        | -                                            | -                                              |
|                |              |                  |               | N - : Ol- II                 | 1                                       |                                               |                                         |                                           |                                           |                                        |                                       |                                                  |                                                 |                                                                 |                                                            |                                                           | 1                                                              |                                              | 1                                        |                                              |                                                |

NC02 ^

23/07/20 NC02

NC02

Nairne Ck - background ##

DSI



| Well             | TOC<br>(mAHD) | TOC (m above ground level) | Location relative to CFS site                                                                                                              | Date                 | Depth to Water<br>(m bTOC)                                 | Depth to Water<br>(m bgl)                      | Groundwater<br>Elevation (mAHD) | Well Depth<br>(m bTOC) | Top of Screen<br>(m bTOC) | Length of<br>Screen (m) |  |  |
|------------------|---------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|------------------------------------------------|---------------------------------|------------------------|---------------------------|-------------------------|--|--|
| BH18             | 365.840       | 1.023                      | Up gradient, west                                                                                                                          | 11/02/20             | 2.559                                                      | 1.536                                          | 363.281                         | 20                     |                           |                         |  |  |
| BH19             | 365.710       | 1.020                      | Up gradient, west                                                                                                                          | 12/02/20             | 2.051                                                      | 1.031                                          | 363.659                         | 5                      |                           | 5                       |  |  |
| BH22             | 367.010       | 1.002                      | Cross gradient, west                                                                                                                       | 11/02/20             | 2.284                                                      | 1.282                                          | 364.726                         | 5                      |                           |                         |  |  |
| GAMW-03          | 382.800       | 0.964                      | Up gradient, north-west                                                                                                                    | 11/02/20             | 18.030                                                     | 17.066                                         | 364.770                         | 25                     | 18                        | 7                       |  |  |
| H01              | 349.990       | 0.798                      | Up gradient, west                                                                                                                          | 12/02/20             | 2.730                                                      | 1.932                                          | 347.260                         | 15.5                   | 12.5                      | 3                       |  |  |
| H02              | 343.400       | 0.573                      | Down gradient                                                                                                                              | 11/02/20             | 1.568                                                      | 0.995                                          | 341.832                         | 12                     | 8                         | 4                       |  |  |
| H04a             | 339.540       | 0.231                      | Down gradient                                                                                                                              | 11/02/20             | 0.604                                                      | 0.373                                          | 338.936                         | 4                      | 1                         | 3                       |  |  |
| H04b             | 339.800       | 0.797                      | Down gradient                                                                                                                              | 11/02/20             | 1.755                                                      | 0.958                                          | 338.045                         | 13.3                   | 9.3                       | 4                       |  |  |
| H06a             | 340.600       | 0.864                      | Down gradient                                                                                                                              | 11/02/20             | 1.339                                                      | 0.475                                          | 339.261                         | 4.4                    | 1.4                       | 3                       |  |  |
| H09              | 333.000       | 0.748                      | Down gradient                                                                                                                              | 11/02/20             | 3.080                                                      | 2.332                                          | 329.920                         | 12                     | 6                         | 6                       |  |  |
| H12              | 339.600       | -                          | Down gradient                                                                                                                              | 11/02/20             | 2.019                                                      | -                                              | 337.581                         | 6                      | 3                         | 3                       |  |  |
| H13              | 333.400       | -                          | Down gradient                                                                                                                              | 11/02/20             | 0.934                                                      | -                                              | 332.466                         | 3.5                    | 1.5                       | 2                       |  |  |
| KAN12            | 365.500       | 0.238                      | Up gradient, west                                                                                                                          | 11/02/20             | 1.339                                                      | 1.101                                          | 364.161                         | 25                     | 24                        | 1                       |  |  |
| KAN41            | 381.600       | 0.562                      | Up gradient, east                                                                                                                          | 11/02/20             | 13.158                                                     | 12.596                                         | 368.442                         | 20                     | 19                        | 1                       |  |  |
| KAN45            | 378.600       | 0.620                      | Up gradient, east                                                                                                                          | 12/02/20             | 6.586                                                      | 5.966                                          | 372.014                         | 15.5                   | 14.5                      | 1                       |  |  |
| KAN52            | 382.600       | 0.790                      | Cross gradient, east                                                                                                                       | 11/02/20             | 16.844                                                     | 16.054                                         | 365.756                         | 18                     | 17                        | 1                       |  |  |
| C04a             | 363.180       | 0.690                      | Cross gradient, east                                                                                                                       | 16/06/20             | 4.270                                                      | 3.580                                          | 358.910                         | 14                     | 11                        | 3                       |  |  |
| GW01             | 349.859       | -0.075                     | Up gradient, north                                                                                                                         | 15/06/20             | 1.141                                                      | 1.216                                          | 348.718                         | 15.5                   | 12.5                      | 3                       |  |  |
| GW02             | 386.661       | -0.231                     | Up gradient, east                                                                                                                          | 15/06/20             | 14.348                                                     | 14.579                                         | 372.313                         | 18.5                   | 12.5                      | 6                       |  |  |
| GW03             | 380.353       | 0.787                      | Up gradient, east                                                                                                                          | 16/06/20             | 9.480                                                      | 8.693                                          | 370.873                         | 21.8                   | 18.8                      | 3                       |  |  |
| GW04             | 385.275       | 0.821                      | Cross gradient, east                                                                                                                       | 16/06/20             | 17.992                                                     | 17.171                                         | 367.283                         | 25                     | 15                        | 10                      |  |  |
| GW05             | 307.012       | -0.032                     | Down gradient                                                                                                                              | 15/06/20             | 4.232                                                      | 4.264                                          | 302.780                         | 8                      | 5                         | 3                       |  |  |
| GW06             | 297.669       | 0.676                      | Down gradient                                                                                                                              | 15/06/20             | 6.862                                                      | 6.186                                          | 290.807                         | 10                     | 5.5                       | 4.5                     |  |  |
| GW07             | 303.330       | -0.056                     | Down gradient                                                                                                                              | 16/06/20             | 11.136                                                     | 11.192                                         | 292.194                         | 23                     | 20                        | 3                       |  |  |
| H15              | 355.926       | -0.077                     | Cross gradient, east                                                                                                                       | 16/06/20             | 12.069                                                     | 12.146                                         | 343.857                         | 30                     | 27                        | 3                       |  |  |
| KAN23            | 418.192       | -0.106                     | Cross gradient, west                                                                                                                       | 15/06/20             | 19.734                                                     | 19.840                                         | 398.458                         |                        |                           |                         |  |  |
| KAN26            | 433.547       | -0.114                     | Cross gradient, west                                                                                                                       | 19/06/20             | 11.810                                                     | 11.924                                         | 421.737                         |                        |                           |                         |  |  |
| 6627-5944        |               |                            | Down gradient                                                                                                                              | 17/08/20<br>17/09/20 | Well fitted with pump<br>WaterConnect record               | , unable to measure s<br>ds indicate max depth | •                               |                        |                           |                         |  |  |
| 6627-7126 (Hawth | orn 1)        |                            | Down gradient                                                                                                                              | 19/06/20             | Well fitted with nump, unable to measure SWL or Well denth |                                                |                                 |                        |                           |                         |  |  |
| 6627-7520        |               |                            | Down gradient                                                                                                                              | 10/03/20             | Well fitted with pump<br>WaterConnect record               | , unable to measure s<br>ds indicatae max dep  | •                               |                        |                           |                         |  |  |
| 6627-8333        |               |                            | Down gradient                                                                                                                              | 12/02/20             | Well fitted with pump<br>WaterConnect record               | , unable to measure dis indicate max depth     | •                               |                        |                           |                         |  |  |
| 6627-11131       |               |                            | Down gradient  24/09/20  Well fitted with pump, unable to measure SWL or Well depth.  WaterConnect records indicate max depth of 105.00 m. |                      |                                                            |                                                |                                 |                        |                           |                         |  |  |

|               |          |                         |                  |                                    | Fi                               | ield Paramete                          | rs            |              |                     | Sample Comments                                                                       |
|---------------|----------|-------------------------|------------------|------------------------------------|----------------------------------|----------------------------------------|---------------|--------------|---------------------|---------------------------------------------------------------------------------------|
|               |          |                         |                  |                                    | Ø                                |                                        |               |              |                     |                                                                                       |
|               |          |                         | pH (Field)       | Electrical conductivity<br>(Field) | Total Dissolved Solids<br>(TDS)* | Dissolved Oxygen<br>(Field) (filtered) | Redox (Field) | Redox (SHE)* | Temperature (Field) |                                                                                       |
|               |          |                         | pH Units         | ш <u></u>                          | mg/L                             | mg/L                                   | mV            | mV           | °C                  | 7                                                                                     |
| Location Code | Date     | Location relative to 0  |                  | / - · · · ·                        | <b>g</b> / =                     |                                        |               |              |                     |                                                                                       |
| 6627-5944     | 17/08/20 | Down gradient           | 6.47             | 4,549                              | 2,957                            | 2.24                                   | -21           | 178          | 18.1                | Clear, low turbidity, no sediment load, no odour/sheen.                               |
|               | 17/09/20 | Down gradient           | 6.43             | 3,677                              | 2,390                            | 2.14                                   | -40           | 159          | 18.1                |                                                                                       |
| 6627-8333     | 12/02/20 | Down gradient           | 6.31             | 3,474                              | 2,258                            | 2.64                                   | 19            | 218          | 18.9                |                                                                                       |
| 6627-7126     | 19/06/20 | Down gradient           | 9.69             | 5,552                              | 3,609                            | 4.94                                   | -216          | -17          | 17.4                | Clear, low turbidity, low sediment load, no odour/sheen.                              |
| 6627-7520     | 10/03/20 | Down gradient           | 6.39             | 4,063                              | 2,641                            | 4.96                                   | 486           | 685          | 21.0                |                                                                                       |
| 6627-11131    | 24/09/20 | Down gradient           | 7.04             | 3,570                              | 2,321                            | 6.80                                   | -66           | 685          | 18.7                |                                                                                       |
| BH18          | 12/02/20 | Up gradient, west       | 2.87             | 14,240                             | 9,256                            | 0.78                                   | 344           | 543          | 20.5                |                                                                                       |
| BH19          | 12/02/20 | Up gradient, west       | 2.39             | 11,110                             | 7,222                            | 3.17                                   | 440           | 639          | 21.9                |                                                                                       |
| BH22          | 12/02/20 | Cross gradient, west    | 3.56             | 8,900                              | 5,785                            | 4.47                                   | 254           | 453          | 20.1                |                                                                                       |
| GAMW-03       | 12/02/20 | Up gradient, north-west | 4.24             | 1,250                              | 813                              | 4.88                                   | 343           | 542          | 16.9                |                                                                                       |
| H01           | 12/02/20 | Up gradient, west       | 2.68             | 8,220                              | 5,343                            | 4.49                                   | 512           | 711          | 21.5                |                                                                                       |
| H02           | 12/02/20 | Down gradient           | 5.74             | 6,090                              | 3,959                            | 7.93                                   | 413           | 612          | 19.4                |                                                                                       |
| H04a          | 12/02/20 | Down gradient           | 3.11             | 9,990                              | 6,494                            | 0.90                                   | 343           | 542          | 20.8                |                                                                                       |
| H04b          | 12/02/20 | Down gradient           | 2.74             | 8,160                              | 5,304                            | 2.44                                   | 509           | 708          | 20.1                |                                                                                       |
| H06a          | 12/02/20 | Down gradient           | 3.32             | 9,630                              | 6,260                            | 2.12                                   | 314           | 513          | 20.0                |                                                                                       |
| H09           | 12/02/20 | Down gradient           | 5.91             | 4,460                              | 2,899                            | 8.35                                   | 165           | 364          | 20.4                |                                                                                       |
| H12           | 12/02/20 | Down gradient           | 2.94             | 27,410                             | 17,817                           | 1.00                                   | 387           | 586          | 15.3                |                                                                                       |
| H13           | 12/02/20 | Down gradient           | 2.69             | 34,000                             | 22,100                           | 1.32                                   | 373           | 572          | 17.9                |                                                                                       |
| KAN12         | 12/02/20 | Up gradient, west       | 3.13             | 6,720                              | 4,368                            | 0.55                                   | 252           | 451          | 20.2                |                                                                                       |
| KAN41         | 12/02/20 | Up gradient, east       | 4.65             | 9,390                              | 6,104                            | 0.49                                   | 148           | 347          | 17.6                |                                                                                       |
| KAN45         | 12/02/20 | Up gradient, east       | 3.96             | 5,130                              | 3,335                            | 0.87                                   | 281           | 480          | 16.9                |                                                                                       |
| KAN52         | 12/02/20 | Cross gradient, east    | 3.09             | 12,070                             | 7,846                            | 0.80                                   | 302           | 501          | 17.5                |                                                                                       |
| C04a          | 16/06/20 | Cross gradient, east    | 6.5 <sup>§</sup> | 2,476                              | 1,609                            | 2.45                                   | -170          | 29           | 17.1                | Yellow/brown, medium turbidity, low sediment load, no odour/sheen.                    |
| GW01          | 15/06/20 | Up gradient, north      | 6.49 ^           | 8,926                              | 5,802                            | 2.45                                   | 38            | 237          | 14.4                | Clear/pale brown, low turbidity, no sediment load, no odour/sheen.                    |
| GW02          | 15/06/20 | Up gradient, east       | 11.66 ^          | 20,641                             | 13,417                           | 1.42                                   | -73           | 126          | 14.8                | Clear/pale brown, low turbidity, no sediment load, no odour/sheen.                    |
| GW03          | 16/06/20 | Up gradient, east       | 9.85 ^           | 7,104                              | 4,618                            | 5.05                                   | 41            | 240          | 16.1                | Clear/pale brown, low turbidity, no sediment load, no odour/sheen.                    |
| GW04          | 16/06/20 | Cross gradient, east    | 11.26 ^          | 6,887                              | 4,477                            | 3.83                                   | -135          | 64           | 15.9                | Clear/brown, low to medium turbidity, low sediment load (schist dust), no odour/sheen |
| GW05          | 15/06/20 | Down gradient           | 11.09 ^          | 744                                | 484                              | 3.59                                   | -39           | 160          | 15.2                | Grey. Medium turbidity, medium sediment load, no odour/sheen.                         |
| GW06          | 15/06/20 | Down gradient           | 8.06 ^           | 5,778                              | 3,756                            | 1.80                                   | 29            | 228          | 16.1                | Clear/pale brown, low/medium turbidity, no sediment load, no odour/sheen.             |
| GW07          | 16/06/20 | Down gradient           | 11.46 ^          | 1,262                              | 820                              | 4.80                                   | -193          | 7            | 16.7                | Pale grey, low to medium turbidity, no sediment load, no odour/sheen.                 |
| H15           | 16/06/20 | Cross gradient, east    | 6.9 §            | 812                                | 528                              | 3.42                                   | -169          | 30           | 15.5                | Clear/grey-brown, low turbidity, no sediment load, no odour/sheen.                    |
| KAN23         | 15/06/20 | Cross gradient, west    | 7.0 §            | 3,494                              | 2,271                            | 1.46                                   | 30            | 229          | 16.4                | Clear, low turbidity, fine sand in bottom of hydrasleeve, sulphur odour, no sheen.    |
| KAN26         | 19/06/20 | Cross gradient, west    | 8.81 ^           | 1,202                              | 781                              | 6.54                                   | -196          | 3            | 15.9                | Clear, low turbidity, low sediment load, no odour/sheen.                              |

<sup>#</sup> TDS values were calculated by multiplying the electrical conductivity values with a conversion factor of 0.65

<sup>\*</sup> Redox potential relative to the standard hydrogen electrode (SHE). Redox potential (SHE) = field redox potential (Ag/AgCl electrode with saturated KCl solution) + 199 mV

<sup>§</sup> Value measured in the laboratory.

<sup>^</sup> The field pH values recorded in June 2020 indicated a faulty pH probe and were not representative of site conditions.

< 0.02

< 0.02

< 0.02

< 0.02

< 0.02

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

<0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

|                      |              |                   |                               | Inorganics             |                                          |                                         | 1                                | PFAS in W                                | aters Short                                  | T                   | 1                        | 1                                    |
|----------------------|--------------|-------------------|-------------------------------|------------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|---------------------|--------------------------|--------------------------------------|
|                      |              |                   |                               | Total Dissolved Solids | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane<br>sulfonic acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | PFAS (Sum of Total) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* |
|                      |              |                   |                               | mg/L                   | μg/L                                     | μg/L                                    | μg/L                             | μg/L                                     | μg/L                                         | μg/L                | μg/L                     | μg/L                                 |
| EQL                  |              |                   |                               | 5                      | 0.01                                     | 0.01                                    | 0.01                             | 0.01                                     | 0.02                                         | 0.01                | 0.01                     | 0.01                                 |
| NHMRC 2019 Rec       |              |                   |                               |                        | 2                                        | 2                                       | 10                               |                                          |                                              |                     | 2                        |                                      |
| PFAS NEMP 2020       |              |                   | domestic setting only (1)     |                        | 0.7<br>0.07                              | 0.7<br>0.07                             | 5.6<br>0.56                      |                                          |                                              |                     | 0.7<br>0.07              |                                      |
| PFAS NEMP 2020       |              |                   | ol (2)                        |                        | 0.07                                     | 0.00023 §                               | 19                               |                                          |                                              |                     | 0.07                     |                                      |
| Catchment specific   |              |                   |                               |                        | 0.0046                                   | 0.0066                                  | 19                               |                                          |                                              |                     |                          |                                      |
| Odtorii i opecine    | WQO - Highly | distarbed systems | 3 (0)                         |                        | 0.0040                                   | 0.0000                                  |                                  |                                          |                                              |                     |                          |                                      |
| <b>Location Code</b> | Date         | Field ID          | Location relative to CFS site |                        |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      |
| 6627-5944            | 17/08/20     | 6627-5944         | Down gradient                 |                        | 0.047 ^*                                 | 0.063 ^*                                | 0.050 ^*                         | 0.001 ^                                  | <0.005 ^*                                    | 0.15 ^*             | 0.110 ^*                 | 0.068 ^*                             |
| 6627-5944            | 17/09/20     | 6627-5944_B       | Down gradient                 |                        | 0.038 ^*                                 | 0.046 ^*                                | 0.0042 ^*                        | 0.001 ^                                  | <0.005 ^*                                    | 0.129 ^*            | 0.084 ^*                 | 0.050 ^*                             |
| 6627-7126            | 19/06/20     | Hawthorn 1        | Down gradient                 |                        | <0.01 #                                  | <0.01 #                                 | <0.01                            | <0.01                                    | <0.02                                        | <0.01               | <0.01                    | <0.01                                |
| 6627-7520            | 10/03/20     | 6627-7520         | Down gradient                 |                        | <0.01 #                                  | <0.01 #                                 | <0.01                            | <0.01                                    | <0.01                                        | <0.01               | <0.01                    | <0.01                                |
| 6627-8333            | 12/02/20     | 6627-8333         | Down gradient                 | 2,100                  | 0.07                                     | 0.08                                    | <0.01                            | <0.01                                    | <0.01                                        | 0.15                | 0.15                     | 0.08                                 |
| 6627-11131           | 24/09/20     | 6627-11131        | Down gradient                 |                        | <0.002 ^*                                | <0.002 ^*                               | <0.002 ^*                        | <0.005 ^*                                | <0.005 ^*                                    | <0.0002 ^           | <0.002 ^*                | <0.0002 ^                            |
| BH19                 | 12/02/20     | BH19              | Up gradient, west             | 24,000                 | <0.01 #                                  | 0.02                                    | <0.01                            | <0.01                                    | <0.01                                        | 0.02                | 0.02                     | 0.02                                 |
| BH22                 | 12/02/20     | BH22              | Cross gradient, west          | 13,000                 | 0.07                                     | 0.09                                    | 0.10                             | <0.01                                    | <0.01                                        | 0.25                | 0.16                     | 0.18                                 |
| GAMW-03              | 12/02/20     | GAMW-03           | Up gradient, north-west       | 1,000                  | 0.02                                     | 0.03                                    | <0.01                            | 0.02                                     | <0.01                                        | 0.06                | 0.04                     | 0.03                                 |
| H01                  | 12/02/20     | H01               | Up gradient, west             |                        | 0.03                                     | 0.02                                    | < 0.01                           | < 0.01                                   | < 0.01                                       | 0.05                | 0.05                     | 0.02                                 |
| H02                  | 12/02/20     | H02               | Down gradient                 | 5,600                  | 0.38                                     | 0.04                                    | 0.02                             | < 0.01                                   | < 0.01                                       | 0.44                | 0.42                     | 0.06                                 |
| H04a                 | 12/02/20     | H04a              | Down gradient                 | 18,000                 | 0.15                                     | 0.02                                    | 0.02                             | < 0.01                                   | < 0.01                                       | 0.19                | 0.17                     | 0.04                                 |
| H04b                 | 12/02/20     | H04b              | Down gradient                 | 7,600                  | 0.04                                     | 0.02                                    | < 0.01                           | < 0.01                                   | <0.01                                        | 0.07                | 0.07                     | 0.02                                 |
| H06a                 | 12/02/20     | H06a              | Down gradient                 | 17,000                 | 0.12                                     | 0.03                                    | 0.02                             | < 0.01                                   | < 0.01                                       | 0.17                | 0.16                     | 0.05                                 |
| H09                  | 12/02/20     | H09               | Down gradient                 | 4,700                  | <0.01 #                                  | 0.02                                    | < 0.01                           | < 0.01                                   | < 0.01                                       | 0.02                | 0.02                     | 0.02                                 |
| H12                  | 12/02/20     | H12               | Down gradient                 | 140,000                | <0.01 #                                  | 0.03                                    | < 0.02                           | < 0.02                                   | < 0.01                                       | 0.03                | 0.03                     | 0.03                                 |
| H13                  | 12/02/20     | H13               | Down gradient                 | 150,000                | <0.01 #                                  | 0.08                                    | < 0.02                           | < 0.02                                   | < 0.01                                       | 0.08                | 0.08                     | 0.08                                 |
| KAN12                | 12/02/20     | KAN12             | Up gradient, west             | 11,000                 | 0.05                                     | 0.03                                    | 0.04                             | <0.01                                    | <0.01                                        | 0.12                | 0.08                     | 0.07                                 |
| KAN41                | 12/02/20     | KAN41             | Up gradient, east             | 18,000                 | <0.01 #                                  | 0.02                                    | <0.01                            | 0.04                                     | <0.01                                        | 0.06                | 0.02                     | 0.02                                 |
| KAN45                | 12/02/20     | KAN45             | Up gradient, east             | 5,800                  | 0.06                                     | 0.02                                    | 0.02                             | <0.01                                    | <0.01                                        | 0.11                | 0.09                     | 0.05                                 |
| KAN52                | 12/02/20     | KAN52             | Cross gradient, east          | 18,000                 | <0.01 #                                  | 0.02                                    | <0.01                            | <0.01                                    | <0.01                                        | 0.02                | 0.02                     | 0.02                                 |
| C04a                 | 16/06/20     | C04a              | Cross gradient, east          |                        | <0.01 #                                  | <0.01 #                                 | <0.01                            | <0.01                                    | <0.02                                        | <0.01               | <0.01                    | <0.01                                |
| GW01                 | 15/06/20     | GW01              | Up gradient, north            |                        | <0.01 #                                  | <0.01 #                                 | <0.01                            | <0.01                                    | <0.02                                        | <0.01               | <0.01                    | <0.01                                |
| GW02                 | 15/06/20     | GW02              | Up gradient, east             |                        | <0.01 #                                  | <0.01 #                                 | <0.01                            | <0.01                                    | <0.02                                        | <0.01               | <0.01                    | <0.01                                |
| GW03                 | 16/06/20     | GW03              | Up gradient, east             |                        | <0.01 #                                  | 0.01                                    | <0.01                            | <0.01                                    | <0.02                                        | 0.01                | 0.01                     | 0.01                                 |
| GW04                 | 16/06/20     | GW04              | Cross gradient, east          |                        | <0.01 #                                  | <0.01 #                                 | <0.01                            | <0.01                                    | <0.02                                        | <0.01               | <0.01                    | <0.01                                |
| CIMOS                | 45/00/00     | OVAZOE            | D                             |                        | 0 0 4 #                                  | #                                       | :0.04                            | :0.01                                    | -0.00                                        | -0.04               | :0.04                    | -0.04                                |

<0.01 \*

<0.01 #

<0.01 #

<0.01 #

<0.01 #

<0.01 #

<0.01 #

<0.01 #

<0.01 #

<0.01 #

<0.01 #

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

15/06/20

15/06/20

16/06/20

16/06/20

15/06/20

19/06/20

GW05

GW06

GW07

KAN23

KAN26

H15

GW05

GW06

GW07

KAN23

KAN26

H15

Down gradient

Down gradient

Down gradient

Cross gradient, east

Cross gradient, west

Cross gradient, west

<sup>(1)</sup> The NHMRC 2008 recreational guideline values (10x ADWG 2011 drinking water guideline values) apply to domestic settings (e.g. private residential bores) only.

<sup>(1) 99%</sup> species protection level - applies to bioaccumulation risk to slightly to moderately disturbed systems and to direct ecological risk to high conservation value systems.

<sup>(2)</sup> Catchment specific WQG for highly disturbed systems - 90th percentile of background concentrations in reference subcatchment - applies to Dawesley Creek.

<sup>§</sup> The 99% species protection level for PFOS was not applied. It was replaced with the catchment specific WQG.

<sup>^</sup> Trace level analysis; EQL =  $0.0002 \mu g/L$  for PFHxS, PFOS, PFOA and sums; EQL =  $0.0004 \mu g/L$  or  $0.005 \mu g/L$  for 6:2 FTS and 8:2 FTS

<sup>\*</sup> Higher value adopted from QA/QC analysis

<sup>#</sup>Concentration below the standard LOR (0.01 μg/L) may potentially exeed the catchment specific WQG for PFOS and PFHxS.

0.4

|                |               |                      |                                                            |                   | Moisture               |                                                |                                           |                                    | PFAS in Soi                                 | ls Short                                      |                |                                |                                        |
|----------------|---------------|----------------------|------------------------------------------------------------|-------------------|------------------------|------------------------------------------------|-------------------------------------------|------------------------------------|---------------------------------------------|-----------------------------------------------|----------------|--------------------------------|----------------------------------------|
|                |               |                      |                                                            |                   | % Moisture Content (%) | চ্চ Perfluorohexane<br>জ sulfonic acid (PFHxS) | চerfluorooctane<br>জ sulfonic acid (PFOS) | E Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>යි Sulfonate (6:2 FTS) | 동2 Fluorotelomer<br>조 sulfonic acid (8:2 FTS) | চি<br>সু<br>জু | සි Sum of PFHxS and<br>කි PFOS | 동 Sum of US EPA PFAS<br>(PFOS + PFOA)* |
| EQL            |               |                      |                                                            |                   | 0.1                    | 0.1                                            | 0.1                                       | 0.1                                | 0.1                                         | 0.1                                           | 0.1            | 0.1                            | 0.1                                    |
| PFAS NEMP 2020 |               |                      |                                                            |                   |                        | 20,000                                         | 20,000                                    | 50,000                             |                                             |                                               |                | 20,000                         |                                        |
| PFAS NEMP 2020 |               |                      |                                                            |                   |                        | 10                                             | 10                                        | 100                                |                                             |                                               |                | 10 ^                           |                                        |
| PFAS NEMP 2020 |               | •                    |                                                            |                   |                        |                                                | 1,000                                     | 10,000                             |                                             |                                               |                |                                |                                        |
| PFAS NEMP 2020 | Interim Ecolo | gical Indirect E     | xposure                                                    |                   |                        |                                                | 10                                        |                                    |                                             |                                               |                |                                |                                        |
| Location Code  | Data          | Field ID             | Location Description                                       | Critorio          |                        |                                                |                                           |                                    |                                             |                                               |                |                                |                                        |
| DC-UP01        | 23/07/20      | Field ID<br>DC-UP01S | Location Description  Dawesley Ck - up gradient            | Criteria<br>HIL A | 66                     | <0.3                                           | 1.4                                       | < 0.3                              | <0.3                                        | <0.6                                          | 1.4            | 1.4                            | 1.4                                    |
| DC-UP02        | 23/07/20      | DC-UP01S<br>DC-UP02S | Dawesley Ck - up gradient  Dawesley Ck - up gradient       | HIL A             | 36                     | <0.3                                           | <0.1                                      | <0.1                               | <0.3                                        | <0.0                                          | <0.1           | <0.1                           | <0.1                                   |
| Creek 4        | 06/05/20      | Creek 4              | Dawesley Ck - up gradient  Dawesley Ck - adjacent CFS site | HIL D             | 55                     | 4.6                                            | 33                                        | 0.6                                | <0.1                                        | <0.4                                          | 38             | 38                             | 34                                     |
| Creek 5        | 06/05/20      | Creek 5              | Dawesley Ck - adjacent CFS site                            | HIL D             | 73                     | 160                                            | 810                                       | 32                                 | <0.5                                        | <1                                            | 1,000          | 970                            | 840                                    |
| Creek 6        | 06/05/20      | Creek 6              | Dawesley Ck - adjacent Cr 3 site                           | HIL D             | 45                     | 55 *                                           | 500 *                                     | 5.5 *                              | <0.3                                        | <0.4                                          | 540 *          | 540 *                          | 510 *                                  |
| DC01           | 11/02/20      | DC01s                | Dawesley Ck - down gradient                                | HIL D             | 74                     | 2.5                                            | 25                                        | 0.2                                | <0.2                                        | <0.4                                          | 27             | 27                             | 25                                     |
| BV01           | 11/02/20      | BV01s                | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 87                     | 8.2                                            | 62                                        | 1.2                                | <0.1                                        | <0.1                                          | 71             | 70                             | 63                                     |
| DC02A          | 17/08/20      | DC02AS               | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 66.4 *                 | 1.8 *                                          | 40.3 *                                    | 0.2                                | <0.5 *                                      | <0.5 *                                        | 35             | 42.1 *                         | 34                                     |
| DC03           | 06/05/20      | DC02A3               | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 77                     | 3.0                                            | 58                                        | 1.6                                | 1.0                                         | <1                                            | 64             | 61                             | 60                                     |
| DC04           | 06/05/20      | DC03                 | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 69                     | 1.4                                            | 44                                        | 0.9                                | <0.5                                        | <1                                            | 46             | 45                             | 45                                     |
| DC05           | 06/05/20      | DC04<br>DC05         | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 31                     | 0.3                                            | 7.0                                       | <0.2                               | <0.3                                        | <0.4                                          | 7.3            | 7.3                            | 7                                      |
| DC06A          | 18/05/20      | DC06A                | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 80                     | 0.8                                            | 28                                        | <0.5                               | <0.5                                        | <1                                            | 29             | 29                             | 28                                     |
| DC06B          | 18/05/20      | DC06B                | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 52                     | 0.5                                            | 15                                        | <0.2                               | <0.2                                        | <1                                            | 15             | 15                             | 15                                     |
| DC07           | 08/05/20      | DC00B                | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 63                     | 0.7                                            | 27                                        | 0.8                                | <0.2                                        | <0.4                                          | 29             | 28                             | 28                                     |
| DC08           | 09/06/20      | DC07                 | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 74                     | 2.1                                            | 65                                        | 1.0                                | <0.5                                        | <1                                            | 69             | 68                             | 66                                     |
| DC09           | 08/07/20      | DC09S                | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 41 *                   | 1.3                                            | 37 *                                      | 0.1                                | 0.6 *                                       | <0.5 *                                        | 39 *           | 38 *                           | 37 *                                   |
| DC10           | 08/07/20      | DC10S                | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 64                     | 1.5                                            | 59                                        | 0.5                                | <0.1                                        | <0.2                                          | 61             | 60                             | 59                                     |
| DC11           | 08/07/20      | DC10S                | Dawesley Ck - down gradient                                | HIL A             | 38                     | 1.4                                            | 31                                        | 0.2                                | 0.4                                         | 0.0                                           | 33             | 33                             | 32                                     |
| DC13           | 08/07/20      | DC13S                | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 25                     | 0.1                                            | 3.1                                       | <0.1                               | <0.1<br><0.1                                | <0.2<br><0.2                                  | 3.2            | 3.2                            | 3.1                                    |
| DC14           | 08/07/20      | DC14S                | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 36                     | 0.1                                            | 9.8                                       | <0.1                               | <0.1                                        | <0.2                                          | 10             | 10                             | 9.8                                    |
| DC15           | 08/07/20      | DC143                | Dawesley Ck - down gradient  Dawesley Ck - down gradient   | HIL A             | 57                     | 0.6                                            | 9.6<br><b>27</b>                          | 0.8                                | 0.5                                         | <0.2                                          | 29             | 27                             | 27                                     |
| DC16           | 23/07/20      | DC16S                | Dawesley Ck - down gradient                                | HIL A             | 69                     | 1.3                                            | 34                                        | 0.2                                | <0.3                                        | <0.6                                          | 35             | 35                             | 34                                     |
| DC17           | 23/07/20      | DC17S                | Dawesley Ck - down gradient                                | HIL A             | 70                     | 1.7                                            | 48                                        | 0.2                                | <0.3                                        | <0.6                                          | 50             | 49                             | 48                                     |
| DC17A          | 10/08/20      | DC17AS               | Mt Barker Ck - down gradient                               | HIL A             | 46 *                   | <0.2 *                                         | 4.3 *                                     | 0.3 *                              | <0.5 *                                      | <0.5 *                                        | 4.6 *          | 4.3 *                          | 3.9 *                                  |
| DC18           | 23/07/20      | DC18S                | Bremer River - down gradient                               | HIL A             | 46                     | 0.2                                            | 5.8                                       | 0.3                                | <0.2                                        | <0.4                                          | 6.3            | 6.0                            | 6.0                                    |
| DC19           | 23/07/20      | DC19S                | Bremer River - down gradient                               | HIL A             | 32.7 *                 | <0.2 *                                         | 0.4                                       | <0.2 *                             | <0.5 *                                      | <0.5 *                                        | 0.4            | 0.4                            | 0.4                                    |
| BR01           | 23/07/20      | BR01S                | Bremer River - background **                               | HIL A             | 36                     | 0.4                                            | 1.2                                       | 0.2                                | <0.1                                        | <0.2                                          | 1.7            | 1.6                            | 1.4                                    |
| MBC01          | 23/07/20      | MBC01S               | Mt Barker Ck - background ^^                               | HIL A             | 62                     | < 0.3                                          | 1.4                                       | <0.3                               | <0.3                                        | <0.6                                          | 1.4            | 1.4                            | 1.4                                    |
| MBC02          | 23/07/20      | MBC02S               | Mt Barker Ck - background ^^                               | HIL A             | 67 *                   | <0.3 *                                         | 2.2                                       | 0.4                                | <0.5 *                                      | <0.6 *                                        | 2.5            | 2.2                            | 2.5                                    |
| NC01           | 23/07/20      | NC01S                | Nairne Ck - background ##                                  | HIL A             | 46                     | <0.2                                           | 0.9                                       | <0.2                               | <0.2                                        | < 0.4                                         | 0.9            | 0.9                            | 0.9                                    |
| <u> </u>       | 1             |                      | - J                                                        |                   | 1                      |                                                |                                           |                                    |                                             |                                               |                |                                |                                        |

<sup>\*</sup> Higher value adopted from QA/QC analysis

<sup>\*\*</sup> Bremer River up gradient of confluence with Mt Barker Creek (between DC17A and DC18)

<sup>^^</sup> Mt Barker Creek up gradient of confluence with Dawesley Creek (between DC17 and DC17A)

<sup>\*\*\*</sup> Nairne Creek up gradient of confluence with Dawesley Creek (between DC11 and DC13)

|                 |                   |                            |                               | PFAS -                                        | - Perfluoroa                               | alkyl Sulfoni                                | ic Acids                                   |                                             |                               |                                    |                                      | PFAS -                            | Perfluoroal                      | kyl Carboxy                   | /lic Acids                             |                                          |                                     |                                             |
|-----------------|-------------------|----------------------------|-------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------|------------------------------------|--------------------------------------|-----------------------------------|----------------------------------|-------------------------------|----------------------------------------|------------------------------------------|-------------------------------------|---------------------------------------------|
|                 |                   |                            | Perfluorobutane sulfonic acid | E Perfluoropentane sulfonic acid<br>구 (PFPeS) | E Perfluoroheptane sulfonic acid<br>內FHpS) | E Perfluorohexane sulfonic acid<br>구 (PFHxS) | E Perfluorodecanesulfonic acid<br>다 (PFDS) | E Perfluorooctane sulfonic acid<br>주 (PFOS) | Perfluorobutanoic acid (PFBA) | ந் Perfluoropentanoic acid (PFPeA) | E<br>Perfluoroheptanoic acid (PFHpA) | ာ် Perfluorohexanoic acid (PFHxA) | ந் Perfluorononanoic acid (PFNA) | Perfluorodecanoic acid (PFDA) | চিচাথিত Perfluoro octanoic acid (PFOA) | E Perfluorododecanoic acid<br>가 (PFDoDA) | চিদ্যাuorotridecanoic acid (PFTrDA) | E Perfluorotetradecanoic acid<br>☐ (PFTeDA) |
| EQL             |                   |                            | 0.01                          | 0.01                                          | 0.01                                       | 0.01                                         | 0.02                                       | 0.01                                        | 0.02                          | 0.02                               | 0.01                                 | 0.01                              | 0.01                             | 0.02                          | 0.01                                   | 0.05                                     | 0.1                                 | 0.5                                         |
| NHMRC 2019 Red  | reational Water F | PFAS Guidelines            |                               |                                               |                                            | 2                                            |                                            | 2                                           |                               |                                    |                                      |                                   |                                  |                               | 10                                     |                                          |                                     |                                             |
| PFAS NEMP 2020  | Health Drinking   | Water                      |                               |                                               |                                            | 0.07                                         |                                            | 0.07                                        |                               |                                    |                                      |                                   |                                  |                               | 0.56                                   |                                          |                                     |                                             |
| PFAS NEMP 2.0 2 | :020 Freshwater - | - 99% protection level (1) |                               |                                               |                                            |                                              |                                            | 0.00023 §                                   |                               |                                    |                                      |                                   |                                  |                               | 19                                     |                                          |                                     |                                             |
|                 |                   | listurbed systems (2)      |                               |                                               |                                            | 0.0046                                       |                                            | 0.0066                                      |                               |                                    |                                      |                                   |                                  |                               |                                        |                                          |                                     |                                             |
| Location Code   | Date              | Sample Type                |                               |                                               |                                            |                                              |                                            |                                             |                               |                                    |                                      |                                   |                                  |                               |                                        |                                          |                                     |                                             |
| Pre-TOPA        |                   | I <b>3</b> I               |                               |                                               |                                            |                                              |                                            |                                             |                               |                                    |                                      |                                   |                                  |                               |                                        |                                          |                                     |                                             |
| BH22            | 12/02/20          | groundwater                | < 0.01                        | < 0.01                                        | < 0.01                                     | 0.07                                         | < 0.02                                     | 0.09                                        | < 0.02                        | < 0.02                             | 0.02                                 | 0.02                              | < 0.01                           | < 0.02                        | 0.10                                   | < 0.05                                   | < 0.1                               | < 0.5                                       |
| DC01            | 11/02/20          | surface water              | 0.03                          | 0.03                                          | < 0.01                                     | 0.16                                         | <0.02                                      | 0.099                                       | 0.02                          | 0.04                               | 0.02                                 | 0.099                             | < 0.01                           | < 0.02                        | 0.02                                   | < 0.05                                   | < 0.1                               | < 0.5                                       |
| H02             | 12/02/20          | groundwater                | 0.25                          | 0.19                                          | < 0.01                                     | 0.38                                         | <0.02                                      | 0.04                                        | 0.08                          | 0.25                               | 0.03                                 | 0.38                              | < 0.01                           | < 0.02                        | 0.02                                   | < 0.05                                   | <0.1                                | < 0.5                                       |
| H04a            | 12/02/20          | groundwater                | 0.03                          | 0.03                                          | < 0.01                                     | 0.15                                         | < 0.02                                     | 0.02                                        | 0.03                          | 0.05                               | 0.02                                 | 0.1                               | < 0.01                           | < 0.02                        | 0.02                                   | < 0.05                                   | < 0.1                               | < 0.5                                       |
| H06a            | 12/02/20          | groundwater                | 0.02                          | 0.03                                          | < 0.01                                     | 0.12                                         | < 0.02                                     | 0.03                                        | < 0.02                        | 0.04                               | 0.01                                 | 0.09                              | < 0.01                           | < 0.02                        | 0.02                                   | < 0.05                                   | < 0.1                               | < 0.5                                       |
| Post-TOPA       | •                 |                            | -                             | •                                             | •                                          | -                                            | -                                          |                                             |                               | -                                  |                                      | -                                 | -                                | -                             | •                                      | -                                        | •                                   | •                                           |
| BH22            | 12/02/20          | groundwater                | < 0.01                        | < 0.01                                        | < 0.01                                     | 0.06                                         | < 0.02                                     | 0.06                                        | < 0.02                        | < 0.02                             | 0.02                                 | 0.02                              | < 0.01                           | < 0.02                        | 0.08                                   | < 0.05                                   | < 0.1                               | < 0.5                                       |
| DC01            | 11/02/20          | surface water              | 0.03                          | 0.03                                          | < 0.01                                     | 0.15                                         | < 0.02                                     | 0.10                                        | 0.04                          | 0.05                               | 0.02                                 | 0.15                              | < 0.01                           | < 0.02                        | 0.02                                   | < 0.05                                   | < 0.1                               | < 0.5                                       |
| H02             | 12/02/20          | groundwater                | 0.22                          | 0.14                                          | < 0.01                                     | 0.28                                         | < 0.02                                     | 0.02                                        | 0.1                           | 0.23                               | 0.03                                 | 0.34                              | < 0.01                           | < 0.02                        | 0.01                                   | < 0.05                                   | < 0.1                               | < 0.5                                       |
| H04a            | 12/02/20          | groundwater                | 0.03                          | 0.03                                          | < 0.01                                     | 0.13                                         | < 0.02                                     | < 0.01                                      | 0.03                          | 0.04                               | 0.02                                 | 0.11                              | < 0.01                           | < 0.02                        | 0.02                                   | < 0.05                                   | < 0.1                               | < 0.5                                       |

<sup>(1) 99%</sup> species protection level - applies to bioaccumulation risk to slightly to moderately disturbed systems and to direct ecological risk to high conservation value systems.

< 0.01

0.09

< 0.02

< 0.01

0.02

0.04

0.01

0.09

< 0.02

< 0.05

0.02

0.03

groundwater

H06a

12/02/20

<sup>(2)</sup> WQG for PFOS bioaccumulation risk - 90th percentile of background concentrations in Mt Barker Creek - applies to Dawesley Creek.

<sup>§</sup> The 99% species protection level for PFOS was not applied. It was replaced with the catchment specific WQG.

|                        |                      |                        | -                                     |                                      |                                                  |                                                 |                                                        |                                                              |                                                             |                                                         |                                              |                                          |                                              |                                                |                       |
|------------------------|----------------------|------------------------|---------------------------------------|--------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|------------------------------------------|----------------------------------------------|------------------------------------------------|-----------------------|
|                        |                      |                        |                                       |                                      | PFAS                                             | - Perfluoro                                     | alkyl Sulfor                                           | amide                                                        | •                                                           |                                                         | PFAS -                                       | Fluorotelo                               | mer Sulfon                                   | ic Acids                                       | Sums                  |
|                        |                      |                        | Perfluorooctane sulfonamide<br>(FOSA) | Perfluoroundecanoic acid<br>(PFUnDA) | N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA) | N-Ethyl perfluorooctane<br>sulfonamidoethanol (EtFOSE) | N-Methyl perfluorooctane<br>sulfonamidoacetic acid (MeFOSAA) | N-Ethyl perfluorooctane<br>sulfonamidoacetic acid (EtFOSAA) | N-Methyl perfluorooctane<br>sulfonamidoethanol (MEFOSE) | 4:2 Fluorotelomer sulfonic acid (4:2<br>FTS) | 6:2 Fluorotelomer Sulfonate (6:2<br>FTS) | 8:2 Fluorotelomer sulfonic acid (8:2<br>FTS) | 10:2 Fluorotelomer sulfonic acid<br>(10:2 FTS) | Sum of PFHxS and PFOS |
|                        |                      |                        | μg/L                                  | μg/L                                 | μg/L                                             | μg/L                                            | μg/L                                                   | μg/L                                                         | μg/L                                                        | μg/L                                                    | μg/L                                         | μg/L                                     | μg/L                                         | μg/L                                           | μg/L                  |
| EQL                    |                      |                        | 0.1                                   | 0.02                                 | 0.05                                             | 0.1                                             | 0.5                                                    | 0.02                                                         | 0.02                                                        | 0.05                                                    | 0.01                                         | 0.01                                     | 0.01                                         | 0.01                                           | 0.01                  |
| NHMRC 2019 Recr        | eational Water PFAS  | S Guidelines           |                                       |                                      |                                                  |                                                 |                                                        |                                                              |                                                             |                                                         |                                              |                                          |                                              |                                                | 2                     |
| PFAS NEMP 2020         | Health Drinking Wat  | er                     |                                       |                                      |                                                  |                                                 |                                                        |                                                              |                                                             |                                                         |                                              |                                          |                                              |                                                | 0.07                  |
| PFAS NEMP 2.0 20       | 020 Freshwater - 99% | % protection level (1) |                                       |                                      |                                                  |                                                 |                                                        |                                                              |                                                             |                                                         |                                              |                                          |                                              |                                                |                       |
| Catchment specific     | WQG - highly distur  | bed systems (2)        |                                       |                                      |                                                  |                                                 |                                                        |                                                              |                                                             |                                                         |                                              |                                          |                                              |                                                |                       |
| Location Code Pre-TOPA | Date                 | Sample Type            |                                       |                                      |                                                  |                                                 |                                                        |                                                              |                                                             |                                                         |                                              |                                          |                                              |                                                |                       |
| BH22                   | 12/02/20             | groundwater            | < 0.1                                 | < 0.02                               | < 0.05                                           | < 0.1                                           | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | < 0.01                                       | < 0.01                                   | < 0.01                                       | < 0.01                                         | 0.16                  |
| DC01                   | 11/02/20             | surface water          | < 0.1                                 | < 0.02                               | < 0.05                                           | <0.1                                            | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | < 0.01                                       | < 0.01                                   | < 0.01                                       | < 0.01                                         | 0.259                 |
| H02                    | 12/02/20             | groundwater            | < 0.1                                 | < 0.02                               | < 0.05                                           | <0.1                                            | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | < 0.01                                       | < 0.01                                   | < 0.01                                       | < 0.01                                         | 0.42                  |
| H04a                   | 12/02/20             | groundwater            | < 0.1                                 | < 0.02                               | < 0.05                                           | < 0.1                                           | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | < 0.01                                       | < 0.01                                   | < 0.01                                       | < 0.01                                         | 0.17                  |
| H06a                   | 12/02/20             | groundwater            | < 0.1                                 | < 0.02                               | < 0.05                                           | < 0.1                                           | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | < 0.01                                       | < 0.01                                   | < 0.01                                       | < 0.01                                         | 0.15                  |
| Post-TOPA              |                      |                        |                                       |                                      |                                                  |                                                 |                                                        |                                                              |                                                             |                                                         |                                              |                                          |                                              |                                                |                       |
| BH22                   | 12/02/20             | groundwater            | <0.1                                  | < 0.02                               | < 0.05                                           | <0.1                                            | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | < 0.01                                       | < 0.01                                   | < 0.01                                       | <0.01                                          | 0.12                  |
| DC01                   | 11/02/20             | surface water          | <0.1                                  | < 0.02                               | < 0.05                                           | <0.1                                            | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | <0.01                                        | <0.01                                    | <0.01                                        | < 0.01                                         | 0.25                  |
| H02                    | 12/02/20             | groundwater            | < 0.1                                 | < 0.02                               | < 0.05                                           | < 0.1                                           | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | < 0.01                                       | < 0.01                                   | < 0.01                                       | < 0.01                                         | 0.30                  |
| H04a                   | 12/02/20             | groundwater            | < 0.1                                 | < 0.02                               | < 0.05                                           | <0.1                                            | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | < 0.01                                       | <0.01                                    | <0.01                                        | < 0.01                                         | 0.13                  |
| H06a                   | 12/02/20             | groundwater            | < 0.1                                 | < 0.02                               | < 0.05                                           | < 0.1                                           | < 0.5                                                  | < 0.02                                                       | < 0.02                                                      | < 0.05                                                  | < 0.01                                       | < 0.01                                   | < 0.01                                       | < 0.01                                         | 0.09                  |

|                                                           |                   |             |                                          |                                         |                                  | PFAS in E                                | iota Short                                   |                     |                          |                                      |
|-----------------------------------------------------------|-------------------|-------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|---------------------|--------------------------|--------------------------------------|
|                                                           |                   |             | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | PFAS (Sum of Total) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* |
| <u></u>                                                   |                   |             | μg/kg                                    | μg/kg                                   | μg/kg                            | μg/kg                                    | μg/kg                                        | μg/kg               | μg/kg                    | μg/kg                                |
| EQL                                                       | D-i-t             |             | 1                                        | 1                                       | 1                                | 1                                        | 1                                            | 1                   | 1                        | 1                                    |
| FSANZ 2017 Fruit (all) Trigg<br>FSANZ 2017 Vegetables (al |                   |             |                                          |                                         | 5.1<br>8.8                       |                                          |                                              |                     | 0.6<br>1.1               |                                      |
| FSANZ 2017 Vegetables (all FSANZ 2017 Meat Mammal         |                   |             |                                          |                                         | 28                               |                                          |                                              |                     | 3.5                      |                                      |
| 1 67 1142 2017 Weat Walling                               | ian riiggeri eint |             |                                          |                                         | 20                               |                                          |                                              |                     | 0.0                      |                                      |
| <b>Location Code</b>                                      | Date              | Field ID    |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      |
| CFS State Training Centre                                 | 30/03/20          | CFS Apple 1 | <0.5                                     | < 0.5                                   | < 0.5                            | <0.5                                     | < 0.5                                        | <0.5                | < 0.5                    | <0.5                                 |
| 260 Pyrites Road                                          | 10/03/20          | Capsicum_1  | < 0.5                                    | < 0.5                                   | <1                               | <1                                       | <1                                           | <1                  | < 0.5                    | < 0.5                                |
| 260 Pyrites Road                                          | 10/03/20          | Corn_1      | < 0.5                                    | < 0.5                                   | <1                               | <1                                       | <1                                           | <1                  | < 0.5                    | < 0.5                                |
| 260 Pyrites Road                                          | 10/03/20          | Eggplant_1  | <0.5                                     | < 0.5                                   | <1                               | <1                                       | <1                                           | <1                  | < 0.5                    | <0.5                                 |
| 260 Pyrites Road                                          | 10/03/20          | Kale_1      | < 0.5                                    | < 0.5                                   | <1                               | <1                                       | <1                                           | <1                  | < 0.5                    | <0.5                                 |
| 260 Pyrites Road                                          | 10/03/20          | Potato_1    | <0.5                                     | < 0.5                                   | <1                               | <1                                       | <1                                           | <1                  | < 0.5                    | <0.5                                 |
| 260 Pyrites Road                                          | 10/03/20          | Pumpkin 1   | <0.5                                     | <0.5                                    | <1                               | <1                                       | <1                                           | <1                  | < 0.5                    | <0.5                                 |
| 260 Pyrites Road                                          | 10/03/20          | Rockmelon_1 | <0.5                                     | <0.5                                    | <1                               | <1                                       | <1                                           | <1                  | <0.5                     | <0.5                                 |
| 260 Pyrites Road                                          | 10/03/20          | Tomato_1    | <0.5                                     | < 0.5                                   | <1                               | <1                                       | <1                                           | <1                  | < 0.5                    | < 0.5                                |
| 220 Pyrites Road                                          | 10/03/20          | Lamb_1      | <1                                       | <1                                      | <1                               | <1                                       | <1                                           | <1                  | <1                       | <1                                   |

FSANZ 2017 - Perfluorinated Chemicals in Food, Food Standards Australia New Zealand, 2017

|     |                                          |                                         |                                  | PFAS in W                                | aters Short                                  |                     |                          |                                      |
|-----|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|---------------------|--------------------------|--------------------------------------|
|     | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | PFAS (Sum of Total) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* |
|     | μg/L                                     | μg/L                                    | μg/L                             | μg/L                                     | μg/L                                         | μg/L                | μg/L                     | μg/L                                 |
| EQL | 0.0002 - 0.01*                           | 0.0002 - 0.01*                          | 0.0002 - 0.01*                   | 0.0004 - 0.01*                           | 0.0004 - 0.02*                               | 0.0002 - 0.01*      | 0.0002 - 0.01*           | 0.0002 - 0.01*                       |

| Field ID     | Date                 | Sample Type           |          |                  |                  |                  |                  |                  |                 |          |
|--------------|----------------------|-----------------------|----------|------------------|------------------|------------------|------------------|------------------|-----------------|----------|
| FB01         | 06/05/20             | Field_B               | < 0.01   | < 0.01           | < 0.01           | < 0.01           | < 0.02           | < 0.01           | < 0.01          | < 0.01   |
| RB01         | 06/05/20             | Rinsate               | < 0.01   | < 0.01           | < 0.01           | < 0.01           | < 0.02           | < 0.01           | <0.01           | < 0.01   |
| RB02         | 06/05/20             | Rinsate               | < 0.01   | < 0.01           | < 0.01           | < 0.01           | < 0.02           | < 0.01           | < 0.01          | < 0.01   |
| TB01         | 06/05/20             | Trip_B                | <0.01    | < 0.01           | < 0.01           | < 0.01           | <0.02            | <0.01            | < 0.01          | < 0.01   |
| WB01         | 06/05/20             | Rinsate               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| FB02         | 07/05/20             | Field B               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| FXB01        | 07/05/20             | Rinsate               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| RB03         | 07/05/20             | Rinsate               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| RB04         | 07/05/20             | Rinsate               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
|              |                      |                       |          |                  |                  |                  |                  |                  |                 |          |
| TB02         | 07/05/20             | Trip_B                | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| FB03         | 08/05/20             | Field_B               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| RB05         | 08/05/20             | Rinsate               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| RB06         | 08/05/20             | Rinsate               | <0.01    | <0.01            | <0.01            | < 0.01           | <0.02            | <0.01            | <0.01           | <0.01    |
| FXB2         | 18/05/20             | Field_B               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| RB02         | 18/05/20             | Rinsate               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| TB02         | 18/05/20             | Trip_B                | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | < 0.01   |
| TB03         | 09/06/20             | Trip_B                | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| RB05         | 16/06/20             | Rinsate               | < 0.01   | <0.01            | <0.01            | <0.01            | < 0.02           | <0.01            | <0.01           | < 0.01   |
| TB05         | 16/06/20             | Trip_B                | < 0.01   | <0.01            | <0.01            | <0.01            | < 0.02           | < 0.01           | < 0.01          | < 0.01   |
| RB06         | 19/06/20             | Rinsate               | < 0.01   | <0.01            | <0.01            | <0.01            | < 0.02           | < 0.01           | < 0.01          | < 0.01   |
| TB06         | 19/06/20             | Trip_B                | < 0.01   | < 0.01           | < 0.01           | <0.01            | < 0.02           | < 0.01           | < 0.01          | < 0.01   |
| RB           | 08/07/20             | Rinsate               | <0.0002  | < 0.0002         | <0.0002          | <0.0004          | <0.0004          | < 0.0002         | < 0.0002        | < 0.0002 |
| TB           | 08/07/20             | Trip_B                | < 0.0002 | < 0.0002         | <0.0002          | <0.0004          | < 0.0004         | < 0.0002         | < 0.0002        | < 0.0002 |
| RB07         | 23/07/20             | Rinsate               | < 0.0002 | < 0.0002         | <0.0002          | <0.0004          | <0.0004          | < 0.0002         | < 0.0002        | < 0.0002 |
| TB07         | 23/07/20             | Trip_B                | < 0.0002 | < 0.0002         | <0.0002          | <0.0004          | < 0.0004         | < 0.0002         | < 0.0002        | < 0.0002 |
| RB08         | 10/08/20             | Rinsate               | < 0.0002 | < 0.0002         | < 0.0002         | <0.0004          | < 0.0004         | < 0.0002         | < 0.0002        | < 0.0002 |
| TB08         | 10/08/20             | Trip_B                | < 0.0002 | < 0.0002         | < 0.0002         | <0.0004          | < 0.0004         | < 0.0002         | < 0.0002        | < 0.0002 |
| RB09         | 17/08/20             | Rinsate               | < 0.0002 | < 0.0002         | <0.0002          | <0.0004          | < 0.0004         | < 0.0002         | < 0.0002        | < 0.0002 |
| TB09         | 17/08/20             | Trip_B                | < 0.0002 | <0.0002          | <0.0002          | <0.0004          | < 0.0004         | < 0.0002         | < 0.0002        | < 0.0002 |
| FB10         | 11/09/20             | Field_B               | < 0.0002 | < 0.0002         | < 0.0002         | <0.0004          | < 0.0004         | < 0.0002         | < 0.0002        | < 0.0002 |
| RB10         | 11/09/20             | Rinsate               | < 0.0002 | < 0.0002         | <0.0002          | <0.0004          | <0.0004          | < 0.0002         | <0.0002         | < 0.0002 |
| FB11         | 17/09/20             | Field_B               | < 0.0002 | < 0.0002         | <0.0002          | <0.0004          | < 0.0004         | < 0.0002         | < 0.0002        | < 0.0002 |
| RB11         | 17/09/20             | Rinsate               | <0.0002  | <0.0002          | <0.0002          | <0.0004          | <0.0004          | <0.0002          | <0.0002         | <0.0002  |
| FB12         | 24/09/20             | Field_B               | <0.0002  | <0.0002          | <0.0002          | <0.0004          | <0.0004          | <0.0002          | <0.0002         | <0.0002  |
| RB12         | 24/09/20             | Rinsate               | <0.0002  | <0.0002          | <0.0002          | <0.0004          | <0.0004          | <0.0002          | <0.0002         | <0.0002  |
| FB13         | 28/10/20             | Field_B               | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01           | <0.01    |
| RB13<br>FB01 | 28/10/20<br>17/11/20 | Rinsate<br>Field B    | <0.01    | <0.01            | <0.01            | <0.01            | <0.02            | <0.01            | <0.01<br><0.001 | <0.01    |
| RB01         | 17/11/20             | Rinsate               | <0.001   | <0.001<br><0.001 | <0.001<br><0.001 | <0.001<br><0.001 | <0.002<br><0.002 | <0.001<br><0.001 | <0.001          | <0.001   |
| RB02         | 18/11/20             | Rinsate               | <0.001   | <0.001           | <0.001           | <0.001           | <0.002           | <0.001           | <0.001          | <0.001   |
| FB02         | 24/11/20             | Field B               | <0.001   | <0.001           | <0.001           | <0.001           | <0.002           | <0.001           | <0.001          | <0.001   |
| RB03         | 24/11/20             | Rinsate               | <0.001   | <0.001           | < 0.001          | < 0.001          | <0.002           | <0.001           | <0.001          | <0.001   |
| W1           | 17/11/20             | Field_B (DI water)    | <0.001   | <0.001           | <0.001           | <0.001           | <0.002           | <0.001           | < 0.001         | <0.001   |
| W2           | 18/11/20             | Field_B (Mains water) | < 0.001  | < 0.001          | < 0.001          | < 0.001          | <0.002           | < 0.001          | < 0.001         | < 0.001  |
| FD01         | 10/11/20             | Field_B (Mains water) | < 0.001  | <0.001           | <0.001           | <0.001           | <0.002           | < 0.001          | < 0.001         | < 0.001  |
| W3           | 24/11/20             | Field_B (Mains water) | <0.001   | <0.001           | <0.001           | < 0.001          | <0.002           | <0.001           | < 0.001         | < 0.001  |
| FD02         | 2-7/11/20            | Field_B (Mains water) | < 0.001  | < 0.001          | < 0.001          | < 0.001          | < 0.002          | < 0.001          | < 0.001         | < 0.001  |

<sup>\*</sup> Range of EQL values for trace and standard analysis

|          |          |        |                                          |                                         |                                  |                                          |                                              |                          | DEAO: NACE                           |                     |                                    |                                   |                                    |                                         |                                           |
|----------|----------|--------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|--------------------------|--------------------------------------|---------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------------|-------------------------------------------|
|          |          |        |                                          | 1 0                                     | 1                                | <u> </u>                                 | <u> </u>                                     |                          | PFAS in Wate                         | Γ                   |                                    | ı                                 | 1                                  |                                         |                                           |
|          |          |        | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* | PFAS (Sum of Total) | Perfluoropentanoic acid<br>(PFPeA) | Perfluorohexanoic acid<br>(PFHxA) | Perfluoroheptanoic acid<br>(PFHpA) | Perfluorobutane sulfonic<br>acid (PFBS) | Perfluoropentane<br>sulfonic acid (PFPeS) |
|          |          |        | μg/L                                     | μg/L                                    | μg/L                             | μg/L                                     | μg/L                                         | μg/L                     | μg/L                                 | μg/L                | μg/L                               | μg/L                              | μg/L                               | μg/L                                    | μg/L                                      |
| EQL      |          |        | 0.0002 - 0.01*                           | 0.0002 - 0.01*                          | 0.0002 - 0.01*                   | 0.0004 - 0.01*                           | 0.0004 - 0.02*                               | 0.0002 - 0.01            | 0.0002 - 0.01*                       | 0.0002 - 0.01*      | 0.02                               | 0.01                              | 0.01                               | 0.01                                    | 0.01                                      |
| Date     | Field ID | Matrix |                                          |                                         |                                  |                                          |                                              |                          |                                      |                     |                                    |                                   |                                    |                                         |                                           |
| 08/05/20 | DC05     | water  | 0.04                                     | 0.09                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.13                     | 0.09                                 | 0.13                | -                                  | -                                 | -                                  | -                                       | -                                         |
| 08/05/20 | QC12     | water  | 2.1                                      | 0.64                                    | 0.14                             | < 0.01                                   | < 0.02                                       | 2.7                      | 0.78                                 | 2.9                 | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  | •        | •      | 193                                      | 151                                     |                                  |                                          |                                              | 182                      | 159                                  | 183                 |                                    |                                   |                                    |                                         |                                           |
| 08/05/20 | DC05     | water  | 0.04                                     | 0.09                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.13                     | 0.09                                 | 0.13                | -                                  | -                                 | -                                  | -                                       | -                                         |
| 08/05/20 | QC12A    | water  | 2.23                                     | 0.98                                    | 0.19                             | < 0.05                                   | < 0.05                                       | 3.21                     | 1.17                                 | -                   | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  | •        | •      | 193                                      | 166                                     |                                  |                                          |                                              | 184                      | 171                                  |                     |                                    |                                   |                                    |                                         |                                           |
| 18/05/20 | DC06     | water  | 0.07                                     | 0.17                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.24                     | 0.17                                 | 0.24                | -                                  | -                                 | -                                  | -                                       | -                                         |
| 18/05/20 | QA16     | water  | 0.07                                     | 0.07                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.14                     | 0.07                                 | 0.14                | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  | •        | •      | 0                                        | 83                                      |                                  |                                          |                                              | 53                       | 83                                   | 53                  |                                    |                                   |                                    |                                         |                                           |
| 18/05/20 | DC06     | water  | 0.07                                     | 0.17                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.24                     | 0.17                                 | 0.24                | -                                  | -                                 | -                                  | -                                       | -                                         |
| 18/05/20 | QA16A    | water  | 0.08                                     | 0.11                                    | < 0.01                           | < 0.05                                   | < 0.05                                       | 0.19                     | 0.11                                 | -                   | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  |          |        | 13                                       | 43                                      |                                  |                                          |                                              | 23                       | 43                                   |                     |                                    |                                   |                                    |                                         |                                           |
| 08/05/20 | FX13     | water  | 0.06                                     | 0.42                                    | 0.01                             | < 0.01                                   | < 0.02                                       | 0.48                     | 0.44                                 | 0.49                | -                                  | -                                 | -                                  | -                                       | -                                         |
| 08/05/20 | QA18     | water  | 0.05                                     | 0.33                                    | 0.01                             | < 0.01                                   | < 0.02                                       | 0.39                     | 0.35                                 | 0.40                | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  |          |        | 18                                       | 24                                      | 0                                |                                          |                                              | 21                       | 23                                   | 20                  |                                    |                                   |                                    |                                         |                                           |
| 08/05/20 | FX13     | water  | 0.06                                     | 0.42                                    | 0.01                             | < 0.01                                   | < 0.02                                       | 0.48                     | 0.44                                 | 0.49                | -                                  | -                                 | -                                  | -                                       | -                                         |
| 08/05/20 | QA18A    | water  | 0.06                                     | 0.40                                    | 0.01                             | < 0.05                                   | < 0.05                                       | 0.46                     | 0.41                                 | -                   | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  |          |        | 0                                        | 5                                       | 0                                |                                          |                                              | 4                        | 7                                    |                     |                                    |                                   |                                    |                                         |                                           |
| 18/05/20 | DIV01    | water  | < 0.01                                   | < 0.01                                  | < 0.01                           | < 0.01                                   | < 0.02                                       | < 0.01                   | < 0.01                               | < 0.01              | -                                  | -                                 | -                                  | -                                       | -                                         |
| 18/05/20 | QA19     | water  | < 0.01                                   | < 0.01                                  | < 0.01                           | < 0.01                                   | < 0.02                                       | < 0.01                   | < 0.01                               | < 0.01              | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  |          |        |                                          |                                         |                                  |                                          |                                              |                          |                                      |                     |                                    |                                   |                                    |                                         |                                           |
| 18/05/20 | DIV01    | water  | < 0.01                                   | < 0.01                                  | <0.01                            | <0.01                                    | < 0.02                                       | < 0.01                   | <0.01                                | < 0.01              | -                                  | -                                 | -                                  | -                                       | -                                         |
| 18/05/20 | QA19A    | water  | < 0.02                                   | < 0.01                                  | <0.01                            | < 0.05                                   | < 0.05                                       | <0.01                    | <0.01                                | -                   | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  |          |        |                                          |                                         |                                  |                                          |                                              |                          |                                      |                     |                                    |                                   |                                    |                                         |                                           |
| 09/06/20 | DC08     | water  | 0.06                                     | 0.08                                    | <0.01                            | <0.01                                    | < 0.02                                       | 0.14                     | 0.08                                 | 0.14                | -                                  | -                                 | -                                  | -                                       | -                                         |
| 09/06/20 | QA20     | water  | 0.06                                     | 0.07                                    | <0.01                            | <0.01                                    | < 0.02                                       | 0.13                     | 0.07                                 | 0.13                | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  |          |        | 0                                        | 13                                      |                                  |                                          |                                              | 7                        | 13                                   | 7                   |                                    |                                   |                                    |                                         |                                           |
| 09/06/20 | DC08     | water  | 0.06                                     | 0.08                                    | <0.01                            | <0.01                                    | < 0.02                                       | 0.14                     | 0.08                                 | 0.14                | -                                  | -                                 | -                                  | -                                       | -                                         |
| 09/06/20 | QA20A    | water  | 0.09                                     | 0.15                                    | <0.01                            | < 0.05                                   | < 0.05                                       | 0.24                     | 0.15                                 | 0.28                | -                                  | -                                 | -                                  | -                                       | -                                         |
| RPD (%)  |          |        | 40                                       | 61                                      |                                  |                                          |                                              | 53                       | 61                                   | 67                  |                                    |                                   |                                    |                                         |                                           |

|                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                              |                             |                                          |                                           |                      | PFAS in Wate           | r                   |                               |                              |                               |                                  |                                           |
|---------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|----------------------|------------------------|---------------------|-------------------------------|------------------------------|-------------------------------|----------------------------------|-------------------------------------------|
|                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (S)                                      | sulfonic                     | acid                        |                                          | FTS)                                      |                      | PFAS<br>*              |                     | acid                          | acid                         | ; acid                        | sulfonic                         | (Se                                       |
|                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nexane<br>cid (PFH)                      | octane su<br>(S)             | octanoic a                  | telomer<br>(6:2 FTS                      | otelomer<br>cid (8:2 F                    | -HxS and             | US EPA PF<br>+ PFOA)*  | ım of Tot           | oentanoic                     | nexanoic                     | neptanoic                     | outane su<br>S)                  | oentane<br>cid (PFP≀                      |
|                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sacid (PFOS) | Perfluorooctanoic<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 F | Sum of PFHxS or PFOS | Sum of U8<br>(PFOS + I | PFAS (Sum of Total) | Perfluoropentanoic<br>(PFPeA) | Perfluorohexanoic<br>(PFHxA) | Perfluoroheptanoic<br>(PFHpA) | Perfluorobutane s<br>acid (PFBS) | Perfluoropentane<br>sulfonic acid (PFPeS) |
|                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μg/L                                     | μg/L                         | μg/L                        | μg/L                                     | μg/L                                      | μg/L                 | μg/L                   | <u> </u>            | <u> </u>                      | μg/L                         | μg/L                          | <u></u> μg/L                     | μg/L                                      |
| EQL                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0002 - 0.01*                           | 0.0002 - 0.01*               | 0.0002 - 0.01*              | 0.0004 - 0.01*                           | 0.0004 - 0.02*                            | 0.0002 - 0.01*       | 0.0002 - 0.01*         | 0.0002 - 0.01*      | 0.02                          | 0.01                         | 0.01                          | 0.01                             | 0.01                                      |
| Date                | Field ID  | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                              |                             |                                          |                                           |                      |                        |                     |                               |                              |                               |                                  |                                           |
| 15/06/20            | GW01      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                    | <0.01                        | <0.01                       | <0.01                                    | <0.02                                     | <0.01                | <0.01                  | < 0.01              | -                             | -                            | -                             | -                                | -                                         |
| 15/06/20            | QA20      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                    | <0.01                        | <0.01                       | <0.01                                    | <0.02                                     | <0.01                | <0.01                  | <0.01               | -                             | -                            | -                             | -                                | -                                         |
| RPD (%)             | 014/04    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.04                                    | 10.04                        | 10.04                       | 10.04                                    | 10.00                                     | 10.04                | 10.04                  | 10.04               |                               |                              |                               |                                  |                                           |
| 15/06/20            | GW01      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                    | <0.01                        | <0.01                       | <0.01                                    | <0.02                                     | <0.01                | <0.01                  | <0.01               | -                             | -                            | -                             | -                                | -                                         |
| 15/06/20<br>RPD (%) | QA20A     | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.02                                    | <0.01                        | <0.01                       | <0.05                                    | <0.05                                     | <0.01                | <0.01                  |                     | -                             | -                            | -                             | -                                | -                                         |
| 19/06/20            | Hawthorn1 | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                    | <0.01                        | <0.01                       | <0.01                                    | <0.02                                     | <0.01                | <0.01                  | <0.01               |                               |                              |                               |                                  |                                           |
| 19/06/20            | QA21      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                    | <0.01                        | <0.01                       | <0.01                                    | <0.02                                     | <0.01                | <0.01                  | <0.01               | <u> </u>                      | -                            | -                             | <u> </u>                         | -                                         |
| RPD (%)             | Q/IZ I    | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ٦٥.٥١                                    | ٦٥.01                        | ٦٥.٥١                       | ٧٥.٥١                                    | ٧٥.02                                     | 40.01                | ٦٥.٥١                  | ٦٥.٥١               |                               | _                            | _                             |                                  | _                                         |
| 19/06/20            | Hawthorn1 | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.01                                   | < 0.01                       | < 0.01                      | <0.01                                    | <0.02                                     | < 0.01               | <0.01                  | < 0.01              | _                             | -                            | _                             |                                  | -                                         |
| 19/06/20            | QA21A     | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.01                                    | <0.01                        | <0.01                       | <0.01                                    | <0.02                                     | <0.01                | <0.01                  | <0.01               | _                             | -                            | _                             | _                                | -                                         |
| RPD (%)             |           | THE STATE OF THE S | 0.0.                                     | 0.0.                         | 0.0.                        | 0.0.                                     | 0.0_                                      | 0.0.                 | 0.0.                   | 0.0.                |                               |                              |                               |                                  |                                           |
| 08/07/20            | DC09      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11                                     | 0.13                         | 0.0088                      | <0.0004                                  | < 0.0004                                  | 0.23                 | 0.14                   | 0.24                | -                             | -                            | -                             | -                                | -                                         |
| 08/07/20            | QA25      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12                                     | 0.13                         | 0.0092                      | < 0.0004                                 | < 0.0004                                  | 0.25                 | 0.14                   | 0.26                | -                             | -                            | -                             | -                                | -                                         |
| RPD (%)             | •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                        | 0                            | 4                           |                                          |                                           | 8                    | 0                      | 8                   |                               |                              |                               |                                  |                                           |
| 08/07/20            | DC09      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.110                                    | 0.13                         | 0.0088                      | < 0.0004                                 | < 0.0004                                  | 0.230                | 0.14                   | 0.24                | -                             | -                            | -                             | -                                | -                                         |
| 08/07/20            | QA25A     | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.068                                    | 0.119                        | 0.007                       | < 0.005                                  | < 0.005                                   | 0.187                | 0.126                  | -                   | -                             | -                            | -                             | -                                | -                                         |
| RPD (%)             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47                                       | 9                            | 23                          |                                          |                                           | 21                   | 11                     |                     |                               |                              |                               |                                  |                                           |
| 08/07/20            | WW02      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0024                                   | 0.0003                       | 0.001                       | <0.0004                                  | <0.0004                                   | 0.0026               | 0.001                  | 0.0036              | -                             | -                            | -                             | -                                | -                                         |
| 08/07/20            | QA26      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0025                                   | 0.0003                       | 0.0009                      | <0.0004                                  | <0.0004                                   | 0.0028               | 0.001                  | 0.0037              | -                             | -                            | -                             | -                                | -                                         |
| RPD (%)             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                        | 0                            | 11                          |                                          |                                           | 7                    | 0                      | 3                   |                               |                              |                               |                                  |                                           |
| 08/07/20            | WW02      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0024                                   | 0.0003                       | 0.001                       | <0.0004                                  | <0.0004                                   | 0.0026               | 0.001                  | 0.0036              | -                             | -                            | -                             | -                                | -                                         |
| 08/07/20            | QA26A     | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.002                                   | <0.002                       | <0.002                      | <0.005                                   | <0.005                                    | <0.002               | -                      | -                   | -                             | -                            | -                             | -                                | -                                         |
| RPD (%)             | l= a      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                              |                             |                                          |                                           |                      | 2.21-                  |                     |                               |                              |                               |                                  |                                           |
| 23/07/20            | DC 19     | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014                                    | 0.012                        | 0.0029                      | <0.0004                                  | <0.0004                                   | 0.026                | 0.015                  | 0.029               | -                             | -                            | -                             | -                                | -                                         |
| 23/07/20            | QC27      | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.011                                    | 0.013                        | 0.0034                      | <0.0004                                  | <0.0004                                   | 0.024                | 0.016                  | 0.027               | -                             | -                            | -                             | -                                | -                                         |
| RPD (%)             | DO 40     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                       | 8                            | 16                          | 10.0004                                  | 40.0004                                   | 8                    | 6                      | 7                   |                               |                              |                               |                                  |                                           |
| 23/07/20            | DC 19     | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014                                    | 0.012                        | 0.0029                      | <0.0004                                  | <0.0004                                   | 0.026                | 0.015                  | 0.029               | -                             | -                            | -                             | -                                | -                                         |
| 23/07/20<br>RPD (%) | QC27A     | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014                                    | 0.020<br>50                  | 0.0030                      | <0.005                                   | <0.005                                    | 0.034<br>27          | 0.023<br>42            | 0.046<br>45         | -                             | -                            | -                             | -                                | -                                         |
| 23/07/20            | DC 19     | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014                                    | 0.012                        | 0.0029                      | <0.0004                                  | <0.0004                                   | 0.026                | 0.015                  | 0.029               |                               |                              |                               |                                  |                                           |
| 23/07/20            | QC29A     | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.014                                    | 0.012                        | 0.0029                      | <0.004                                   | <0.004                                    | 0.026                | 0.015                  | 0.029               | <u>-</u>                      | -                            | -                             | <u>-</u>                         |                                           |
| RPD (%)             | QU23A     | watei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                        | 50                           | 3                           | \U.UU3                                   | \U.UU3                                    | 30                   | 42                     | 51                  | -                             | -                            | -                             | -                                | -                                         |
| IN D (70)           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                        | 50                           | J                           |                                          |                                           | 30                   | 44                     | JI                  |                               |                              |                               |                                  |                                           |

|                      |               |                      |                                          |                                         |                                  | PFAS in S                                | Soils Short                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|----------------------|---------------|----------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                      |               |                      | Perfluorohexane sulfonic<br>acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | (6)                                      | 8:2 Fluorotelomer sulfonic<br>acid (8:2 FTS) | Sum of PFHxS and PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (al)                |
|                      |               |                      | l se                                     | ne sı                                   | noic                             | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | mer                                          | San                   | A 4 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PFAS (Sum of Total) |
|                      |               |                      | lexa<br>(SX)                             | octal<br>(S)                            | )ctai                            | (6:2                                     | otelo<br>TS                                  | Ě                     | S EF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 &                 |
|                      |               |                      |                                          | ) Pro                                   | 00.0                             | Jorc                                     | Joro<br>3:2 F                                | F PF                  | ) to the control of t | ns)                 |
|                      |               |                      | ifflu<br>id (F                           | id (F                                   | FO/                              | File<br>Ifon                             | Z Flu                                        | ٥<br><u>٣</u>         | F0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .AS                 |
|                      |               |                      |                                          |                                         |                                  |                                          |                                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| EQL                  |               |                      | μg/kg<br>0.2*                            | μg/kg<br>0.2*                           | μg/kg<br>0.2*                    | μg/kg<br>0.2*                            | μg/kg<br>0.4*                                | μg/kg<br>0.2*         | μg/kg<br>0.2*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/kg<br>0.2*       |
|                      |               |                      | 0.2                                      | 0.2                                     | 0.2                              | 0.2                                      | 0.4                                          | 0.2                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2                 |
| <b>Date</b> 06/05/20 | Field ID DC05 | Matrix Type sediment | 0.3                                      | 7.0                                     | <0.2                             | <0.2                                     | <0.4                                         | 7.3                   | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.3                 |
| 06/05/20             | QC11          | sediment             | <0.2                                     | 3.5                                     | <0.2                             | <0.2                                     | <0.4                                         | 3.5                   | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5                 |
| RPD (%)              | QOT1          | ocument              | 10.2                                     | 67                                      | ٦٥.2                             | 10.2                                     | ٠٠.٦                                         | 70                    | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                  |
| 06/05/20             | DC05          | sediment             | 0.3                                      | 7.0                                     | <0.2                             | <0.2                                     | <0.4                                         | 7.3                   | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.3                 |
| 06/05/20             | QC11A         | sediment             | <0.2                                     | 4.3                                     | <0.2                             | <0.5                                     | <0.5                                         | 4.3                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| RPD (%)              | <u>'</u>      | ·                    |                                          | 48                                      |                                  |                                          |                                              | 52                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 08/05/20             | Creek_6       | sediment             | 49                                       | 160                                     | 3.2                              | < 0.2                                    | < 0.4                                        | 210                   | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 210                 |
| 08/05/20             | QC13          | sediment             | 55                                       | 290                                     | 5.1                              | <0.2                                     | <0.4                                         | 340                   | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350                 |
| RPD (%)              |               |                      | 12                                       | 58                                      | 46                               |                                          |                                              | 47                    | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                  |
| 08/05/20             | Creek_6       | sediment             | 49                                       | 160                                     | 3.2                              | <0.2                                     | <0.4                                         | 210                   | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 210                 |
| 08/05/20             | QC13A         | sediment             | 39                                       | 500                                     | 5.5                              | <0.2                                     | <0.4                                         | 540                   | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 540                 |
| RPD (%)              |               |                      | 23                                       | 103                                     | 53                               |                                          |                                              | 88                    | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 88                  |
| 09/06/20             | DC08          | sediment             | 2.1                                      | 65                                      | 1.0                              | <0.5                                     | <1                                           | 68                    | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69                  |
| 09/06/20             | QA20          | sediment             | 1.7                                      | 53                                      | 0.6                              | <0.5                                     | <1                                           | 55                    | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56                  |
| RPD (%)              | In coop       | <u> </u>             | 21                                       | 20                                      | 50                               | 0.4                                      | 0.0                                          | 21                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                  |
| 08/07/20             | DC09S         | sediment             | 1.3                                      | 22                                      | 0.10                             | <0.1                                     | <0.2                                         | 23                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                  |
| 08/07/20<br>RPD (%)  | QA25S         | sediment             | 1.1                                      | 37<br>51                                | 0.10                             | 0.6                                      | <0.2                                         | 38<br>49              | 37<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39<br>48            |
| 08/07/20             | DC09S         | sediment             | 1.3                                      | 22                                      | 0.1                              | <0.1                                     | <0.2                                         | 23                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                  |
| 08/07/20             | QA25AS        | sediment             | 0.5                                      | 14.2                                    | <0.2                             | <0.5                                     | <0.5                                         | 14.7                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                  |
| RPD (%)              | QAZSAO        | Scalificht           | 89                                       | 43                                      | 70.2                             | ٧٥.٥                                     | ٧٥.٥                                         | 44                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 23/07/20             | DC19S         | sediment             | <0.1                                     | 0.40                                    | <0.1                             | <0.1                                     | <0.2                                         | 0.4                   | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.40                |
| 23/07/20             | QC27S         | sediment             | <0.1                                     | 0.20                                    | <0.1                             | <0.1                                     | <0.2                                         | 0.2                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.20                |
| RPD (%)              |               |                      |                                          | 67                                      |                                  |                                          |                                              | 67                    | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67                  |
| 23/07/20             | DC19S         | sediment             | < 0.1                                    | 0.40                                    | <0.1                             | <0.1                                     | < 0.2                                        | 0.40                  | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                |
| 23/07/20             | QC27AS        | sediment             | <0.2                                     | 0.30                                    | <0.2                             | <0.5                                     | <0.5                                         | 0.30                  | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.30                |
| RPD (%)              |               |                      |                                          | 29                                      |                                  |                                          |                                              | 29                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29                  |
| 23/07/20             | MBC02S        | sediment             | <0.2                                     | 2.2                                     | 0.40                             | <0.2                                     | <0.4                                         | 2.2                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                 |
| 23/07/20             | QC28S         | sediment             | < 0.3                                    | 1.8                                     | 0.20                             | < 0.3                                    | <0.6                                         | 1.8                   | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1                 |
| RPD (%)              |               |                      |                                          | 20                                      | 67                               |                                          |                                              | 20                    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                  |
| 23/07/20             | MBC02S        | sediment             | <0.2                                     | 2.2                                     | 0.40                             | <0.2                                     | <0.4                                         | 2.2                   | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                 |
| 23/07/20             | QC28AS        | sediment             | <0.2                                     | 1.2                                     | 0.30                             | <0.5                                     | <0.5                                         | 1.2                   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9                 |
| RPD (%)              | 150/5/0       | <u> </u>             |                                          | 59                                      | 29                               | 0.4                                      | 0.0                                          | 59                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                  |
| 10/08/20             | DC17AS        | sediment             | <0.1                                     | 2.9                                     | <0.1                             | <0.1                                     | <0.2                                         | 2.9                   | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9                 |
| 10/08/20             | QC29S         | sediment             | <0.2                                     | 3.9                                     | <0.2                             | <0.2                                     | <0.4                                         | 3.9                   | 3.9<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.9<br>29           |
| RPD (%)<br>10/08/20  | DC17AS        | sediment             | <0.1                                     | 2.9                                     | <0.1                             | <0.1                                     | <0.2                                         | 2.9                   | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9                 |
| 10/08/20             | QC29AS        | sediment             | <0.1                                     | 4.3                                     | 0.30                             | <0.1                                     | <0.2                                         | 4.3                   | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6                 |
| RPD (%)              | QO23/\d       | Jocaiment            | -0.2                                     | 39                                      | 0.50                             | 70.0                                     | 70.0                                         | 39                    | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                 |
| 17/08/20             | DC02AS        | sediment             | 1.2                                      | 34                                      | 0.20                             | <0.1                                     | <0.2                                         | 35                    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                  |
| 17/08/20             | QC30S         | sediment             | 1.0                                      | 26                                      | 0.20                             | <0.1                                     | <0.2                                         | 27                    | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27                  |
| RPD (%)              | 12000         |                      | 18                                       | 27                                      | 0.20                             | 0.1                                      | 0.2                                          | 26                    | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26                  |
| 17/08/20             | DC02AS        | sediment             | 1.2                                      | 34                                      | 0.20                             | <0.1                                     | <0.2                                         | 35                    | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                  |
| 17/08/20             | QC30AS        | sediment             | 1.8                                      | 40.3                                    | 0.20                             | <0.5                                     | <0.5                                         | 42.1                  | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42.3                |
| DDD (%)              |               |                      | 40                                       | 17                                      | <u> </u>                         | T T                                      | T                                            | 10                    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                  |

RPDs have only been considered where a concentration is greater than 1 times the EQL.

Elevated RPDs are highlighted as per QAQC Profile settings. Acceptable RPDs for each EQL multiplier range are: unlimited (1 - 10 x EQL) and 50 (> 10 x EQL).

Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

17

40

RPD (%)

19

18

<sup>\*</sup> Some EQL values were higher or lower than this number.

|                      |                       |             |                                          |                                         |                                  | PFAS in S                                | Soils Short                                  |                       |                                      |                     |
|----------------------|-----------------------|-------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|-----------------------|--------------------------------------|---------------------|
|                      |                       |             | Perfluorohexane sulfonic<br>acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer sulfonic<br>acid (8:2 FTS) | Sum of PFHxS and PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* | PFAS (Sum of Total) |
|                      |                       |             | Perfluorohexa<br>acid (PFHxS)            | Perfluor<br>acid (Pl                    | Perfluor<br>(PFOA)               | 6:2 Fluc<br>Sulfona                      |                                              | Sum of                | Sum of<br>(PFOS                      | PFAS (              |
| FOL                  |                       |             | μg/kg<br>0.2*                            | μg/kg<br>0.2*                           | μg/kg<br>0.2*                    | μg/kg<br>0.2*                            | μg/kg<br>0.4*                                | μg/kg<br>0.2*         | μg/kg<br>0.2*                        | μg/kg<br>0.2*       |
| EQL                  |                       |             | 0.2                                      | 0.2                                     | 0.2                              | 0.2                                      | 0.4                                          | 0.2                   | 0.2                                  | 0.2                 |
| Date                 | Field ID              | Matrix Type |                                          |                                         |                                  |                                          |                                              |                       |                                      |                     |
| 06/05/20             | SB02_0.1-0.3          | soil        | 0.4                                      | 1.9                                     | <0.1                             | <0.1                                     | <0.2                                         | 2.3                   | 1.9                                  | 2.3                 |
| 06/05/20             | QC02                  | soil        | 0.3                                      | 1.1                                     | <0.1                             | <0.1                                     | <0.2                                         | 1.4                   | 1.1                                  | 1.4                 |
| RPD                  |                       |             | 29                                       | 53                                      |                                  |                                          |                                              | 49                    | 53                                   | 49                  |
| 06/05/20             | SB02_0.1-0.3          | soil        | 0.4                                      | 1.9                                     | <0.1                             | <0.1                                     | <0.2                                         | 2.3                   | 1.9                                  | 2.3                 |
| 06/05/20             | QC02A                 | soil        | 0.2                                      | 1.3                                     | <0.2                             | <0.5                                     | <0.5                                         | 1.5                   | 1.3                                  | 1.5                 |
| RPD                  |                       |             | 67                                       | 38                                      |                                  |                                          |                                              | 42                    | 38                                   | 42                  |
| 06/05/20             | SB07_0-0.2            | soil        | 15                                       | 140                                     | 2.6                              | <0.1                                     | 0.4                                          | 150                   | 140                                  | 160                 |
| 06/05/20             | QC03                  | soil        | 18                                       | 170                                     | 3.3                              | <0.1                                     | 0.4                                          | 190                   | 170                                  | 190                 |
| RPD                  |                       |             | 18                                       | 19                                      | 24                               |                                          | 0                                            | 24                    | 19                                   | 17                  |
| 06/05/20             | SB07_0-0.2            | soil        | 15                                       | 140                                     | 2.6                              | <0.1                                     | 0.4                                          | 150                   | 140                                  | 160                 |
| 06/05/20             | QC03A                 | soil        | 15.4                                     | 178                                     | 3.3                              | <0.5                                     | 1.2                                          | 193                   | 181                                  | 198                 |
| RPD                  |                       |             | 3                                        | 24                                      | 24                               |                                          | 100                                          | 25                    | 26                                   | 21                  |
| 06/05/20             | SW04_1.0-1.3          | soil        | 0.6                                      | 1.1                                     | <0.2                             | <0.2                                     | <0.4                                         | 1.7                   | 1.1                                  | 1.7                 |
| 06/05/20             | QC04                  | soil        | 0.4                                      | 0.6                                     | <0.2                             | <0.2                                     | <0.4                                         | 1.0                   | 0.6                                  | 1.0                 |
| RPD                  |                       |             | 40                                       | 59                                      |                                  |                                          |                                              | 52                    | 59                                   | 52                  |
| 06/05/20             | SW04_1.0-1.3          | soil        | 0.6                                      | 1.1                                     | <0.2                             | <0.2                                     | <0.4                                         | 1.7                   | 1.1                                  | 1.7                 |
| 06/05/20             | QC04A                 | soil        | 0.4                                      | 0.7                                     | <0.2                             | <0.5                                     | <0.5                                         | 1.1                   | 0.7                                  | 1.1                 |
| RPD                  | <u> </u>              | 1           | 40                                       | 44                                      |                                  |                                          |                                              | 43                    | 44                                   | 43                  |
| 06/05/20             | SB04_0-0.2            | soil        | 4.3                                      | 19                                      | 2.0                              | <0.1                                     | 2.9                                          | 24                    | 21                                   | 29                  |
| 06/05/20             | QC05                  | soil        | 2.6                                      | 13                                      | 1.2                              | <0.1                                     | 1.0                                          | 15                    | 14                                   | 18                  |
| RPD                  | Tanan and             | T           | 49                                       | 38                                      | 50                               |                                          | 97                                           | 46                    | 40                                   | 47                  |
| 06/05/20             | SB04_0-0.2            | soil        | 4.3                                      | 19                                      | 2.0                              | <0.1                                     | 2.9                                          | 24                    | 21                                   | 29                  |
| 06/05/20             | QC05A                 | soil        | 4.4                                      | 28.0                                    | 3.1                              | <0.5                                     | 10.8                                         | 32.4                  | -                                    | -                   |
| RPD                  | 0.4.07. 0.5.0.0       |             | 2                                        | 38                                      | 43                               | .0.0                                     | 115                                          | 30                    | 4.4                                  | 4.5                 |
| 07/05/20             | SW07_2.5-2.8          | soil        | 0.4                                      | 1.1                                     | <0.2                             | <0.2                                     | <0.4                                         | 1.5                   | 1.1                                  | 1.5                 |
| 07/05/20             | QC06                  | soil        | 0.4                                      | 1.1                                     | <0.2                             | <0.2                                     | <0.4                                         | 1.6                   | 1.1                                  | 1.6                 |
| RPD                  | CM07 0 5 0 0          | looil       | 0                                        | 0                                       | -0.0                             | -0.0                                     | -0.4                                         | 6                     | 0                                    | 6                   |
| 07/05/20<br>07/05/20 | SW07_2.5-2.8<br>QC06A | soil        | 0.4                                      | 1.1                                     | <0.2                             | <0.2                                     | <0.4                                         | 1.5<br>1.9            | 1.1                                  | 1.5<br>1.9          |
| 07/05/20<br>RPD      | IQCUOA                | soil        | 40                                       | 1.3                                     | <0.2                             | <0.5                                     | <0.5                                         | 24                    | 1.3                                  | 24                  |
| 07/05/20             | SW11 2.0-2.3          | soil        | 0.3                                      | <0.2                                    | <0.2                             | <0.2                                     | <0.4                                         | 0.3                   | <0.2                                 | 0.3                 |
| 07/05/20             | QC08                  | soil        | 0.6                                      | 0.4                                     | <0.2                             | <0.2                                     | <0.4                                         | 1.0                   | 0.4                                  | 1.0                 |
| RPD                  | QC00                  | 3011        | 67                                       | 0.4                                     | ٧٥.٧                             | 70.2                                     | <b>~0.4</b>                                  | 108                   | 0.4                                  | 108                 |
| 07/05/20             | SW11_2.0-2.3          | soil        | 0.3                                      | <0.2                                    | <0.2                             | <0.2                                     | <0.4                                         | 0.3                   | <0.2                                 | 0.3                 |
| 07/05/20             | QC08A                 | soil        | <0.2                                     | <0.2                                    | <0.2                             | <0.5                                     | <0.4                                         | <0.2                  | -0.2                                 | - 0.3               |
| RPD                  | J&OUA                 | 10011       | 70.2                                     | -0.2                                    | 70.2                             | 40.0                                     | -0.0                                         | -0.2                  |                                      | _                   |
| 17/09/20             | Garden2               | soil        | <0.1                                     | 0.4                                     | <0.1                             | <0.1                                     | <0.2                                         | 0.4                   | 0.4                                  | 0.4                 |
| 17/09/20             | QC33                  | soil        | <0.1                                     | 0.4                                     | <0.1                             | <0.1                                     | <0.2                                         | 0.4                   | 0.4                                  | 0.4                 |
| RPD (%)              | 14300                 | 100         | -011                                     | 29                                      | .0.1                             | .011                                     | -0.2                                         | 29                    | 29                                   | 29                  |
| 17/09/20             | Garden2               | soil        | <0.1                                     | 0.4                                     | <0.1                             | <0.1                                     | <0.2                                         | 0.4                   | 0.4                                  | 0.4                 |
| 17/09/20             | QC33A                 | soil        | <0.2                                     | 0.5                                     | <0.2                             | <0.5                                     | <0.5                                         | 0.5                   | 0.5                                  | 0.5                 |
| DDD (0/)             | 14,500/1              | 100         | -0.2                                     | 0.0                                     | 10.2                             | 10.10                                    | 10.10                                        | 0.0                   | 0.0                                  | 0.0                 |

RPDs have only been considered where a concentration is greater than 1 times the EQL.

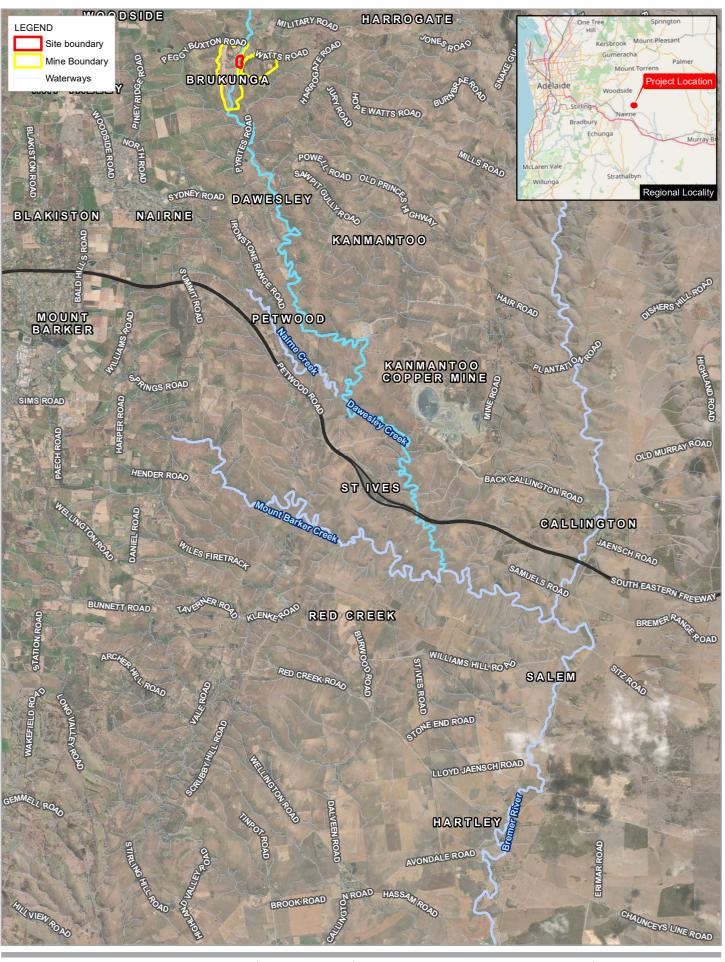
Elevated RPDs are highlighted as per QAQC Profile settings. Acceptable RPDs for each EQL multiplier range are: unlimited (1 - 10 x EQL) and 50 (> 10 x EQL).

Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

RPD (%)

<sup>\*</sup> Some EQL values were higher or lower than this number.

|               |                    |             |                          |                                      | PFAS in C           | oncrete an                               | d Pavers L                                   | EAF/ASLP                                 |                                         |                                  |                          |                                      | PFAS i              | n Concrete                               | and Paver                                    | s Short                                  |                                         |                               |
|---------------|--------------------|-------------|--------------------------|--------------------------------------|---------------------|------------------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------|--------------------------|--------------------------------------|---------------------|------------------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------|
|               |                    |             | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* | PFAS (Sum of Total) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* | PFAS (Sum of Total) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid (PFOA) |
| leo.          |                    |             | μg/L                     | μg/L                                 | μg/L                | μg/L                                     | μg/L                                         | μg/L                                     | μg/L                                    | μg/L                             | mg/kg                    | mg/kg                                | mg/kg               | mg/kg                                    | mg/kg                                        | mg/kg                                    | mg/kg                                   | mg/kg                         |
| EQL           |                    |             | 0.001                    | 0.001                                | 0.001               | 0.001                                    | 0.002                                        | 0.001                                    | 0.001                                   | 0.001                            | 0.0001                   | 0.0001                               | 0.0001              | 0.0001                                   | 0.0002                                       | 0.0001                                   | 0.0001                                  | 0.0001                        |
| Location Code | Field ID           | Sample Type |                          |                                      |                     |                                          |                                              |                                          |                                         |                                  |                          |                                      |                     |                                          |                                              |                                          |                                         |                               |
| Tank7         | 12516828/Tank7/01a | Normal      | < 0.001                  | < 0.001                              | < 0.001             | < 0.001                                  | < 0.002                                      | <0.001                                   | <0.001                                  | < 0.001                          |                          |                                      |                     |                                          |                                              |                                          |                                         |                               |
| I aliki       | 12516828/QAa       | Field_D     | < 0.001                  | < 0.001                              | < 0.001             | < 0.001                                  | < 0.002                                      | <0.001                                   | <0.001                                  | < 0.001                          |                          |                                      |                     |                                          |                                              |                                          |                                         |                               |
| RPD           |                    |             |                          |                                      |                     |                                          |                                              |                                          |                                         |                                  |                          |                                      |                     |                                          |                                              |                                          |                                         |                               |
|               |                    |             |                          |                                      |                     |                                          |                                              |                                          |                                         |                                  |                          |                                      |                     |                                          |                                              |                                          |                                         |                               |
| Tank7         | 12516828/Tank7/01b | Normal      |                          |                                      |                     |                                          |                                              |                                          |                                         |                                  | < 0.0001                 | < 0.0001                             | < 0.0001            | < 0.0001                                 | < 0.0002                                     | < 0.0001                                 | < 0.0001                                | < 0.0001                      |
|               | 12516828/QAb       | Field_D     |                          |                                      |                     |                                          |                                              |                                          |                                         |                                  | < 0.0001                 | < 0.0001                             | < 0.0001            | < 0.0001                                 | < 0.0002                                     | < 0.0001                                 | < 0.0001                                | < 0.0001                      |
| RPD           |                    |             |                          |                                      |                     |                                          |                                              |                                          |                                         |                                  |                          |                                      |                     |                                          |                                              |                                          |                                         | <u> </u>                      |
|               |                    |             |                          |                                      |                     | _                                        |                                              |                                          |                                         |                                  |                          |                                      |                     | _                                        |                                              |                                          |                                         |                               |
| Hot Pad B     | HPB1               | Normal      | 7.0                      | 5.1                                  | 7.3                 | 0.058                                    | 0.039                                        | 2.1                                      | 5.0                                     | 0.18                             | 0.18                     | 0.14                                 | 0.19                | 0.0016                                   | 0.0020                                       | 0.044                                    | 0.14                                    | 0.0048                        |
|               | HPB/QA             | Field_D     | 0.46                     | 0.26                                 | 0.51                | 0.020                                    | 0.005                                        | 0.22                                     | 0.24                                    | 0.024                            | 0.024                    | 0.018                                | 0.027               | 0.001                                    | 0.0005                                       |                                          | 0.016                                   | 0.0010                        |
| RPD           |                    |             | 175                      | 181                                  | 174                 | 97                                       | 155                                          | 162                                      | 182                                     | 153                              | 153                      | 154                                  | 150                 | 46                                       | 120                                          | 140                                      | 159                                     | 131                           |


|                      |          |             |                          |                                      |                     | PFAS in W                                | /ater Short                                  |                                          |                                         |                                  |
|----------------------|----------|-------------|--------------------------|--------------------------------------|---------------------|------------------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------|
|                      |          |             | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* | PFAS (Sum of Total) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) |
|                      |          |             | μg/L                     | μg/L                                 | μg/L                | μg/L                                     | μg/L                                         | μg/L                                     | μg/L                                    | μg/L                             |
| EQL                  |          |             | 0.001                    | 0.001                                | 0.001               | 0.001                                    | 0.002                                        | 0.001                                    | 0.001                                   | 0.001                            |
| Location Description | Field ID | Sample Type |                          |                                      |                     |                                          |                                              |                                          |                                         | ·                                |

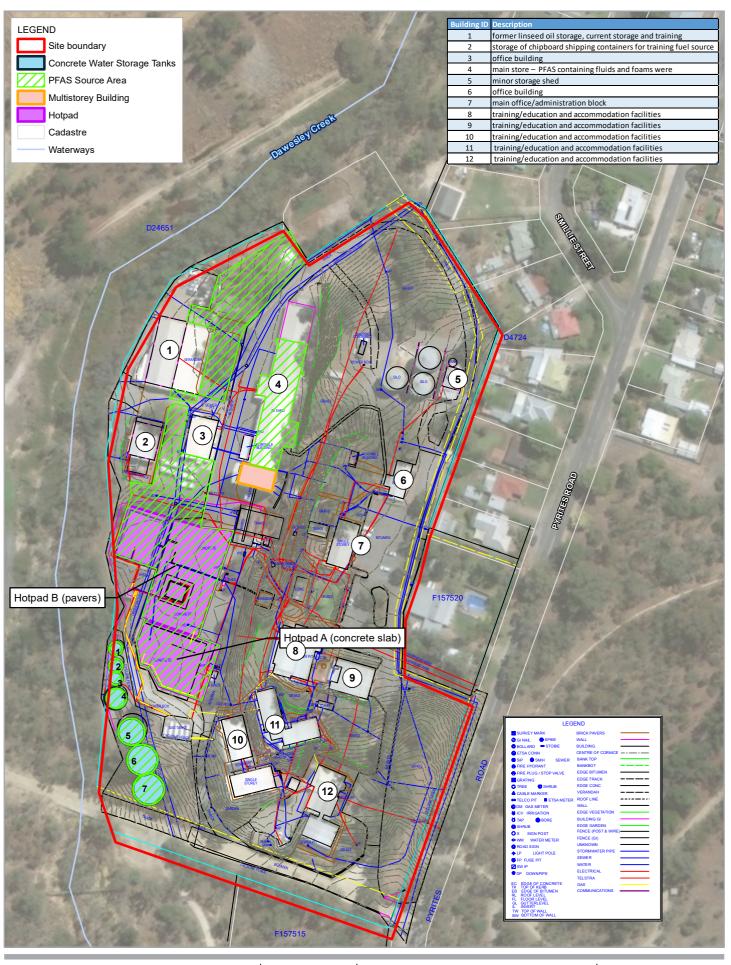
| Location Description        | Field ID | Sample Type |         |         |         |         |         |         |         |         |
|-----------------------------|----------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Mains water used for        | W2       | Normal      | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.002 | < 0.001 | < 0.001 | < 0.001 |
| concrete coring Tank 7      | FD01     | Field_D     | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.002 | < 0.001 | < 0.001 | < 0.001 |
| RPD                         |          |             |         |         |         |         |         |         |         |         |
|                             |          |             |         |         |         |         |         |         |         |         |
| Mains water used for        | W3       | Normal      | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.002 | < 0.001 | < 0.001 | < 0.001 |
| concrete coring Tanks 1 & 4 | FD02     | Field_D     | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.002 | < 0.001 | < 0.001 | < 0.001 |
| RPD                         |          |             |         |         |         |         |         |         |         |         |

## **Figures**

- Figure 1 Site Location Plan
- Figure 2 Site Layout Plan and PFAS Source Areas
- Figure 3 Previous Groundwater and Surface Water Results (Feb/Mar 2020)
- Figure 4 Bremer River Catchment and Subcatchments
- Figure 5 CFS State Training Centere Runoff Collection system and Brukunga Mine AMD Treatment system
- Figure 6a Soil Bore, Concrete Dust and Flux Test Sampling Location
- Figure 6b Off-site Residential Soil Sampling Location Plan: 296 Pyrites Road
- Figure 6c Concrete Core Sampling Location Plan
- Figure 7 Sludge Sampling Location Plan
- Figure 8 Groundwater Sampling Location Plan
- Figure 9a Surface Water / Sediment Sampling Locations
- Figure 9b Additional Surface Water / Sediment Sampling Locations (8 July 2020)
- Figure 9c Surface Water / Sediment Sampling Locations (July October 2020 sampling)
- Figure 9d Surface Water Reference Site Sampling Locations
- Figure 10 Seepage Water Sampling Location Plan
- Figure 11a Groundwater Contour Plan (February 2020)
- Figure 11b Groundwater Contour Plan (June 2020)
- Figure 12 Community Survey Plan
- Figure 13 Soil and Concrete PFAS Concentrations Plan
- Figure 14a Northern Bench Sludge PFAS Concentrations Plan
- Figure 14b Southern Waste Pile Sludge PFAS Concentrations Plan
- Figure 14c South Extension Sludge PFAS Concentrations Plan
- Figure 14d Emergency Overflow Pond & Drying Ponds Sludge PFAS Concentrations Plan
- Figure 15 Seepage Water PFAS Concentrations Plan
- Figure 16a Groundwater PFAS Concentrations Plan
- Figure 16b Groundwater PFAS Concentrations Contour Plan
- Figure 17 Surface Water PFAS Concentrations Plan
- Figure 18 Sediment PFAS Concentrations Plan
- Figure 19 Conceptual Site Model (West East)

EES (2019) Figure 3 – Features of Brukunga Pyrite Mine, SA








SA Country Fire Service CFS Brukunga State Training Centre DSI Project No. 12516828
Revision No. C

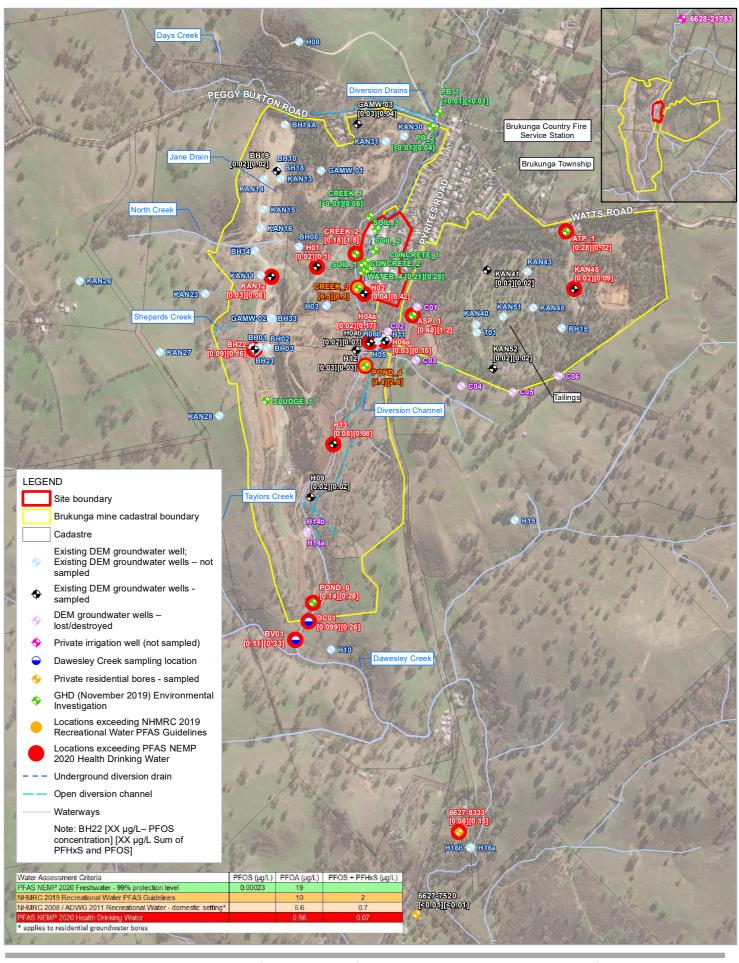
Date 20 Nov 2020

Site location plan










SA Country Fire Service CFS Brukunga State Training Centre DSI

Site Layout Plan and PFAS Source Areas

Project No. 12516828
Revision No. F

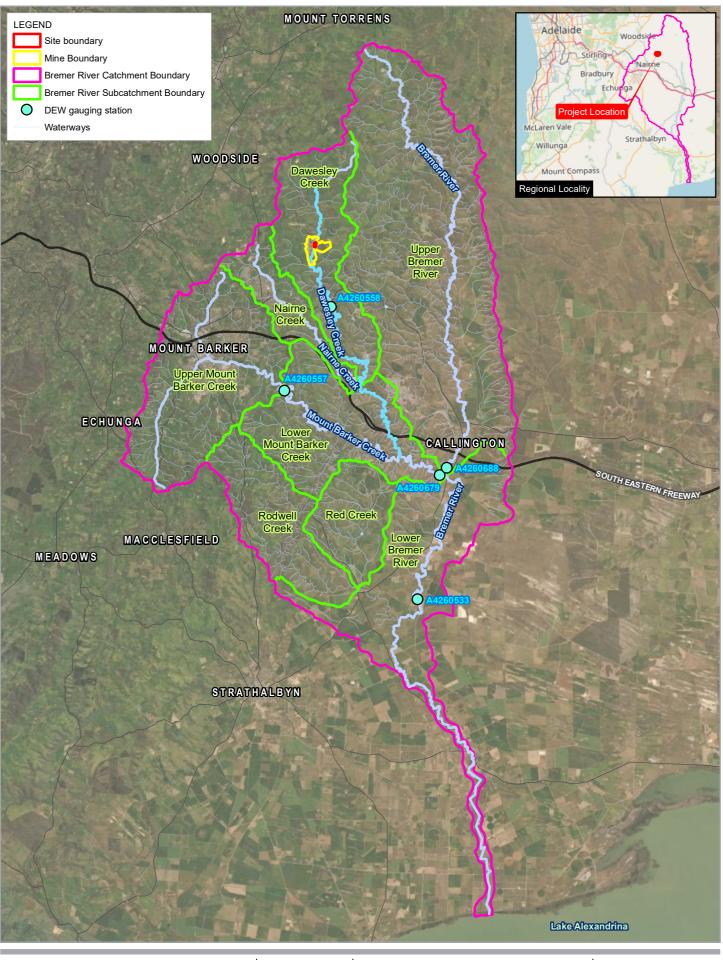
Date 17 Mar 2021





Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 54




SA Country Fire Service CFS Brukunga State Training Centre DSI

Previous Groundwater and Surface Water Results (Feb/Mar 2020) Project No. 12516828

Revision No. F

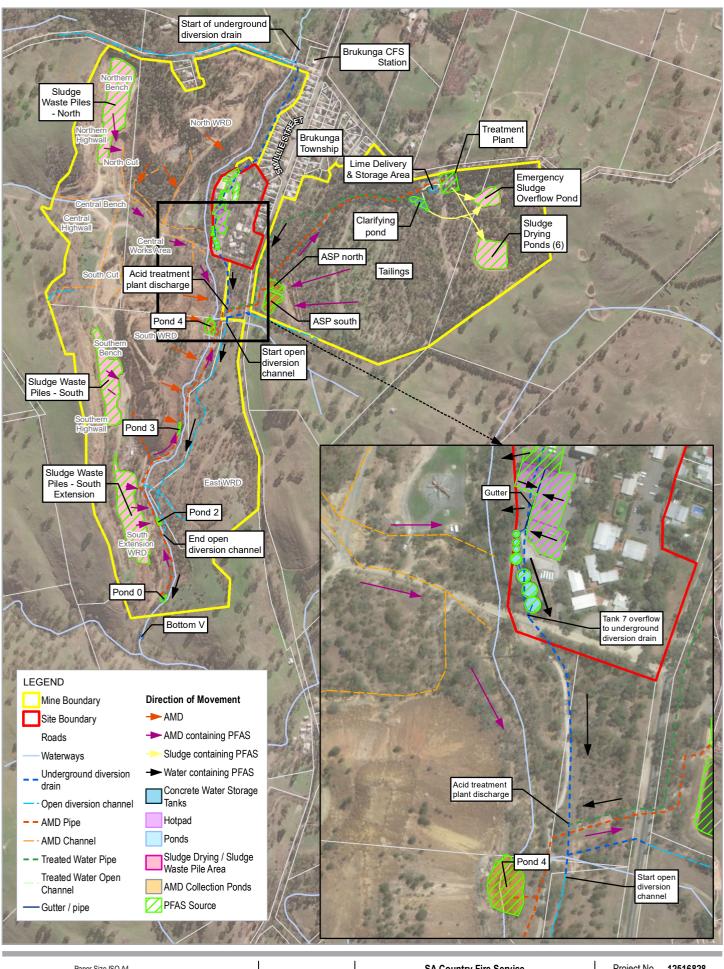
Date 16 Mar 2021

Date 10 Mai 2021










SA Country Fire Service CFS Brukunga State Training Centre DSI

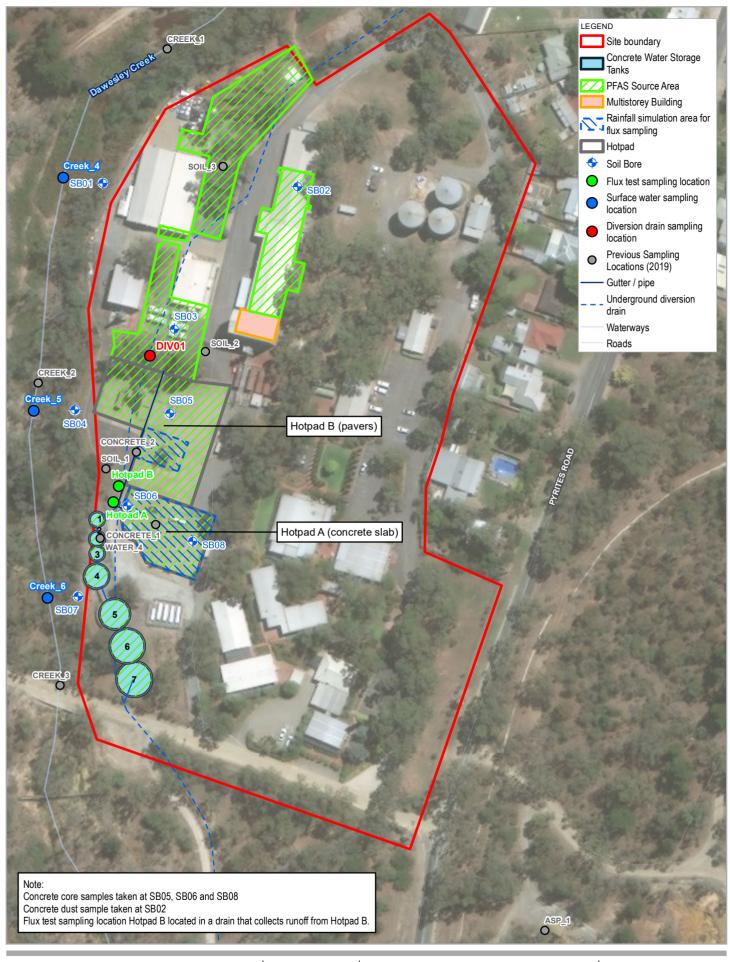
Bremer River Catchment and Subcatchments

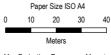
Project No. 12516828 Revision No. D

Date 26 Feb 2021








SA Country Fire Service CFS Brukunga State Training Centre DSI

CFS State Training Centre Runoff Collection System and Brukunga Mine AMD Treatment System Project No. 12516828
Revision No. F

Date 17 Mar 2021









SA Country Fire Service CFS Brukunga State Training Centre DSI

Soil bore, concrete dust and flux test sampling location plan

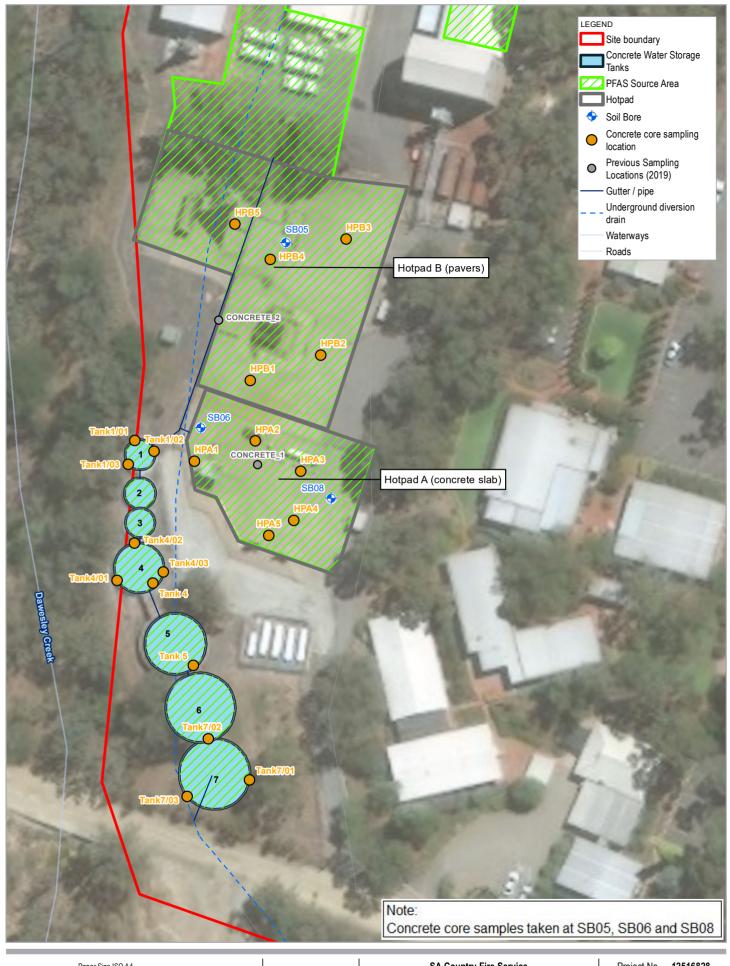
Project No. 12516828 Revision No. K

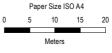
Date 17 Mar 2021











SA Country Fire Service CFS Brukunga State Training Centre DSI

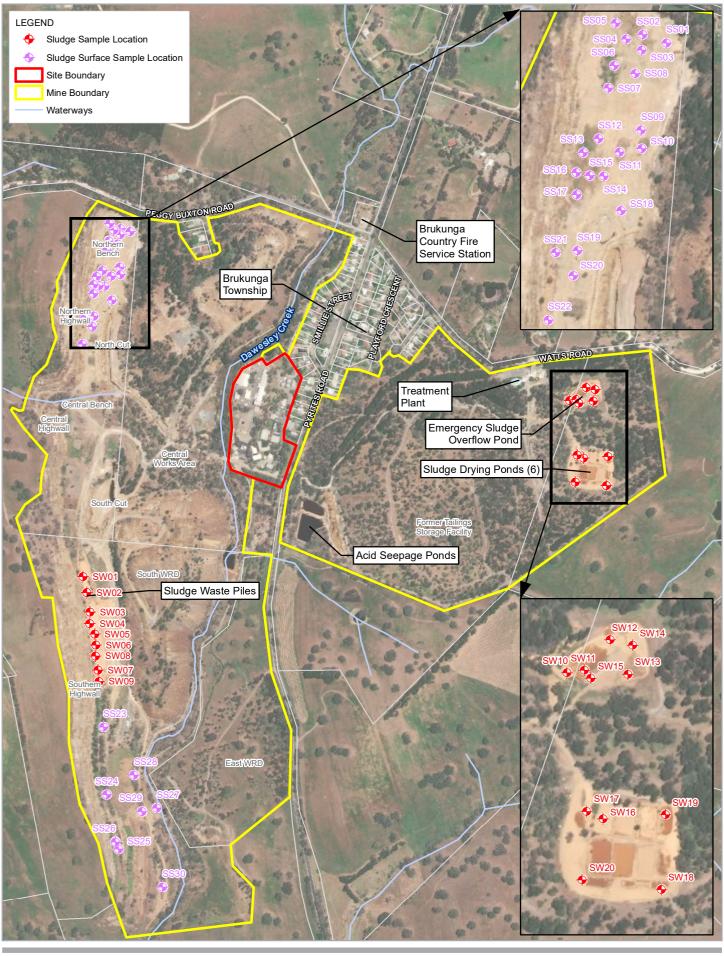
Off-site Residential Soil Sampling Location Plan: 296 Pyrites Road Project No. 12516828 Revision No. B

Date 18 Feb 2021

FIGURE 6b





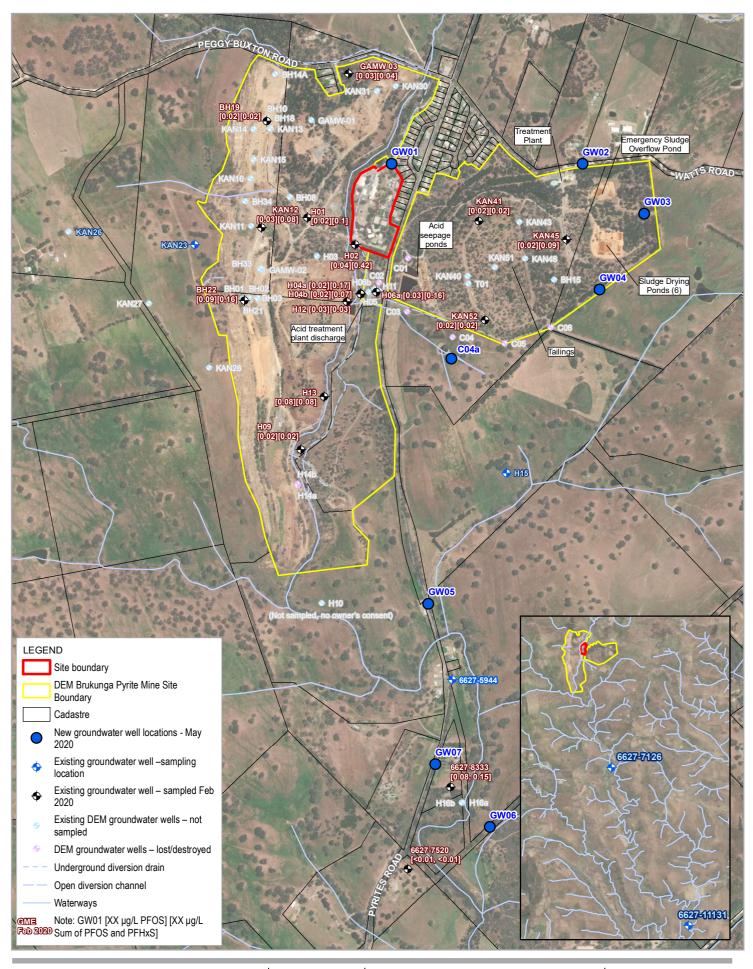


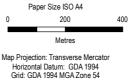



SA Country Fire Service CFS Brukunga State Training Centre DSI

Concrete Core Sampling Location Plan Project No. 12516828 Revision No. C

Date 16 Mar 2021



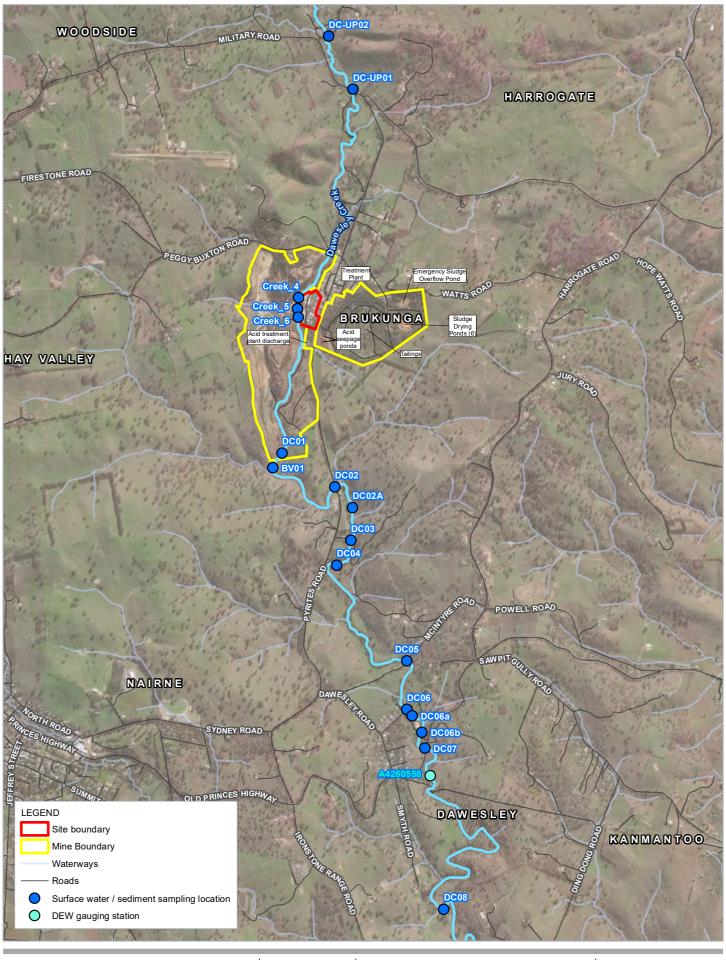



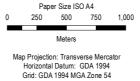



Project No. 12516828 Revision No. Date 14 Jul 2020

**Sludge Sampling Location Plan** 






Project No. 12516828 Revision No. Date

18 Feb 2021

Groundwater sampling location plan





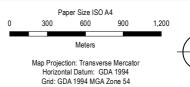


GHD

SA Country Fire Service CFS Brukunga State Training Centre DSI

Surface Water / Sediment Sampling Locations

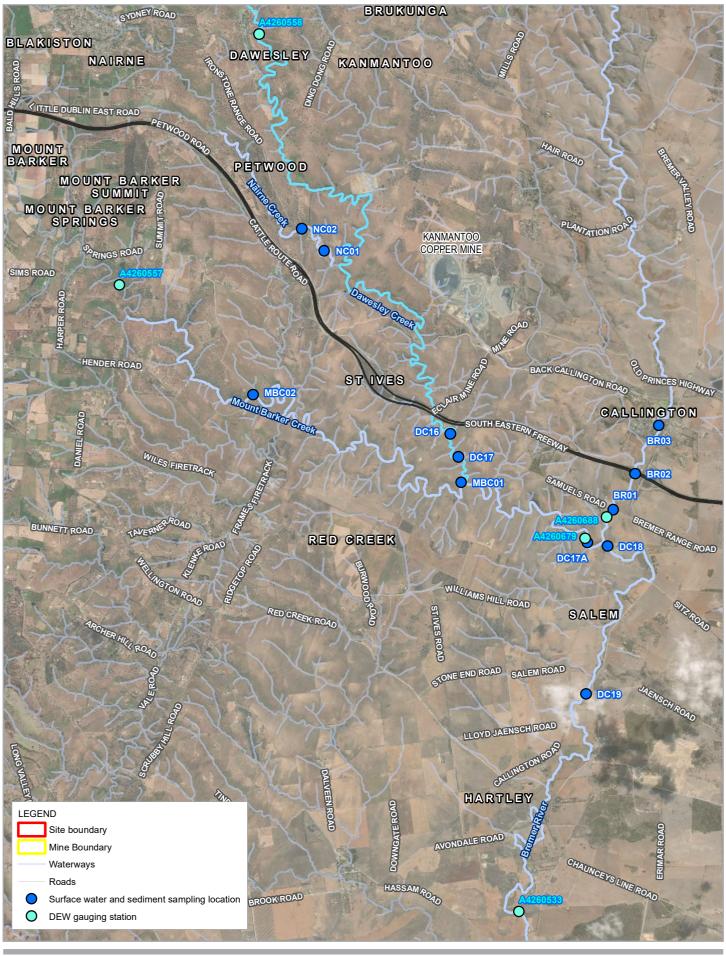
Project No. 12516828


Revision No. I

Date 16 Mar 2021

Date 10 Wai 2021

FIGURE 9a








Additional Surface Water / Sediment Sampling Locations (8 July 2020)

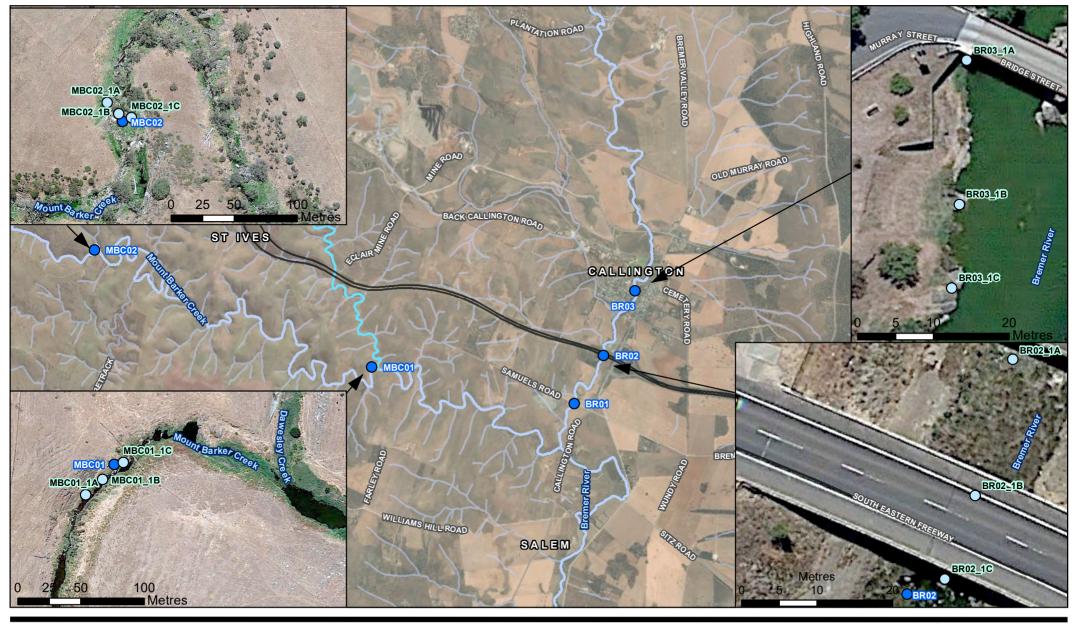
12516828 Project No. Revision No. Date 05 Aug 2020





Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 54



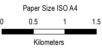



**SA Country Fire Service CFS Brukunga State Training Centre** DSI

Surface Water / Sediment Sampling Locations (July - October 2020 sampling)

Project No. 12516828 Revision No. Date 20 Nov 2020

FIGURE 9c






Surface water and sediment sampling location (July 2020) Roads

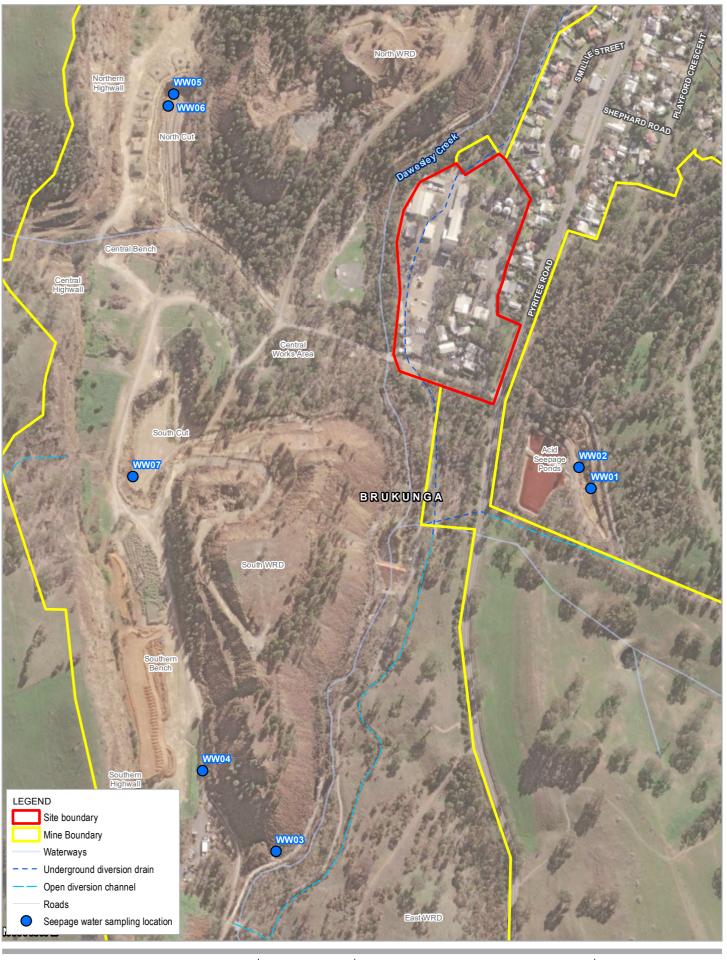
Waterways

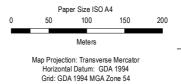
Surface water sampling location (September 2020)



Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 54







SA Country Fire Service CFS Brukunga State Training Centre

**Surface Water Reference Site** 

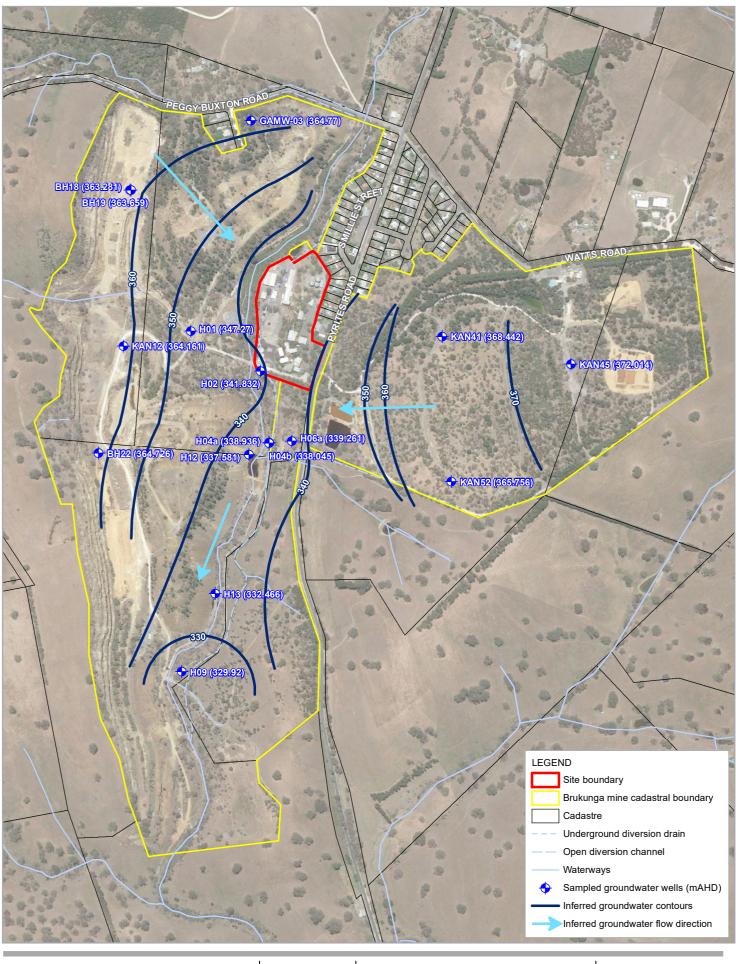
Project No. 12516828 Revision No. D Date 16/03/2021

FIGURE 9d








GHD

SA Country Fire Service CFS Brukunga State Training Centre DSI

Seepage Water Sampling Locations Plan

Project No. 12516828 Revision No. D

Date 16 Mar 2021

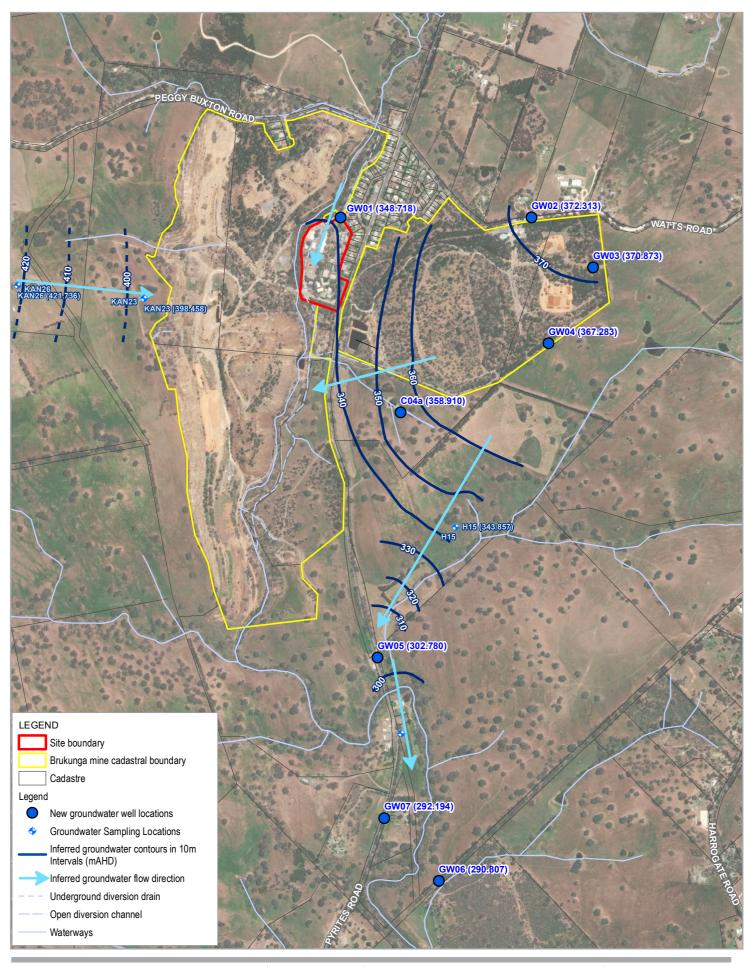




Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 54





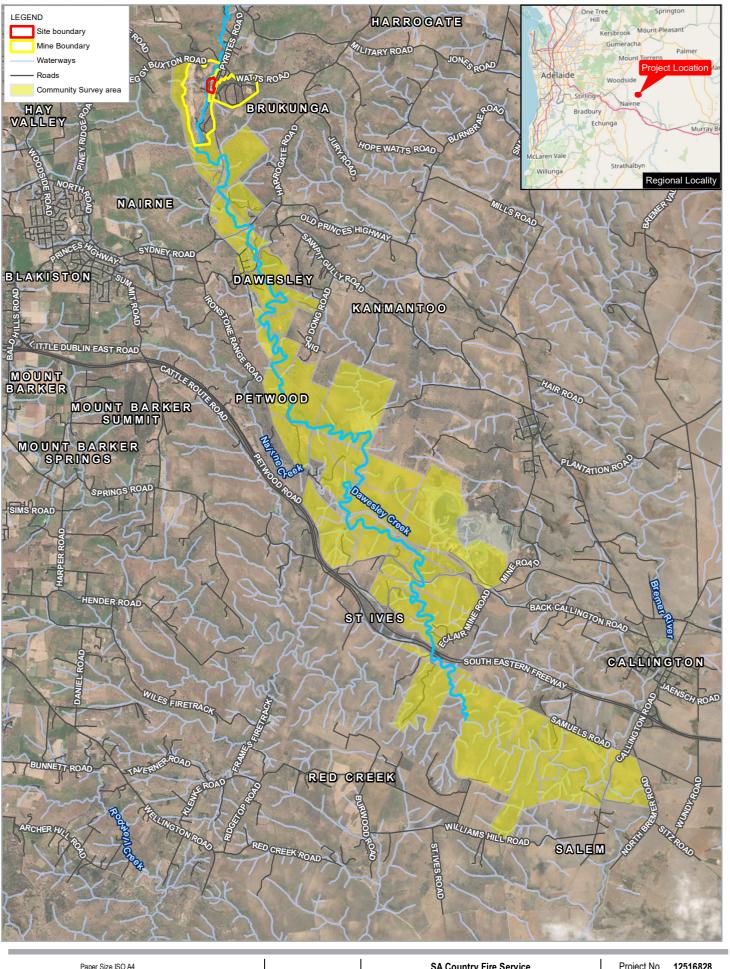

SA Country Fire Service CFS Brukunga State Training Centre DSI

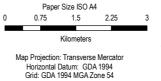
Groundwater Contour Plan (February 2020)

Project No. 12516828
Revision No. -

Date 08 Feb 2021

FIGURE 11a



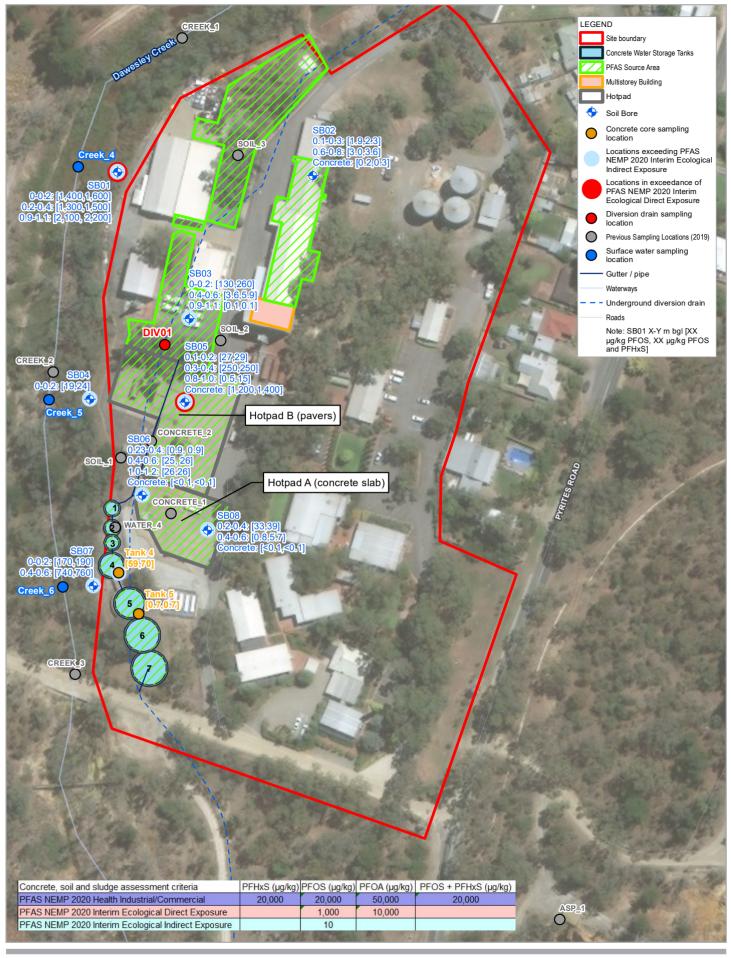






**Groundwater Contour Plan** 

Project No. 12516828 Revision No. Date 18 Feb 2021








Project No. 12516828
Revision No. D

Date 18 Feb 2021

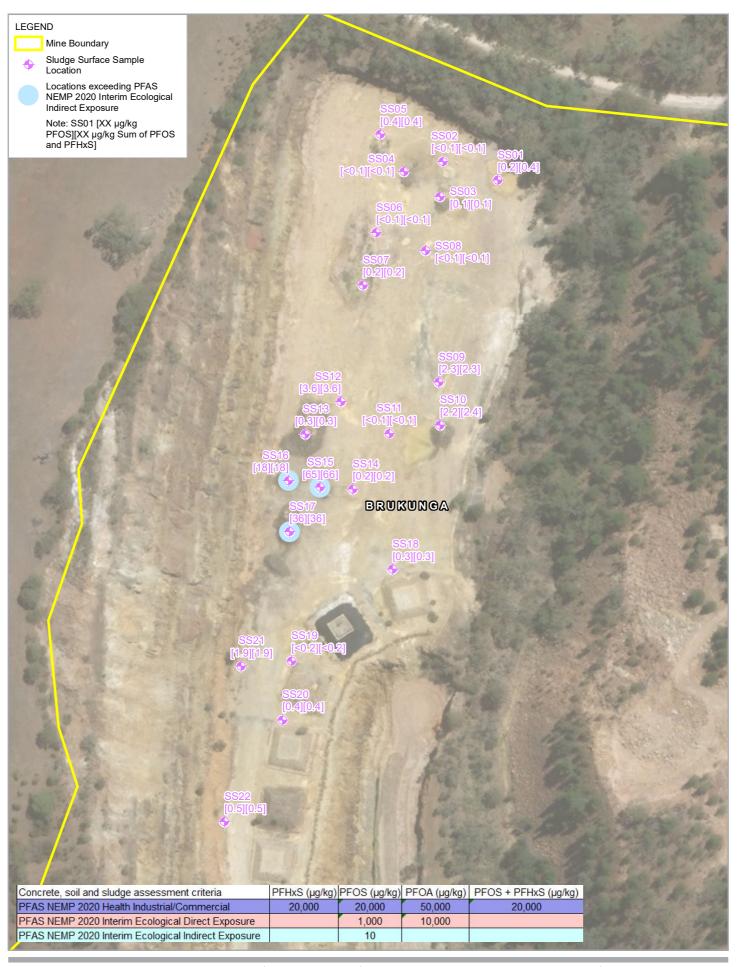
**Community Survey Plan** 

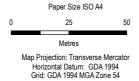




Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 54







SA Country Fire Service CFS Brukunga State Training Centre DSI

Soil and Concrete PFAS Concentration Plan

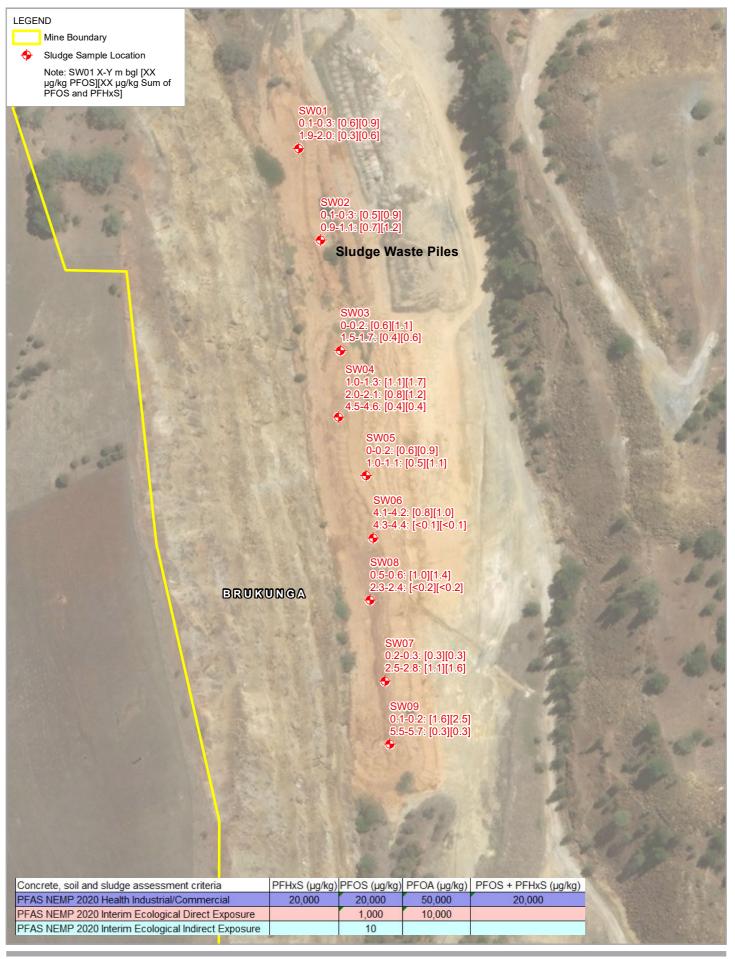
Project No. 12516828 Revision No. K

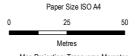
Date 16 Mar 2021











Northern Bench Sludge PFAS Concentrations Plan

Project No. 12516828
Revision No. I

Date 18 Feb 2021

FIGURE 14a

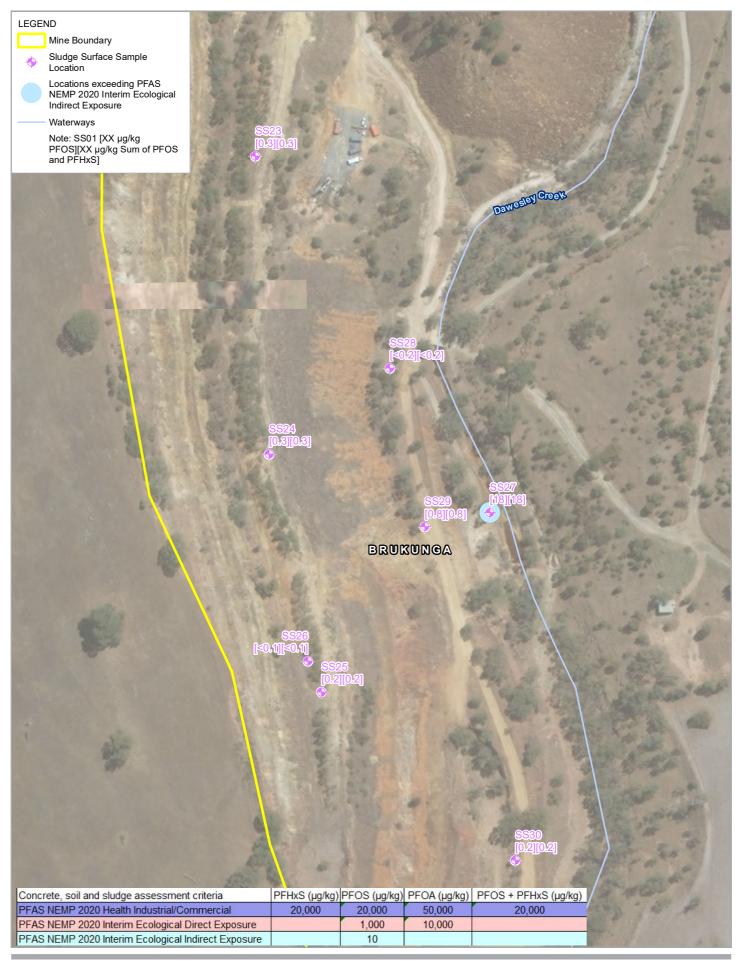




Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 54






SA Country Fire Service CFS Brukunga State Training Centre DSI


Southern Waste Pile Sludge PFAS Concentrations Plan

Project No. 12516828 Revision No. I

Date 18 Feb 2021

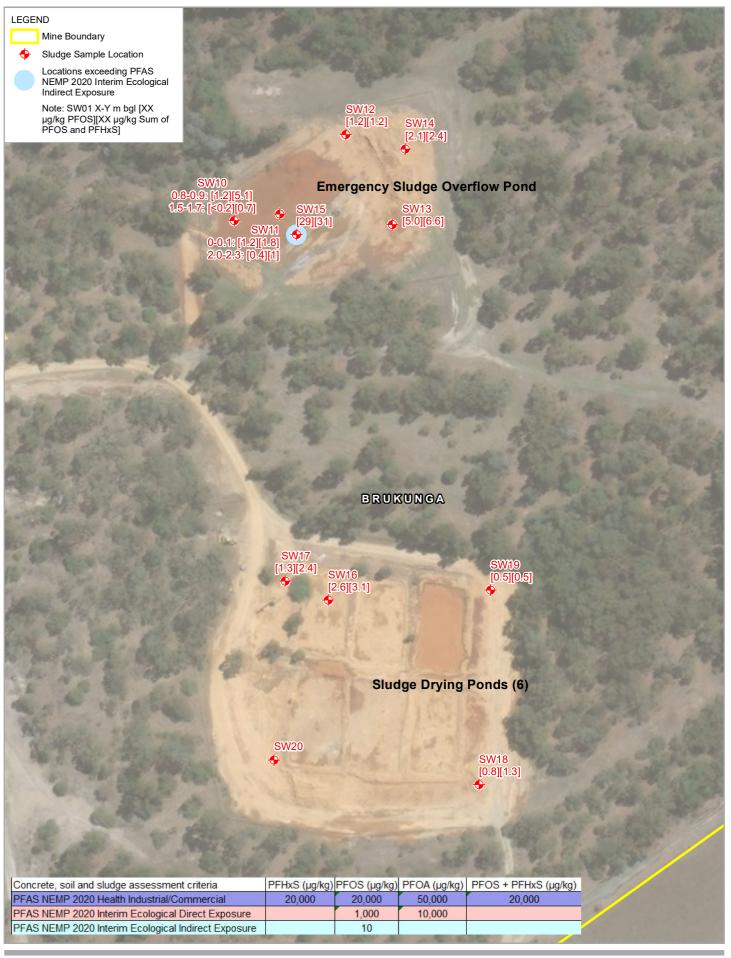
FIGURE 14b

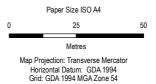




ercator 1994 154




SA Country Fire Service CFS Brukunga State Training Centre DSI


South Extension Sludge PFAS Concentrations Plan

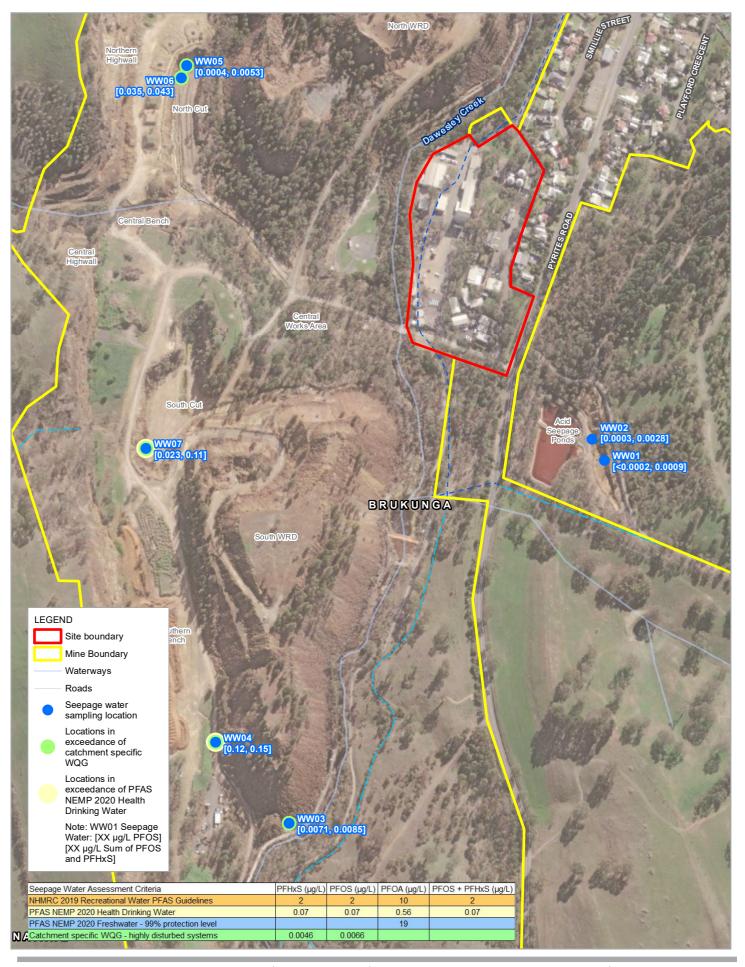
Project No. 12516828 Revision No. I

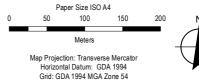
Date 18 Feb 2021

FIGURE 14c







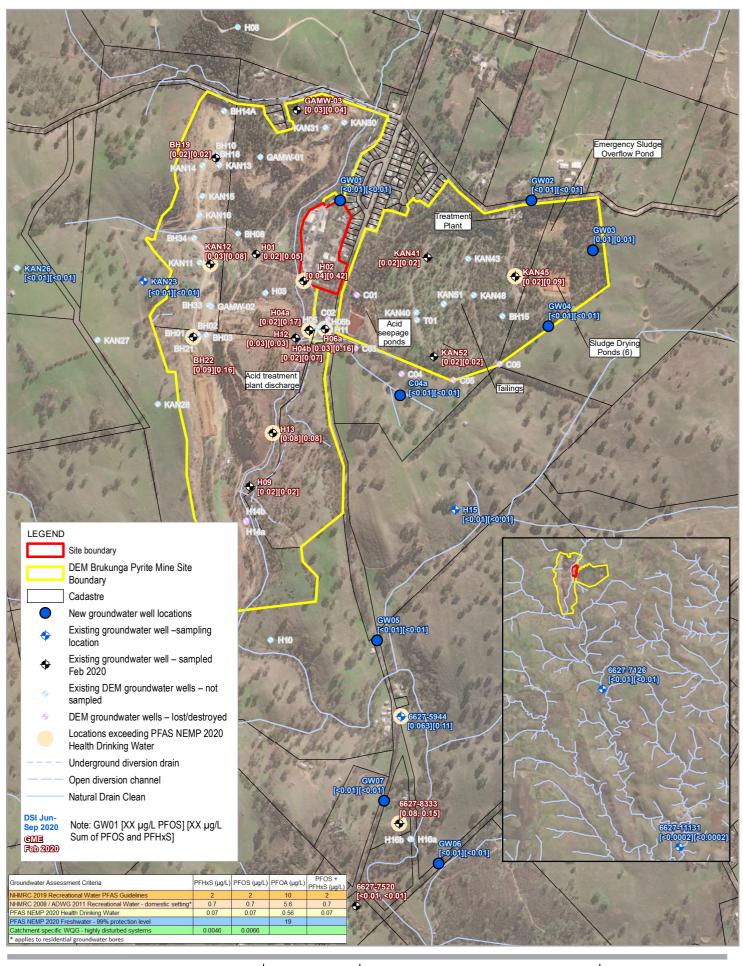




Emergency Overflow Pond & Drying Ponds Sludge PFAS Concentrations Plan Project No. 12516828 Revision No. I

Date 18 Feb 2021

FIGURE 14d





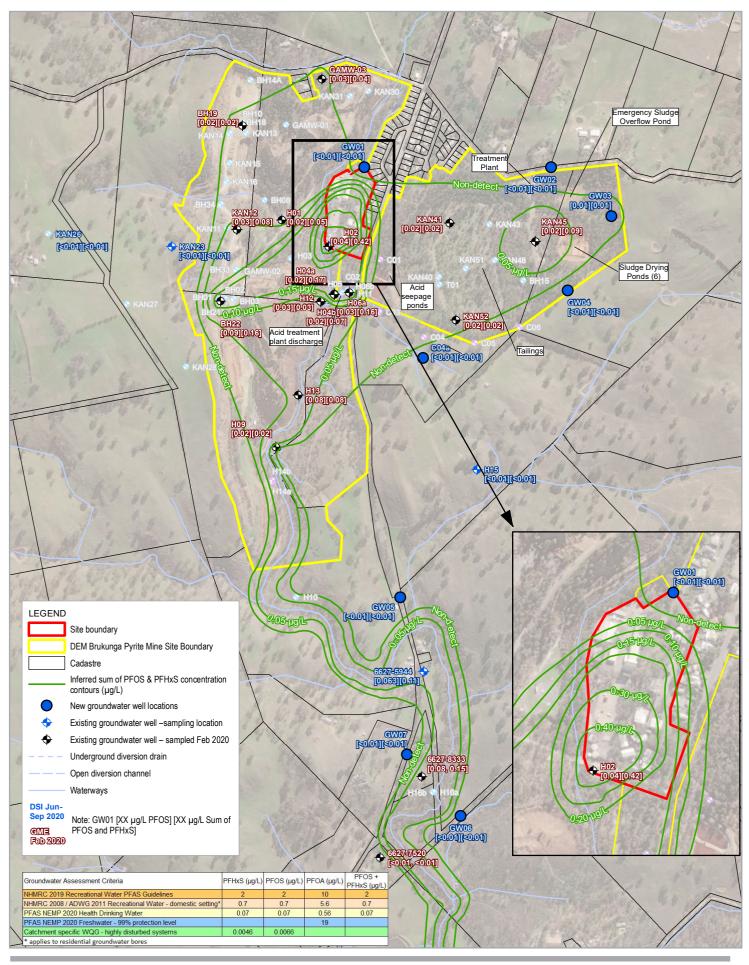



Seepage Water PFAS Concentrations Plan

Project No. 12516828
Revision No. F

Date 16 Mar 2021







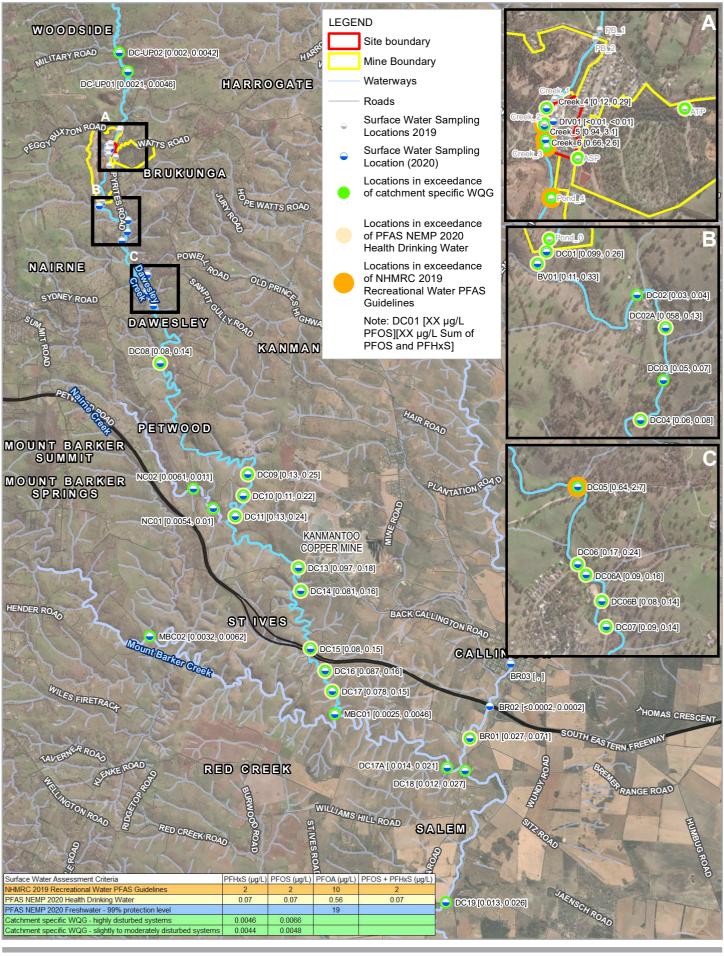

Project No. 12516828 Revision No. Date 01 Mar 2021

**Groundwater PFAS Concentrations Plan** 

FIGURE 16a










Groundwater PFAS Concentrations Contour Plan

Project No. **12516828**Revision No. **K**Date **01 Mar 2021** 

FIGURE 16b

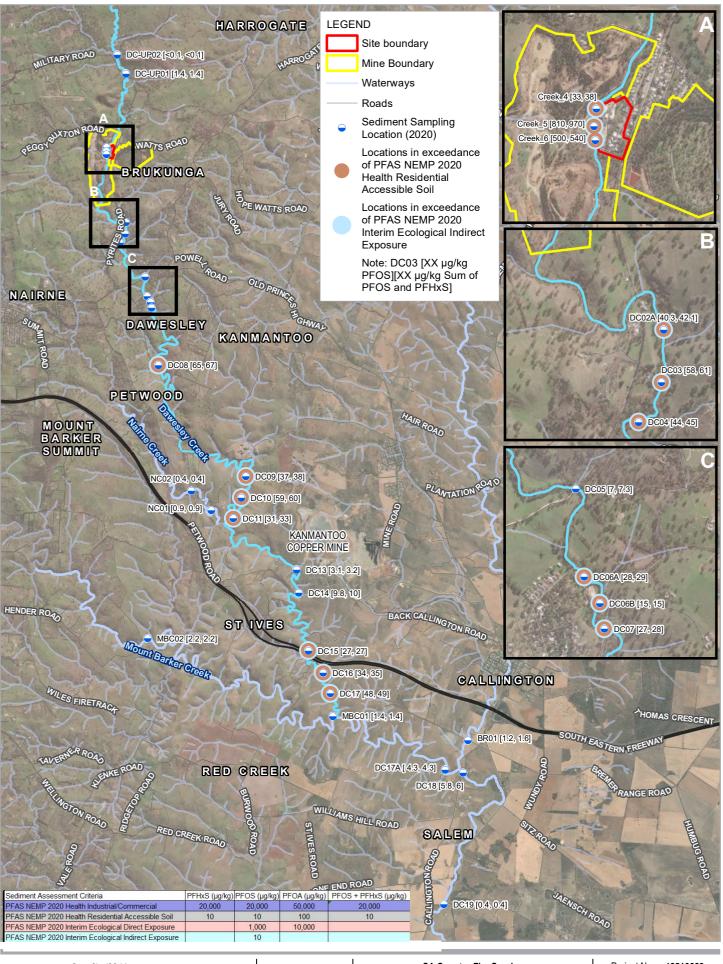




Kilometres

Map Projection: Transverse Mercator
Horizontal Datum: GDA 1994
Grid: GDA 1994 MGA Zone 54




SA Country Fire Service CFS Brukunga State Training Centre DSI

Surface Water
PFAS Concentrations Plan

Project No. 12516828

Revision No. G

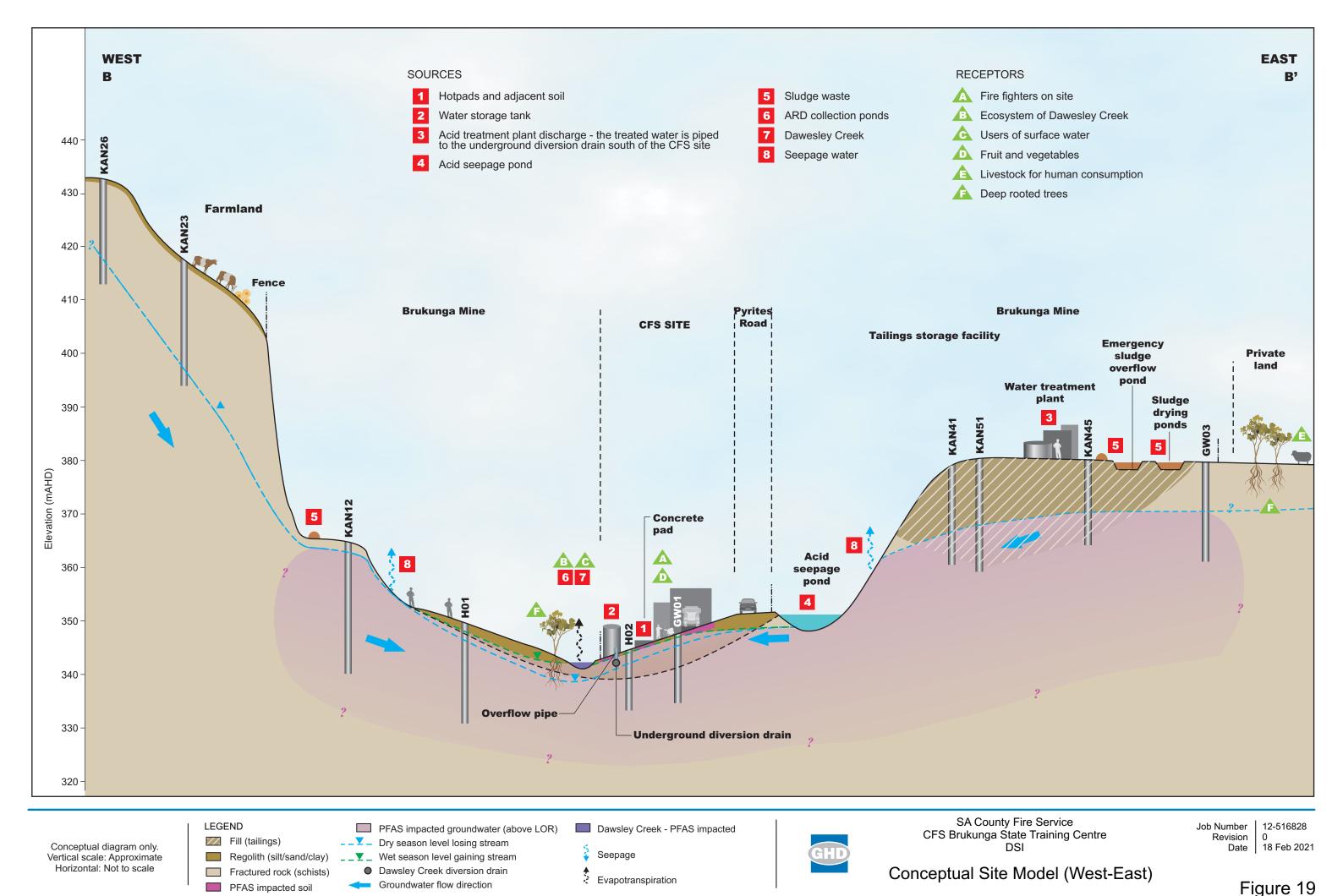
Date 26 Feb 2021



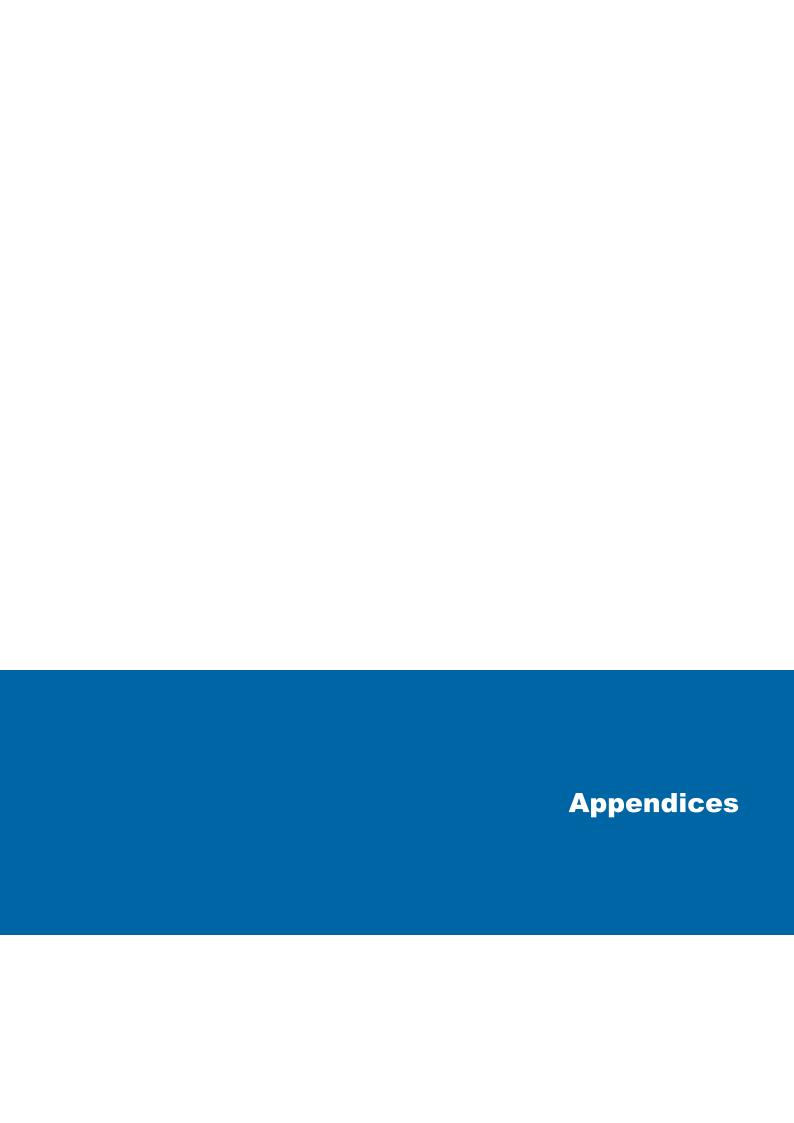


Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 54






SA Country Fire Service CFS Brukunga State Training Centre DSI


Sediment
PFAS Concentrations Plan

Project No. 12516828
Revision No. H

Date 26 Feb 2021







### **Appendix A** – Community Engagement



27 April 2020

EJ Shephard PO Box 32 NAIRNE SA 5252

Dear land owner,

## Groundwater sampling of existing monitoring wells on your land at Lot 54 Pyrites Road, Brukunga SA

GHD ref: 12516828

Investigations are currently being undertaken at the CFS State Training Centre, Brukunga in relation to the historical use of PFAS containing firefighting foam until 2001 and Portable Fire Extinguishers until January 2020.

PFAS stands for 'per- and poly-fluoro alkyl substances'. PFAS are ingredients in some common domestic products such as paints, dishwasher rinse aids, and textile treatments (water proofing, stain prevention) along with certain types of firefighting foam called AFFF (aqueous film forming foams) that were used previously by firefighting agencies. Large quantities of PFAS have not been used at the CFS State Training Centre since 2001, when their use was restricted to Portable Fire Extinguishers only. South Australia was the first state to ban the use of fluorinated AFFF, with the ban coming into effect on 30 January 2020 after a two-year transition period. The CFS have not used fluorinated AFFF during the transition period.

The CFS have engaged GHD Pty Ltd (GHD), an environmental consulting firm, to investigate any potential PFAS impacts on groundwater at the CFS State Training Centre. The results of the GHD investigations indicated concentrations of PFAS in Dawesley Creek exceed the Australian drinking water guidelines (National Health and Medical Research Council and Natural Resource Management Ministerial Council 2011, Version 3.5, Updated August 2018). Additional investigations are required, which will include targeted groundwater sampling from both public and private land surrounding the CFS State Training Centre and old Brukunga Pyrite Mine.

These additional investigations involve sampling groundwater from existing groundwater monitoring wells installed by the Department for Energy and Mining, some of which are located on your property at Lot 54 Pyrites Road, Brukunga SA. We are writing to request your informed consent to access your property and collect groundwater samples as part of this monitoring program. The work will be completed in accordance with local regulations and guidelines.

At this stage, groundwater sampling is scheduled for the week between the 25 and 29 May 2020 between 9 am and 5 pm. More accurate timing can be confirmed in future communications. If you are prepared to provide us your consent to access your private property to conduct the proposed groundwater investigation, please fill in the enclosed consent form and scan and email it to back to us at <a href="mailto:Dilara.Valiff@ghd.com">Dilara.Valiff@ghd.com</a>. Should you have any questions or concerns please contact the project manager via email (<a href="mailto:Dilara.Valiff@ghd.com">Dilara.Valiff@ghd.com</a>) or phone (08 8111 6572 or 0420 959 236).

On behalf of the CFS, GHD would like to make you aware that should the results of groundwater testing on your property exceed relevant guidelines and site contamination be identified, the South Australian Environment Protection Agency (EPA) will need to be notified (under the Section 83A – Notification of site contamination that affects or threatens underground water of the Environment Protection Act 1993 (EP Act)). The EPA is required to record details of site contamination on the EPA Public Register pursuant to section 109 of the EP Act. Where contamination on third-party sites is identified, the landowners will be informed and an appropriate risk management strategy be implemented in accordance with the "Guidelines for the assessment and remediation of site contamination" (EPA 2019) as soon as reasonably practicable, to ensure the protection of human health and the environment. Once contamination details have been recorded, this information will be made available on the Public Register Index of the EPA website and to interested parties upon written enquiry to the Public Register Administrator of the EPA. The existence of this information in relation to the land will also be identified by the EPA when responding to enquiries under the Land and Business (Sale and Conveyancing) Act 1994 (LBSC Act) and the subordinate Regulations (LSBC Regulations) (via the 'statement of environmental particulars' contained within the statement under section 7). This will typically occur at the time of sale of the property. There are also requirements for vendors in relation to identifying whether environmental assessments of the land have been carried out.

The CFS will share the results of the testing with the relevant Commonwealth and South Australian government agencies to determine if there are any potential concerns and consider the appropriate community advice. If contamination is found in the groundwater, CFS will fulfil its environmental obligations to the South Australian Government and local community. This will include further investigations to determine the extent of the impact and any potential risks. All environmental investigations, remediation and monitoring will be undertaken in accordance with the *Environment Protection Act 1993* and appropriate guidelines.

The project team will make every effort to minimise impacts to your property and household and we thank you for your patience and understanding during these works. If you have any questions or concerns during these works, please contact GHD on 1800 531 899. The GHD Project Manager can be contacted on 0420 959 236. Questions for the CFS can be directed to David Jeffree on 0418 985 359.

Sincerely GHD

Dilara Valiff

Senior Environmental Consultant +61 8 8111 6572



Figure: Map of proposed groundwater sampling location H15 at Lot 54 Pyrites Road, Brukunga SA.

### Property owner informed consent

#### I understand:

- The Environment Protection Authority (EPA) is required to record certain details of site contamination in the EPA Public Register pursuant to section 109 of the *Environment Protection Act 1993*. The information is available to members of the public via application to the EPA.
- If the results of the groundwater assessment indicate that serious or material environmental harm exists at the property, that information is required to be recorded in the Public Register pursuant to s109 of the *Environment Protection Act 1993*.
- When a request is made under Section 7 of Land and Business (Sale and Conveyancing) Act 1994, the Land Titles Office will prepare a Property Interest Report. The Report covers all areas of potential interest on a property, including environmental interests.
- Where there is a record against the title relating to an environmental interest, it will indicate that further information will be provided by the EPA.
- The EPA will then produce a separate report, mailed directly to the person making the request (generally a real estate agent or conveyancer).
- It answers "yes" or "no" to 33 questions relating to all areas of environmental interest.
- This information will be incorporated into the property sale contract and Form 1 document at the time of sale and is required to be disclosed to prospective purchasers of this property.
- The vendor of this property will also have an obligation to answer a series of questions in relation to the property when the property is sold. In particular the vendor will be required to answer 'yes' to the following question:
  - (4) is the vendor aware of an environmental assessment of the land or part of the land ever having been carried out or commenced (whether or not completed)?
- Potential buyers can contact the EPA for further information regarding the response and will be provided with available reports and information for your property.

| I/we (name/s),                                        | , the                        |
|-------------------------------------------------------|------------------------------|
| owner/s or authorised representatives of the property |                              |
|                                                       | , understand the information |
| presented above and consent to assessment works occ   | curring at the property.     |
| Owner signature (or authorised representative):       |                              |
| Name:                                                 |                              |
| Date:                                                 |                              |
| Witness signature (or authorised representative):     |                              |
| Name:                                                 |                              |
| Date:                                                 |                              |



27 April 2020

TA Jackson 361 Mail Road HARROGATE SA 5244

Dear land owner

# Access to your property for the installation of a groundwater monitoring well in the future road reserve (public land) adjacent to your property at Lot 294 Pyrites Road

GHD ref: 12516828

Investigations are currently being undertaken at the CFS State Training Centre in relation to the historical use of PFAS containing firefighting foam.

PFAS stands for 'per- and poly-fluoro alkyl substances'. PFAS are ingredients in some common domestic products such as paints, dishwasher rinse aids, and textile treatments (water proofing, stain prevention) along with certain types of firefighting foam called AFFF (aqueous film forming foams) that were used previously by firefighting agencies. Large quantities of PFAS have not been used at the CFS State Training Centre since 2001, when their use was restricted to Portable Fire Extinguishers only. South Australia was the first state to ban the use of fluorinated AFFF, with the ban coming into effect on 30 January 2020 after a two-year transition period. The CFS have not used fluorinated AFFF during the transition period.

The CFS have engaged GHD Pty Ltd (GHD), an environmental consulting firm, to investigate any potential impacts on groundwater at the CFS State Training Centre. The results of the GHD investigations indicated concentrations of PFAS in Dawesley Creek exceed the Australian drinking water guidelines (Australian National Health and Medical Research Council and Natural Resource Management Ministerial Council 2011, Version 3.5, Updated August 2018). Additional investigations are required, which will include targeted groundwater sampling from public land surrounding the CFS State Training Centre.

These additional investigations involve the installation of three (3) groundwater monitoring wells nearby to your property. All three groundwater monitoring wells are located on public land and the CFS have sought approval from Council to undertake these works. However, one of the proposed well installation locations is on a future road reserve (public land) that is currently inaccessible via public roads. Your property at Lot 294 Pyrites Road, Brukunga SA is adjacent to this location (see attached map). We seek your consent for a ute-mounted drill rig to access the proposed monitoring well location via your property and would like to discuss access options with you. If there are no other access options we may also need to seek your permission to temporarily remove (and replace) a section of fence, without disturbing livestock.

At this stage, the monitoring well installation is scheduled to occur in the week between the 18 and 22 May 2020 between 9 am and 5 pm. The work will be completed within one day. The groundwater monitoring well will be drilled to a maximum depth of approximately 9.5 m using a ute-mounted rotary drill

rig. The well will be completed at the surface with a lockable stand pipe monument. Following the well installation the vehicles would leave again by crossing your property and we would arrange for any fences that were temporarily removed to be reinstated. If you are prepared to grant us access to your private property, please send an informal email to the GHD project manager (<u>Dilara.Valiff@ghd.com</u>) so we can discuss the details and make the necessary arrangements. If you have any questions regarding our request, please contact me via email or phone (0420 959 236).

Access to your private property may be required to complete the Groundwater sampling that needs to be conducted within a week of the well installation.

The CFS will share the results of the testing with the relevant Commonwealth and South Australian government agencies to determine if there are any potential concerns and consider the appropriate community advice. If contamination is found in the groundwater, CFS will fulfil its environmental obligations to the South Australian Government and local community. This will include further investigations to determine the extent of impact and any potential risks. All environmental investigations, remediation and monitoring will be undertaken in accordance with the *Environmental Protection Act 1993* and appropriate guidelines.

The project team will make every effort to minimise impacts on neighbouring landholders and we thank you for your patience and understanding during these works. If you have any questions or concerns regarding these works, please contact GHD on 1800 531 899. The GHD Project Manager can be contacted on 0420 959 236. Questions for the CFS can be directed to David Jeffree on 0418 985 359.

Sincerely GHD

Dilara Valiff

Senior Environmental Consultant +61 8 8111 6572

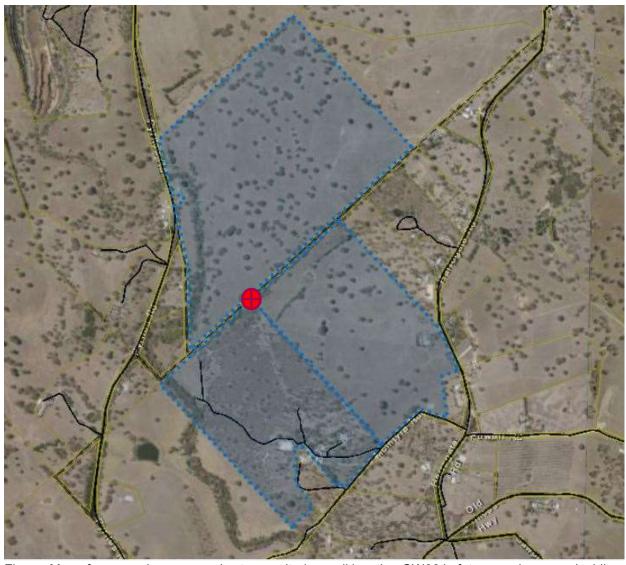



Figure: Map of proposed new groundwater monitoring well location GW06 in future road reserve (public land), Brukunga SA.



27 April 2020

GHD ref: 12516828

#### Dear resident

### Installation of groundwater monitoring wells in public land

Investigations are currently being undertaken at the CFS State Training Centre in relation to the historical use of PFAS containing firefighting foam until 2001 and Portable Fire Extinguishers until January 2020.

PFAS stands for 'per- and poly-fluoro alkyl substances'. PFAS are ingredients in some common domestic products such as paints, dishwasher rinse aids, and textile treatments (water proofing, stain prevention) along with certain types of firefighting foam called AFFF (aqueous film forming foams) that were used previously by firefighting agencies. Large quantities of PFAS have not been used at the CFS State Training Centre since 2001, when their use was restricted to Portable Fire Extinguishers only. South Australia was the first state to ban the use of fluorinated AFFF, with the ban coming into effect on 30 January 2020 after a two-year transition period. The CFS have not used fluorinated AFFF during the transition period.

The CFS have engaged GHD Pty Ltd (GHD), an environmental consulting firm, to investigate any potential impacts on groundwater at the CFS State Training Centre. The results of the GHD investigations indicated concentrations of PFAS in Dawesley Creek exceed the Australian drinking water guidelines (National Health and Medical Research Council and Natural Resource Management Ministerial Council 2011, Version 3.5, Updated August 2018). Additional investigations are required, which will include targeted groundwater sampling from public land surrounding the CFS State Training Centre.

These additional investigations involve the installation of three (3) groundwater monitoring wells nearby to your property. All three groundwater monitoring wells are located on public land and the CFS have sought approval from Council to undertake these works. No access to private property will be required. The work is being done in accordance with local regulations and approved by Council.

At this stage, the monitoring well installation is scheduled to occur in the week between the 18 and 22 May 2020 between 9 am and 5 pm. This will be followed by groundwater sampling to be conducted within a week after installation.

As an adjacent landholder, we want to advise you of the works and keep you informed of what is happening. The deepest of the groundwater monitoring wells will be drilled to a depth of approximately 9.5 m. During the installation of the groundwater monitoring wells, the only machinery used will be a rotary drill rig. The well will be completed at the surface with a lockable stand piper monument.

The CFS will share the results of the testing with the relevant Commonwealth and South Australian government agencies to determine if there are any potential concerns and consider the appropriate community advice. If contamination is found in the groundwater, CFS will fulfil its environmental obligations to the South Australian Government and local community. This will include further

investigations to determine the extent of impact and any potential risks. All environmental investigations, remediation and monitoring will be undertaken in accordance with the *Environmental Protection Act 1993* and appropriate guidelines.

The project team will make every effort to minimise impacts on neighbouring landholders and we thank you for your patience and understanding during these works. If you have any questions or concerns during these works, please contact GHD on 1800 531 899. The GHD Project Manager can be contacted on 0420 959 236. Questions for the CFS can be directed to David Jeffree on 0418 985 359.

Sincerely GHD

**Dilara Valiff** 

Senior Environmental Consultant +61 8 8111 6572

CFS Brukunga DSI - Community Engagement during May – June 2020 prior to access/sampling on private land

| Property address                   | Well ID & purpose                                                                            | Property owner's name, contacts                                             | Mailing<br>Address                   | Actions<br>taken                                                       | Informed<br>Consent<br>required? | Informed<br>Consent<br>received? | Comments / Status                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 296 Pyrites<br>Rd,<br>Brukunga     | Installing new<br>well GW06<br>on public land                                                | Ray & Tania<br>Jackson<br>bonniedoon361@<br>bigpond.com<br>Ph: 0429 189 089 |                                      | Letterbox<br>drop 4/5,<br>Doorknock<br>8/5,<br>Doorknock<br>4/9        | No                               | N/A                              | Letter informed of well install on public land. Sean and Rob spoke with residents on 8/05/2020 and were told that they were renting the property. Property is owned by Ray and Tania Jackson (see 294 Pyrites Rd, Brukunga for communication with them), property shares access gate with 294 Pyrites Rd, Brukunga.  Sean and Vera conducted doorknock on 4/9 at 8 pm, lights |
|                                    |                                                                                              |                                                                             |                                      |                                                                        |                                  |                                  | were on inside of house but received no answer, left letter, Vera's business card and note requesting residents contact us so we can explain the contents of the letter.                                                                                                                                                                                                      |
| 93<br>Harrogate<br>Rd,<br>Brukunga | Installing new<br>well GW06<br>on public land                                                | RF & JM McEvoy<br>mcevoyjr@bigpon<br>d.com<br>Ph: 08 83880267               | PO Box<br>124,<br>Nairne<br>5252     | Letter posted 27/4, Letterbox drop 4/5, Doorknock 8/5                  | No                               | N/A                              | Letter re access to property for installation of a new well on future road reserve.  Email response received on 5/5/2020 agreed on doorknocking.  Sean and Rob visited on 8/5/2020 – property owner took Rob to show him proposed location and that it would be difficult                                                                                                     |
| 113<br>McIntyre<br>Rd,<br>Brukunga | Installing new<br>well GW06<br>on public land                                                | RJ & S Shearer                                                              | PO Box<br>1064,<br>Nairne<br>5252    | Letter<br>posted<br>27/4,<br>Letterbox<br>drop 4/5                     | No                               | N/A                              | to access from this property.  Letter re access to property for installation of a new well on future road reserve.  Visited neighbourhood on 8/5/2020 – did not meet with property owners, as seen from neighbouring property (93 Harrogate Rd) it would be difficult to access proposed location from this property.                                                         |
| 294 Pyrites<br>Rd,<br>Brukunga     | Installing new well GW06 on public land, sampling of bore and Dawesley Creek on private land | Ray & Tania Jackson bonniedoon361@ bigpond.com Ph: 0429 189 089             | 361 Mail<br>Rd,<br>Harrogate<br>5244 | Letter posted 27/4, Letterbox drop 4/5, Well install 26/5, Sampling of | Yes                              | Yes                              | Letter re access to property for installation of a new well on public road easement.  Could not find address during letterbox drop, owners of conjoined property 296 Pyrites Rd.  Ray Jackson (0409 282 703) met Joel Chance on Tuesday 19/5/2020 at 9 am at 296 Pyrites Rd, accompanied to the                                                                               |

| Property address               | Well ID & purpose                             | Property owner's name, contacts      | Mailing<br>Address | Actions<br>taken                                                            | Informed<br>Consent<br>required? | Informed<br>Consent<br>received? | Comments / Status                                                                                                                                                                                                                                                                                      |
|--------------------------------|-----------------------------------------------|--------------------------------------|--------------------|-----------------------------------------------------------------------------|----------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                               |                                      |                    | GW06<br>15/6,<br>Report of                                                  |                                  |                                  | proposed location of well GW06. Four-wheel drive vehicle is required for access to the well area due to undulated hills.                                                                                                                                                                               |
|                                |                                               |                                      |                    | Lab results emailed 8/07,                                                   |                                  |                                  | Sean and Joel sampled GW06 on 15/06/2020, Joel contact Ray prior to accessing the site.                                                                                                                                                                                                                |
|                                |                                               |                                      |                    | Sampling of<br>private<br>bore and<br>Dawesley<br>Creek 17/8<br>Sampling of |                                  |                                  | DV received query from Tania re Public Notice in the newspaper re EPA Sec83a Notification on 8/7/20 relating to private bore 6627-833 at 260 Pyrites Rd (owned by Simon Nefiodovas, tested in February 2020), with PFAS > PFAS NEMP 2018 Health Drinking Water of 0.07 ug/L for Sum of PFHxS and PFOS. |
|                                |                                               |                                      |                    | private<br>bore and<br>soil from<br>disused                                 |                                  |                                  | DV emailed info for new well GW06 (PFAS <lor) 07="" 2020.<="" 8="" on="" tania="" td="" to=""></lor)>                                                                                                                                                                                                  |
|                                |                                               |                                      |                    | vegetable<br>garden<br>17/9                                                 |                                  |                                  | DV in contact with Tania about sampling the property's private bore and arranged for SS to meet with Ray to collect samples. SS meet with Ray 17/8/20 and collected samples from the pumped bore well and nearby Dawesley Creek that runs through the property.                                        |
|                                |                                               |                                      |                    |                                                                             |                                  |                                  | With permission from property owners SS conducted second round of sampling from private bore, as well as soil from the disused vegetable garden on 17/9/20. Ray was at work so SS conducted sampling unaccompanied.                                                                                    |
| 220 Pyrites<br>Rd,<br>Brukunga | Installing new<br>well GW07 on<br>public land |                                      |                    | Letterbox<br>drop 4/5                                                       | No                               | N/A                              | Letter informed of well install on public land                                                                                                                                                                                                                                                         |
| 260 Pyrites<br>Rd,<br>Brukunga | Installing new<br>well GW07 on<br>public land | Simon<br>Nefiodovas, 0412<br>955 274 |                    | Letterbox<br>drop 4/5,<br>Access to<br>DC03 &<br>DC04<br>through            | No                               | N/A                              | Letter informed of well install on public land.  Sean contacted Simon about accessing the public road easement behind his property to sample DC03. Simon confirmed that the land parcel to his south was a reserve                                                                                     |

| Property address                    | Well ID & purpose                                              | Property owner's name, contacts                                                                                                              | Mailing<br>Address                           | Actions<br>taken                                                                          | Informed Consent required? | Informed<br>Consent<br>received? | Comments / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                |                                                                                                                                              |                                              | property<br>8/5                                                                           |                            |                                  | owned by council, Sean accessed the site through 260 Pyrites Rd, Brukunga and sampled DC04.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 265 Pyrites<br>Rd,<br>Brukunga      | Installing new<br>well GW07 on<br>public land                  |                                                                                                                                              |                                              | Letterbox<br>drop 4/5                                                                     | No                         | N/A                              | Letter informed of well install on public land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 289 Pyrites<br>Rd,<br>Brukunga      | Installing new well GW08 and H10 existing well sampling        | Lynlee Krek &<br>John Hunt                                                                                                                   | PO Box<br>4001,<br>Tranmere<br>North<br>5073 | Letter<br>posted<br>27/4,<br>Letterbox<br>drop 4/5                                        | Yes                        | No                               | Email received 4/05/2020. Property owners have <b>refused consent</b> to access their site to install a new well or monitor the existing well and have requested that the GHD field team do not visit the property during the doorknocking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 203 Peggy<br>Buxton Rd,<br>Brukunga | KAN23,<br>KAN26,<br>KAN27, KAN28<br>Existing wells<br>sampling | Peggy Buxton Road Pty Ltd, Peter Buik, owner, 0408 821 562. Andrew Dunncliff, lawyer, Commercial & Legal, andrew@commer cialandlegal.com. au | PO Box<br>7052,<br>Adelaide<br>5000          | Letter posted 27/4, Letterbox drop 4/5/2020, Report of Lab results emailed to Andrew 8/07 | Yes                        | Yes                              | Letter re Groundwater sampling of existing wells on 203 and Lot 100 Peggy Buxton Road.  Rob and Sean did doorknocking on 8/05/2020, nobody home. Sean and Vera did doorknocking on 18/5/2020, obtained phone number for property owner Peter Buik from contractor.  DV spoke to Peter on 22/05/2020 and to the lawyer Andrew Duncliff, Commercial and Legal on 25/05/2020. Andrew emailed on 27/05/2020 confirming owner's consent, subject to providing lab results including pH, TDS & PFAS. Signed consent Form was received on 2/6/2020. Property is leased to residents who farm the property.  Sean called Peter and confirmed access for environmental monitoring team to visit property on 13/06/2020. Sean and Joel visited site on 15/06/2020 to locate and sample existing wells, only KAN23 was able to be located with the use of a metal detector, while searching for KAN26, Sean and Joel met with the daughter of the tenants, who wanted to confirm GHD had acquired permission from Peter to be on the property and was not aware of the existence of the wells. Peter provided contact details of previous property owner Jill Shephard (0488) |

| Property address                  | Well ID & purpose                                         | Property owner's name, contacts                                                                | Mailing<br>Address          | Actions<br>taken                                                                   | Informed Consent required? | Informed<br>Consent<br>received? | Comments / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------|----------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                           |                                                                                                |                             |                                                                                    | requireur                  | receiveur                        | 588 007) to try and provide more background information to be able to locate other well locations.  Sean called Jill on 17/06/2020 confirmed that all of the existing wells were installed with gatics and gave descriptions of the wells locations. Sean called Peter to organise another site visit on 17/06/2020. Sean returned to property on 19/06/2020 to search for remaining wells, using a metal detector and handheld GPS device was only able to locate KAN26.  Lincoln Jeffery from LinkUp surveyed KAN23 and KAN26 on 26/06/2020 and attempted to locate KAN27 and KAN28 but was unable to locate them. Lincoln reported that when accessing the site he met with one of the tenants who was strongly opposed to having groundwater wells installed on the property, however relaxed when informed that the work involved surveying existing wells. |
|                                   |                                                           |                                                                                                |                             |                                                                                    |                            |                                  | DV emailed lab results for KAN23 and KAN26 (PFAS <lor) 07="" 2020.<="" 8="" a="" duncliff="" on="" th="" to=""></lor)>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lot 54<br>Pyrites Rd,<br>Brukunga | H15 Existing well sampling and new well C04a installation | Elizabeth Jean<br>Shephard<br><u>lizshephard@hot</u><br><u>mail.com</u><br>Mob 0438 952<br>654 | PO Box 32<br>Nairne<br>5252 | Letter posted 27/4, Letterbox drop 4/5, Report of Lab results emailed / sent 10/07 | Yes                        | Yes                              | Letter re Groundwater sampling of existing well H15. Liz leases Lot 54 to farmer Dale Mills (0418 892 454).  Rob and Sean visited on 8/05/2020 and discussed installing a new well bordering the DEM tailings dam, Liz is certain that H15 does not exist. DV received verbal consent to sample existing & install the new well. DV spoke to Liz on 12 and 13 May 2020 re informed consent form clarification. Liz posted signed Informed consent form to DV dated 13/5/2020. Liz requested the lab results of metals, iron, TDS and pH to be provided to her.                                                                                                                                                                                                                                                                                                   |
|                                   |                                                           |                                                                                                |                             |                                                                                    |                            |                                  | DV responded to Liz's email received on 9/6/2020, informing of well install to 14 m bgl on 28/5/2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Property address                                     | Well ID & purpose                                                                                                         | Property owner's name, contacts                                                | Mailing<br>Address                   | Actions<br>taken                                                    | Informed Consent required? | Informed Consent received? | Comments / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------|----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                                                                                                                           |                                                                                |                                      |                                                                     |                            |                            | Sean called and met Liz on 16/06/2020, sampled H15 and C04a. Note could not drive to H15 due to lambing season and slippery steep track.  Lincoln Jeffery from LinkUp surveyed H15 and C04a on 26/06/2020.  DV emailed and posted lab results and map to Liz for wells H15 and C04a (PFAS <lor) 07="" 10="" 2020.<="" on="" td=""></lor)>                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lot 31<br>Smyth<br>Road,<br>Dawesley                 | Dawesley<br>Creek water<br>sampling<br>around<br>DC06/07                                                                  | Luke Angel<br>M: 0414 834 797                                                  | Lot 31<br>Smyth<br>Road,<br>Dawesley | Phone call<br>DV on<br>15/5/2020                                    | Yes                        | No                         | DV spoke to Luke on 22/5/2020. Luke did not consent to creek water sampling on his property, but can sample the creek water at the weir located to the north of Luke's property, regularly sampled by DEM (Brukunga mine).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16<br>Hawthorn<br>Street,<br>Dawesley,<br>"The Brae" | Additional private bore identified at the property And require informed consent for testing creek samples DC06A and DC06B | Milos J Castelli & M Sepe 0402 143 516 Wedding venue and cottage accommodation |                                      | Doorknock<br>18/05,<br>Report of<br>Lab results<br>emailed<br>15/07 | No                         | yes                        | SS and VB did door knocking on 18/05/2020 and spoke to owner. Milos informed that gate blocking access to DC06 belonged to his neighbour Ken Sourby, who he called and requested access to the road reserve on behalf of GHD, to which Ken agreed.  Milos suggested to take samples from 2 additional fords in the creek on his property marked DC06A and DC06B (which GHD took on the day and put on hold for informed consent). After the consent was received, samples were requested for PFAS analysis.  Milos asked if GHD would test his bore water (used mostly for irrigation). SS left an informed consent form and an information letter, saying that if we were provided the informed consent we could arrange a day to come sample the bore during the next round. |
|                                                      |                                                                                                                           |                                                                                |                                      |                                                                     |                            |                            | DV spoke to Milos and emailed consent form on 2/6/2020. Milos sent signed consent form on 9 May 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Property address                                     | Well ID & purpose                                                | Property owner's name, contacts                                                                                    | Mailing<br>Address         | Actions<br>taken                                                     | Informed<br>Consent<br>required? | Informed<br>Consent<br>received? | Comments / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      |                                                                  |                                                                                                                    |                            |                                                                      |                                  |                                  | Sean called Milos prior accessing / sampling private bore on 16/6 (pump wasn't working properly and Milos said he'd try to fix it by the time Sean came back later in the week) and on 19/06/2020.                                                                                                                                                                                                                                                                                                                                                                      |
|                                                      |                                                                  |                                                                                                                    |                            |                                                                      |                                  |                                  | DV emailed lab results to Milos for private bore Hawthorn1 (PFAS <lor) 07="" 15="" 2020.<="" and="" at="" creek="" dc06a="" dc06b="" on="" property="" samples="" td="" the=""></lor)>                                                                                                                                                                                                                                                                                                                                                                                  |
| 95 Smyth<br>Road,<br>Dawesley<br>"Carlisle<br>Lodge" | Require<br>access to<br>creek location<br>DC08 on<br>public land | Bernard and Sue<br>0422 827 602<br>Airbnb<br>accommodation,<br>also run safety<br>training company<br>in Mt Barker |                            | Doorknock<br>18/05                                                   | No                               | N/A                              | The last property door knocked, Sean and Vera spoke to the neighbours who said the property owners did some conservation work in the creek. After checking the house to see if the property owners were home Sean and Vera met daughter down the road, gave her the information letter to pass onto her parents and she gave us her step-father's (property owner) mobile number.  DV called Bernard on 3/6/2020, getting access via private property to the creek. Sean called Bernard prior accessing and                                                             |
|                                                      |                                                                  | 8.1                                                                                                                | uly 2020 Cor               | nmunity Fnga                                                         | ement durii                      | l<br>ng Daweslev                 | sampling creek on 9/6/2020.  Creek sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 483<br>Ironstone<br>Range Rd,<br>Petwood             | 6627-11131<br>(private bore)                                     | Brianna<br>(0438 838 972)<br>and Brad<br>McAvanney<br>briannamcavaney<br>@hotmail.com                              | , 222 30.                  | Doorknock<br>8/07<br>GW<br>sampling<br>from<br>private<br>bore 24/07 | Yes                              | Yes                              | Sean and Vera doorknocked and spoke to a group who were housesitting for the residents and they it should be fine for the environmental monitoring team to access to the creek locations for collecting creek samples DC09, DC10 and DC11 within the road easement that runs through the property.  Brianna contacted GHD to request sampling of private bore, Taylah arranged for Sean to visit the property on 24/9/20.  Sean meet with Brianna and Brad on 24/9/20, Brianna had to leave to take the children to school, but Brad accompanied Sean down to the bore. |
| Lot 13<br>Ironstone                                  |                                                                  | Craig Daykin<br>0419 828 825                                                                                       | PO Box<br>387<br>Littleham |                                                                      | No                               | N/A                              | Sean called property owner, access to road easement requested and gained for sampling Nairne Creek. Craig mentioned that the Dawesley Creek was the only accessible                                                                                                                                                                                                                                                                                                                                                                                                     |

| Property address                                    | Well ID & purpose | Property owner's name, contacts                                                                                                       | Mailing<br>Address | Actions<br>taken  | Informed Consent required? | Informed<br>Consent<br>received? | Comments / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|----------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Range Rd,<br>Petwood                                |                   | cadaykin@hotmai<br>l.com.au<br>enquires@bluesto<br>nesupplies.com.a<br>u<br>Adelaide Hills<br>Bluestone<br>Supplies<br>(08 8391 1625) | pton SA<br>5250    |                   |                            |                                  | water source and was being used for livestock watering for cattle on his property. Sean to contact Craig prior to arriving to site to ensure he has time to notify work crew of GHD works being completed.  Sean called Craig to arrange a time to sample private bore on 483 Ironstone Range Rd, however Craig informed that the property belongs to his neighbours but didn't have any problem with driving through property to access neighbour's property. As these properties are separate this property will not have been included in the doorknock informing residents of the contamination in Dawesley Creek, will need to email to him separately.  Sean emailed Craig letter to residents and water use survey            |
| 573 Back<br>Callington<br>Rd,                       |                   |                                                                                                                                       |                    | Doorknock<br>8/07 | No                         | N/A                              | from the doorknock to Craig on 2/10/20.  Sean and Vera doorknocked, there was no one at home.  Printed information letter to residents was left in door nearest the driveway.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Petwood<br>649 Back<br>Callington<br>Rd,<br>Petwood |                   |                                                                                                                                       |                    | Doorknock<br>8/07 | No                         | N/A                              | Sean and Vera doorknocked and met with the residents who appeared to run a nursery business.  The man was reluctant to allow access due to previous dealings with the EPA on his property and who in his opinion hadn't managed to do anything to improve the situation with the neighbouring Kanmantoo mine. However he agreed to allow access to the public land to conduct the sampling and accompanied Sean down to the creek (DC13), at which point due to the time Vera had to leave to get back home in time to look after her kids. The man pointed out the Kanmantoo mine's discharge point and so DC13 was positioned upstream of it and DC14 which was a few hundred meters downstream would detect any spike in analyte. |

| Property address                              | Well ID & purpose | Property owner's name, contacts                                               | Mailing<br>Address | Actions<br>taken | Informed<br>Consent<br>required? | Informed<br>Consent<br>received? | Comments / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------|-------------------|-------------------------------------------------------------------------------|--------------------|------------------|----------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                   |                                                                               |                    |                  |                                  |                                  | DC14 and DC15 (which were roadside) were sampled after<br>Sean visited Brukunga as the DEM WTP crew would want to<br>close the gates to the mine mid-afternoon (3:30 pm).                                                                                                                                                                                                                                                                                                                                            |
| Lots 14 &<br>15 Éclair<br>Mine Rd, St<br>Ives |                   | Kristina Van<br>Meeter<br>0409278123<br>jakemfarm@gmail<br>.com<br>JAKEM Farm |                    |                  | N/A                              | N/A                              | Sean called property owner on 21/07/2020 and was informed that the road easement runs through adjacent properties.  Sean emailed Kristina a map of sampling locations and she will be able to provide contact details of her neighbours for us to contact the property owners prior to accessing Dawesley Creek and Mt Barker Creek.  Kristina provided the names and mobile numbers of her neighbouring property owners we would need to contact to access the public road reserve at the bottom of Dawesley Creek. |
|                                               |                   |                                                                               |                    |                  |                                  |                                  | Sean and Vera, accompanied by EPA Hannah Custance met with Kristina while setting up for sampling from DC16.                                                                                                                                                                                                                                                                                                                                                                                                         |
| 106 Blue<br>Wren Lane,<br>Wistow              |                   |                                                                               |                    |                  | No                               | N/A                              | Sean and Vera doorknocked on 17/08/2020 to request permission to access public road reserve via private property.  Permission was received, left information letter on way out.                                                                                                                                                                                                                                                                                                                                      |
|                                               |                   |                                                                               |                    |                  |                                  |                                  | Sean doorknocked on 11/09/2020 to request permission a second time, however resident was not home. So during field work 4WD was parked outside of property and walked to sampling location via public road easement that was on neighbouring property to the north.                                                                                                                                                                                                                                                  |
|                                               |                   |                                                                               |                    |                  |                                  |                                  | Sean doorknocked on 17/09/2020 to request permission to access road easement, however resident was not home. So during field work 4WD was parked outside of property and walked to sampling location via public road easement that was on neighbouring property to the north.                                                                                                                                                                                                                                        |
| Bremer<br>Range Rd,<br>St Ives                |                   | Mick Chapman<br>0424569317<br>Holly Chapman                                   |                    |                  | No                               | N/A                              | Sean called Holly on 22/07/2020 and received permission to access public road and sample DC16. Holly has informed us that she co-owns the property and that the co-owner had put                                                                                                                                                                                                                                                                                                                                     |

| Property address                                                   | Well ID & purpose | Property owner's name, contacts | Mailing<br>Address | Actions<br>taken | Informed<br>Consent<br>required? | Informed<br>Consent<br>received? | Comments / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------|-------------------|---------------------------------|--------------------|------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (unnumber<br>ed, east of<br>14 & 15<br>Éclair Mine<br>Rd, St Ives) |                   | 0422737898                      |                    |                  | required.                        | received.                        | up fences and padlocked the gate across the public road easement and gave permission for environmental monitoring team to cut the padlock to gain access. Holly also mentioned that there were groundwater monitoring wells and there used to be a smelter south-west of the Dawesley Creek (field work show that these were on the adjacent property owned by Robert Mach).  Sean and Vera, accompanied by EPA Hannah Custance accessed the public land by crossing the property, the padlock previously mentioned was too heavy to be cut with bolt cutters but the fence was short enough to be easily jumped, while navigating to DC17 (Samuels Rd), it was observed that the site would be easily accessible from the other side which had a non-padlocked gate.  Sean attempted to contact Holly to request access to property to reach neighbouring property for sampling on 11/9/20 and |
|                                                                    |                   |                                 |                    |                  |                                  |                                  | 17/9/20, but was unable to make contact. So during field work on 11/9/20 the 4WD was parked outside of the property boundary and walked through property via the public road reserve which was accessible from edge of property.  SS was still unable to make contact with Holly, during field work on 17/9/20, the 4WD was parked outside of the property boundary and walked through property via the public road reserve which was accessible from edge of property.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lot 50<br>Éclair Mine<br>Rd, St Ives                               |                   | Robert Mach<br>0429944213       |                    |                  | No                               | N/A                              | Sean called the property owner while in the field on 23/07/2020, Robert did not give permission to access the road easement to sample from Dawesley Creek as to access the road easement would still require traversing into his neighbours property and suggested that we access the easement only through that property.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Property address                       | Well ID & purpose | Property owner's name, contacts            | Mailing<br>Address | Actions<br>taken                                                  | Informed<br>Consent<br>required? | Informed Consent received? | Comments / Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|-------------------|--------------------------------------------|--------------------|-------------------------------------------------------------------|----------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lot 70<br>Samuels<br>Rd,<br>Callington |                   | Jose<br>0414490301                         |                    |                                                                   | No                               | N/A                        | Sean called Jose on 22/07/2020 but no response, left message with details.  Sean called Jose again while in the field on 23/07/2020, Jose gave permission to access the road easement and advised that it would be easiest to access the property by driving in through a gate in the north-western corner of his property (through Bremer Range Rd, for which we already had permission to access from Holly), but that even with a 4WD it would only make it half the distance. |
|                                        |                   |                                            |                    |                                                                   |                                  |                            | Sean called Jose to request permission and was received to access public land via private property for concurrent sampling first to be 11/09/2020 and second to be 17/09/2020, access to be the same as previously discussed.                                                                                                                                                                                                                                                     |
| BR01                                   |                   | Brad Crook<br>430C Callington<br>Rd, Salem |                    |                                                                   |                                  |                            | While sampling BR01, Sean spoke with one of the local residents (Brad Crook) who commented that it was very unusual for the Bremer River to have run dry. During the door knocking on 10/8/20, Sean and Vera spoke with Brad again and completed the water use survey indicating that he is pumping water from the Mt Barker Creek to irrigate plants and water livestock.                                                                                                        |
| 430D<br>Callington<br>Road,<br>Salem   |                   | Paul and Rose<br>Johnston                  |                    | Door<br>knocking<br>and<br>sampling of<br>Mt Barker<br>Creek 10/8 | Yes                              | Yes                        | While doorknocking on 10/8 Sean and Vera spoke with the property owners who use the property for environmental conservation, they agreed to sign the informed consent and allow access to the Mt Barker Creek for sampling the same day. The sampling point is immediately adjacent to the SA EPA water quality monitoring station located on the property.                                                                                                                       |

- The Environment Protection Authority (EPA) is required to record certain details of site contamination in the EPA Public Register pursuant to section 109 of the Environment Protection Act 1993. The information is available to members of the public via application to the EPA.
- If the results of the groundwater assessment indicate that serious or material environmental harm exists at the property, that information is required to be recorded in the Public Register pursuant to s109 of the *Environment Protection Act 1993*.
- When a request is made under Section 7 of Land and Business (Sale and Conveyancing) Act 1994, the Land Titles Office will prepare a Property Interest Report. The Report covers all areas of potential interest on a property, including environmental interests.
- Where there is a record against the title relating to an environmental interest, it will indicate that further information will be provided by the EPA.
- The EPA will then produce a separate report, mailed directly to the person making the request (generally a real estate agent or conveyancer).
- It answers "yes" or "no" to 33 questions relating to all areas of environmental interest.
- This information will be incorporated into the property sale contract and Form 1 document at the time of sale and is required to be disclosed to prospective purchasers of this property.
- The vendor of this property will also have an obligation to answer a series of questions in relation to the property when the property is sold. In particular the vendor will be required to answer 'yes' to the following question:
  - (4) is the vendor aware of an environmental assessment of the land or part of the land ever having been carried out or commenced (whether or not completed)?
- Potential buyers can contact the EPA for further information regarding the response and will be provided with available reports and information for your property.

| I/we (name/s), Brad Markey , the owner/s or authorised representatives of the property identified as                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------|--|
| 848 I on sine Range R2 Pehras understand the information presented above and consent to assessment works occurring at the property. |  |
| Owner signature (or authorised representative):                                                                                     |  |
| Name: Brad McHorry                                                                                                                  |  |
| Date: 23/9/2020                                                                                                                     |  |
| Witness signature (or authorised representative):                                                                                   |  |
| Name: Sean Spartow                                                                                                                  |  |
| Date: 23/9/2020                                                                                                                     |  |

- The Environment Protection Authority (EPA) is required to record certain details of site contamination in the EPA Public Register pursuant to section 109 of the *Environment Protection Act 1993*. The information is available to members of the public via application to the EPA.
- If the results of the groundwater assessment indicate that serious or material environmental harm exists at the property, that information is required to be recorded in the Public Register pursuant to s109 of the *Environment Protection Act 1993*.
- When a request is made under Section 7 of Land and Business (Sale and Conveyancing) Act 1994, the Land Titles Office will prepare a Property Interest Report. The Report covers all areas of potential interest on a property, including environmental interests.
- Where there is a record against the title relating to an environmental interest, it will indicate that further information will be provided by the EPA.
- The EPA will then produce a separate report, mailed directly to the person making the request (generally a real estate agent or conveyancer).
- It answers "yes" or "no" to 33 questions relating to all areas of environmental interest.
- This information will be incorporated into the property sale contract and Form 1 document at the time of sale and is required to be disclosed to prospective purchasers of this property.
- The vendor of this property will also have an obligation to answer a series of questions in relation to the property when the property is sold. In particular the vendor will be required to answer 'yes' to the following question:
  - (4) is the vendor aware of an environmental assessment of the land or part of the land ever having been carried out or commenced (whether or not completed)?
- Potential buyers can contact the EPA for further information regarding the response and will be provided with available reports and information for your property.

| I/we (name/s), ANIA JACKSON                        | , the                                   |
|----------------------------------------------------|-----------------------------------------|
| owner/s or authorised representatives of the prope |                                         |
| 296 PYRITES RD BRUKUNGA                            | , understand the information            |
| presented above and consent to assessment works of | occurring at the property.              |
| Owner signature (or authorised representative):    | Jan |
| Name: TAMA JACKSON                                 |                                         |
| Date: 16/8/2020.                                   | 1                                       |
| Witness signature (or authorised representative):  | Maylin.                                 |
| Name: Pay Jackson                                  |                                         |
| Date: 16/8/ 2020                                   |                                         |

#### Lunderstand:

- The Environment Protection Authority (EPA) is required to record certain details of site contamination in the EPA Public Register pursuant to section 109 of the *Environment Protection Act 1993*. The information is available to members of the public via application to the EPA.
- If the results of the groundwater assessment indicate that serious or material environmental harm exists at the property, that information is required to be recorded in the Public Register pursuant to s109 of the *Environment Protection Act 1993*.
- When a request is made under Section 7 of Land and Business (Sale and Conveyancing) Act 1994, the Land Titles Office will prepare a Property Interest Report. The Report covers all areas of potential interest on a property, including environmental interests.
- Where there is a record against the title relating to an environmental interest, it will indicate that further information will be provided by the EPA.
- The EPA will then produce a separate report, mailed directly to the person making the request (generally a real estate agent or conveyancer).
- It answers "yes" or "no" to 33 questions relating to all areas of environmental interest.
- This information will be incorporated into the property sale contract and Form 1 document at the time of sale and is required to be disclosed to prospective purchasers of this property.
- The vendor of this property will also have an obligation to answer a series of questions in relation to the property when the property is sold. In particular the vendor will be required to answer 'yes' to the following question:
  - o (4) is the vendor aware of an environmental assessment of the land or part of the land ever having been carried out or commenced (whether or not completed)?
- Potential buyers can contact the EPA for further information regarding the response and will be provided with available reports and information for your property.

| I/we (name/s), Ister Andrew Built the                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------|
| owner/s or authorised representatives of the property identified as 203 and lot 100 leggy Bux for lo understand the information |
|                                                                                                                                 |
| presented above and consent to assessment works occurring at the property.                                                      |
| Owner signature (or authorised representative):                                                                                 |
| Name: Yeta Andru Buk                                                                                                            |
| Date: 2 <sup>nd</sup> June 2020.                                                                                                |
| Witness signature (or authorised representative):                                                                               |
| Name: ANDREW DUNNCLIFE                                                                                                          |
| Date: 2/6/2020                                                                                                                  |

- The Environment Protection Authority (EPA) is required to record certain details of site
  contamination in the EPA Public Register pursuant to section 109 of the Environment Protection
  Act 1993. The information is available to members of the public via application to the EPA.
- If the results of the groundwater assessment indicate that serious or material environmental harm exists at the property, that information is required to be recorded in the Public Register pursuant to s109 of the Environment Protection Act 1993.
- When a request is made under Section 7 of Land and Business (Sale and Conveyancing) Act 1994, the Land Titles Office will prepare a Property Interest Report. The Report covers all areas of potential interest on a property, including environmental interests.
- Where there is a record against the title relating to an environmental interest, it will indicate that further information will be provided by the EPA.
- The EPA will then produce a separate report, mailed directly to the person making the request (generally a real estate agent or conveyancer).
- It answers "yes" or "no" to 33 questions relating to all areas of environmental interest.
- This information will be incorporated into the property sale contract and Form 1 document at the time of sale and is required to be disclosed to prospective purchasers of this property.
- The vendor of this property will also have an obligation to answer a series of questions in relation to the property when the property is sold. In particular the vendor will be required to answer 'yes' to the following question:
  - o (4) is the vendor aware of an environmental assessment of the land or part of the land ever having been carried out or commenced (whether or not completed)?
- Potential buyers can contact the EPA for further information regarding the response and will be provided with available reports and information for your property.

| I/we (name/s), PAUL V. JOHNSTON , the owner/s or authorised representatives of the property identified as |
|-----------------------------------------------------------------------------------------------------------|
| presented above and sonsent to assessment works occurring at the property.                                |
| Owner signature (or authorised representative):                                                           |
| Name: PAUL JOHNSTON                                                                                       |
| Date: 10/8/20                                                                                             |
| Witness signature (or authorised representative):                                                         |
| Name: Sean Sparrow                                                                                        |
| Date: $10/8/2070$                                                                                         |

- The Environment Protection Authority (EPA) is required to record certain details of site
  contamination in the EPA Public Register pursuant to section 109 of the Environment Protection
  Act 1993. The information is available to members of the public via application to the EPA.
- If the results of the groundwater assessment indicate that serious or material environmental harm exists at the property, that information is required to be recorded in the Public Register pursuant to \$109 of the Environment Protection Act 1993.
- When a request is made under Section 7 of Land and Business (Sale and Conveyancing) Act 1994, the Land Titles Office will prepare a Property Interest Report. The Report covers all areas of potential interest on a property, including environmental interests.
- Where there is a record against the title relating to an environmental interest, it will indicate
  that further information will be provided by the EPA.
- The EPA will then produce a separate report, mailed directly to the person making the request (generally a real estate agent or conveyancer).
- It answers "yes" or "no" to 33 questions relating to all areas of environmental interest.
- This information will be incorporated into the property sale contract and Form 1 document at the time of sale and is required to be disclosed to prospective purchasers of this property.
- The vendor of this property will also have an obligation to answer a series of questions in relation to the property when the property is sold. In particular the vendor will be required to answer 'yes' to the following question:
  - (4) is the vendor aware of an environmental assessment of the land or part of the land ever having been carried out or commenced (whether or not completed)?
- Potential buyers can contact the EPA for further information regarding the response and will be provided with available reports and information for your property.

| owner/s or authorised representatives of the property identified as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| SECURE AND ADDRESS OF THE PROPERTY OF THE PROP | and the information perty. |
| Owner signature (or authorised representative):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Replant.                   |
| Name: KLIZABINH MAN SHKEHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |
| Date: 12-05-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
| Witness signature (or authorised representative):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uney                       |
| Name: Sandra Kaye Tierney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (                          |
| nate: 17/5/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |

- The Environment Protection Authority (EPA) is required to record certain details of site
  contamination in the EPA Public Register pursuant to section 109 of the Environment Protection
  Act 1993. The information is available to members of the public via application to the EPA.
- If the results of the groundwater assessment indicate that serious or material environmental harm exists at the property, that information is required to be recorded in the Public Register pursuant to s109 of the Environment Protection Act 1993.
- When a request is made under Section 7 of Land and Business (Sale and Conveyancing) Act 1994, the Land Titles Office will prepare a Property Interest Report. The Report covers all areas of potential interest on a property, including environmental interests.
- Where there is a record against the title relating to an environmental interest, it will indicate
  that further information will be provided by the EPA.
- The EPA will then produce a separate report, mailed directly to the person making the request (generally a real estate agent or conveyancer).
- It answers "yes" or "no" to 33 questions relating to all areas of environmental interest.
- This information will be incorporated into the property sale contract and Form 1 document at the time of sale and is required to be disclosed to prospective purchasers of this property.
- The vendor of this property will also have an obligation to answer a series of questions in relation to the property when the property is sold. In particular the vendor will be required to answer 'yes' to the following question:
  - (4) is the vendor aware of an environmental assessment of the land or part of the land ever having been carried out or commenced (whether or not completed)?
- Potential buyers can contact the EPA for further information regarding the response and will be provided with available reports and information for your property.

| I/we (name/s), MILOS JOSEPH CASTEU , the                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------|
| owner/s or authorised representatives of the property identified as  THE ISLAG 16 HAW THORN ST PAWES understand the information |
| presented above and consent to assessment works occurring at the property.                                                      |
| Owner signature (or authorised representative):                                                                                 |
| Name: MILOS JOSTOPH CASTELLE                                                                                                    |
| Date: 09/06/2020                                                                                                                |
| Witness signature (or authorised representative):                                                                               |
| Name: Maddalena Joseph Castelli (Sego)                                                                                          |
| Date: 9 / 6/2020                                                                                                                |

# **Appendix B** – Borehole Logs

Client: **CFS HOLE No. C04A** CFS Brukunga Project: TEMPLATE 2.00.GDT SHEET 1 OF 2 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Surface RL: 363.18m 312286.1 E 6123984.8 N MGA94 54 Angle from Horiz.: 90° Processed: MH Position: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Rig Type: Date Started: 28/5/2020 Date Completed: 28/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL Bore Construction** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Samples & Tests Components Observations **Drilling Method** then Hole Support \ Casing Bore Construction Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects Natural topsoil, schist. Trace organic matter (369.195) S QUARTZITE, dark grey with observed. Н silver mica. GEO 2 .3 Hammer Ē Ă 5 ₹ 6 **GHD** Job No. See standard sheets for GHD details of abbreviations

Client: **CFS** HOLE No. C04A Project: CFS Brukunga SHEET 2 OF 2 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Surface RL: 363.18m Position: 312286.1 E 6123984.8 N MGA94 54 Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 28/5/2020 Date Started: 28/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO **Bore Construction Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Bore Construction Log Components Samples & Tests Observations then **Drilling Method** Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects Н 8.50 (354.68) SP SAND, pale brown. Alluvial material SM S observed. Perched aquifer. QUARTZITE, yellowish brown. Fb GEO 10 Air Hammer Ē  $\nabla$ QUARTZITE, yellowish brown. Fb 12 13 End of borehole at 14.00 **Target Depth** 15 Job No. **GHD** See standard sheets for details of abbreviations



Client: **CFS HOLE No. GW01** Project: CFS Brukunga TEMPLATE 2.00.GDT SHEET 1 OF 2 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: 312077.5 E -6124665.7 N MGA94 54 Surface RL: 349.86m Angle from Horiz.: 90° Processed: MH Position: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Checked: Rig Type: Date Started: 26/5/2020 Date Completed: 26/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING** MATERIAL Bore Construction BRUKUNGA LOGS VERZ.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Samples & Tests Components Observations then **Drilling Method** Consistency / Density Index Hole Support SOIL NAME: plasticity / primary particle Construction Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and Casing minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / Bore texture, inclusions or minor components, durability, strength, weathering / alteration (SP-FILL; Clayey SAND, pale Organic matter S GW01\_0-0.2 SC) brown, medium to fine grained, observed BOREHOLE AS1726 2017 12516828 0.30 poorly sorted, low plasticity GW01\_0.2-0.4 D Fb ∖fines SCHIST, pale brown, well sorted, weathered. GW \$ 1\_0.9-1.1 SCHIST, pale brown, well D Fb sorted. GEO 1.90 SCHIST, pale brown, well 2 D Н sorted, with trace pyrite fragments and silver mica. ¥ .3 3.40 SCHIST, light grey to silver, D Н well sorted, with trace pyrite fragments and silver mica. Hammer Ē ٩ 5 6 **GHD** Job No. See standard sheets for

See standard sheets for details of abbreviations & basis of descriptions

GHD

Client: **CFS HOLE No. GW01** Project: CFS Brukunga TEMPLATE 2.00.GDT SHEET 2 OF 2 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: 312077.5 E -6124665.7 N MGA94 54 Surface RL: 349.86m Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 26/5/2020 Date Started: 26/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL Bore Construction** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Bore Construction Log Components Samples & Tests Observations **Drilling Method** then Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects D Н GEO 10 Air Hammer Ė 13.50 (336.36)  $\nabla$ SCHIST, light grey to silver, W Н well sorted, with trace pyrite fragments and silver mica. 14 15 End of borehole at 15.50 metres **Target Depth** Job No. **GHD** See standard sheets for details of abbreviations

|                                                                                                                                                      | Client :                   | CFS                   |                |                 |                                     |             |            |                                                                                                                                                                                                                                                                                                                |                |                                | HOLE No.                       | GV    | V02                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|----------------|-----------------|-------------------------------------|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|--------------------------------|-------|-------------------------------------------------------------------------------------------------|
|                                                                                                                                                      | Project :                  |                       | Bruku<br>Stato | _               | Contro                              | Brukur      | aga an     | d surrounding investigation area., S                                                                                                                                                                                                                                                                           | ^              |                                | HOLL NO.                       |       | ET 1 OF 3                                                                                       |
| ₽                                                                                                                                                    | Position                   |                       |                | -6124665        |                                     |             |            | Surface RL: 386.66m AHD                                                                                                                                                                                                                                                                                        |                | Angle                          | e from Horiz. : 90°            | O     | Processed : MH                                                                                  |
| Rig Type: DH400 Air Hammer N                                                                                                                         |                            |                       |                |                 |                                     |             |            |                                                                                                                                                                                                                                                                                                                |                | Driller : MW                   |                                |       | Checked: RW                                                                                     |
| Date Started: 27/5/2020                                                                                                                              |                            |                       |                |                 | Date Completed: 27/5/2020           |             |            |                                                                                                                                                                                                                                                                                                                |                | Logged by : JC                 |                                |       | Date: 14/2/2021                                                                                 |
| DRILLING                                                                                                                                             |                            |                       |                |                 | MATERIAL                            |             |            |                                                                                                                                                                                                                                                                                                                |                |                                |                                |       | Note: * indicates signatures on origina issue of log or last revision of log  Bore Construction |
|                                                                                                                                                      | SCALE (m)  Drilling Method | Hole Support \ Casing | Water          | Samples & Tests | Depth/(RL)<br>metres                | Graphic Log | USC Symbol | Description [COBBLES/BOULDERS/FILL/TOPSOIL] then SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects | Moisture Condi | Consistency /<br>Density Index |                                | Bore  | Components  Components                                                                          |
|                                                                                                                                                      | 1 2 3 -4 4 Hammer          | - IN-                 |                |                 | (38 <b>9.%5</b><br>0.25<br>(386.41) |             | (SP-SC)    | FILL; Clayey SAND, pale brown, medium to fine grained, poorly sorted with gravels. SCHIST, pale brown, weathered. SCHIST, yellowish brown, weathered.                                                                                                                                                          | M SM D         | S Fb Fb                        | Trace organic matter observed. |       |                                                                                                 |
| See standard sheets for details of abbreviations  GHD  Level 4, 211 Victoria Square, Adelaide SA 5000 Australia  Tright 1, 800 Fr. adlancii@debd.com |                            |                       |                |                 |                                     |             |            |                                                                                                                                                                                                                                                                                                                |                |                                |                                | lob N | No.                                                                                             |

Client: **CFS HOLE No. GW02** Project: CFS Brukunga SHEET 2 OF 3 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: 312742.6 E -6124665.0 N MGA94 54 Surface RL: 386.66m Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 27/5/2020 Date Started: 27/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO **Bore Construction Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Bore Construction Log Components Samples & Tests Observations **Drilling Method** then Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects D Fb GEO 10 Hammer Ē SCHIST, yellowish brown, SM Fb weathered. Ă 14.00 (372.66) 14 SCHIST, brown-grey, SM weathered. Ţ 15 Job No. **GHD** See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com GHD details of abbreviations

Client: **CFS HOLE No. GW02** Project: CFS Brukunga SHEET 3 OF 3 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: 312742.6 E -6124665.0 N MGA94 54 Surface RL: 386.66m Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 27/5/2020 Date Started: 27/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO **Bore Construction Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Bore Construction Log Components Samples & Tests Observations **Drilling Method** then Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects SM Fb Air Hammer Ħ GEO 18 End of borehole at 18.50 metres Target Depth. Groundwater not encountered during drilling. Groundwater recharged and 19 recorded on 9/06/20 prior to well install. 20 21 22 23 Job No. **GHD** See standard sheets for GHD details of abbreviations

Client: **CFS HOLE No. GW03** CFS Brukunga Project: TEMPLATE 2.00.GDT SHEET 1 OF 3 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: 312957.4 E -6124490.9 N MGA94 54 Surface RL: 380.35m Angle from Horiz.: 90° Processed: MH Position: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Rig Type: Date Started: 28/5/2020 Date Completed: 28/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING** MATERIAL Bore Construction BRUKUNGA LOGS VERZ.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Samples & Tests Components Observations then **Drilling Method** Consistency / Density Index Hole Support SOIL NAME: plasticity / primary particle Construction Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and \ Casing minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / Bore texture, inclusions or minor components, durability, strength, weathering / alteration defect (SP-FILL; Clayey SAND, poorly Organic matter S Μ 0.20 (380.15) SC) sorted, low plasticity fines. observed BOREHOLE AS1726 2017 12516828 D Fb SP FILL; Sand, quartzite, silt stone, schist mix, pale brown to yellow brown, poorly sorted. GEO 2 SCHIST, yellowish brown, D Fb weathered. .3 3.20 (377.15) QUARTZITE, medium to dark D Н grey with silver mica. Hammer Ē ٩ 5 6 **GHD** Job No. See standard sheets for

See standard sheets for details of abbreviations & basis of descriptions

GHD

Client: **CFS HOLE No. GW03** CFS Brukunga Project: TEMPLATE 2.00.GDT SHEET 2 OF 3 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Surface RL: 380.35m 312957.4 E -6124490.9 N MGA94 54 Angle from Horiz.: 90° Processed: MH Position: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Rig Type: Date Completed: 28/5/2020 Date Started: 28/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL Bore Construction** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Components Samples & Tests Observations **Drilling Method** then Bore Construction 1 Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects D Н GEO 10 Hammer Ē Ă 12.80 (367.55) SCHIST, pale brown with silver Fb mica 14 15 Job No. **GHD** See standard sheets for GHD

details of abbreviations & basis of descriptions

Client: **CFS HOLE No. GW03** CFS Brukunga Project: SHEET 3 OF 3 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Position: 312957.4 E -6124490.9 N MGA94 54 Surface RL: 380.35m Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 28/5/2020 Date Started: 28/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO **Bore Construction Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Bore Construction Log Components Samples & Tests Observations **Drilling Method** then Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects D Fb 17.00 (363.35) SCHIST, pale brown with silver SM Fb ▼ mica. GEO 18 Air Hammer Ē  $\nabla$ SCHIST, pale brown with silver Fb 20 End of borehole at 21.80 22 **Target Depth** 23 Job No. **GHD** See standard sheets for details of abbreviations



Client: **CFS HOLE No. GW04** Project: CFS Brukunga TEMPLATE 2.00.GDT SHEET 1 OF 3 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: 312802.1 E -6124225.8 N MGA94 54 Surface RL: 385.28m Angle from Horiz.: 90° Processed: MH Position: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Rig Type: Date Started: 27/5/2020 Date Completed: 27/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING** MATERIAL **Bore Construction** BRUKUNGA LOGS VERZ.GPJ GHD **Description** [COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Samples & Tests Components Observations then **Drilling Method** Consistency / Density Index Hole Support SOIL NAME: plasticity / primary particle Construction Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and \ Casing minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / Bore texture, inclusions or minor components, durability, strength, weathering / alteration defects FILL; Silty SAND, poorly (SP-Organic matter Μ S SM) sorted observed BOREHOLE AS1726 2017 12516828 Fb SCHIST, light to medium grey, well sorted, weathered with silver mica. GEO 2 SCHIST, pale brown, well sorted with silver to gold mica. D Н SCHIST, light grey, well sorted D Н with silver mica. .3 Hammer Ē ٩ 5 6 7.60 SCHIST, brown-grey, well D Н sorted with silver mica. **GHD** Job No. See standard sheets for नाः details of abbreviations

Client: **CFS HOLE No. GW04** Project: CFS Brukunga TEMPLATE 2.00.GDT SHEET 2 OF 3 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Surface RL: 385.28m Position: 312802.1 E -6124225.8 N MGA94 54 Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Started: 27/5/2020 Date Completed: 27/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL Bore Construction** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Components Samples & Tests Observations **Drilling Method** then Bore Construction 1 Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects D Н GEO 10 Hammer Ē Ă 15 Job No. **GHD** See standard sheets for

See standard sheets for details of abbreviations & basis of descriptions



Client: **CFS HOLE No. GW04** Project: CFS Brukunga SHEET 3 OF 3 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Position: 312802.1 E -6124225.8 N MGA94 54 Surface RL: 385.28m Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 27/5/2020 Date Started: 27/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL Bore Construction** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Bore Construction Log Components Samples & Tests Observations **Drilling Method** then Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects D Н GEO 18 19 Hammer Ħ 20 Α̈́ 21 **T** 22 23 End of borehole at 23.85 metres Target Depth Job No. **GHD** See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com details of abbreviations

& basis of descriptions

CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

12516828

Client: **CFS HOLE No. GW05** Project: CFS Brukunga TEMPLATE 2.00.GDT SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: 312205.7 E -6123129.1 N MGA94 54 Surface RL: 307.01m Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 29/5/2020 Date Started: 29/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING** MATERIAL **Bore Construction** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Components Samples & Tests Observations then **Drilling Method** Bore Construction L Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects FILL; Clayey SAND, poorly Road base and (sp-Μ S sorted with gravels. alluvial material sc) observed. SCHIST, pale brown, D Fb weathered. GEO 3 SP SAND, pale brown, poorly Alluvial material Μ Fb observed. sorted. SCHIST, medium grey, Μ Fb weathered, with silver mica. Hammer Ħ SCHIST, pale brown. SM Fb ٩ 5 (301.21) SCHIST, light grey/silver. D Fb  $\nabla$ 6 SCHIST, pale brown. SCHIST, medium grey, with Н silver mica. 8 End of borehole at 8.00 metres. Target Depth **GHD** Job No. See standard sheets for details of abbreviations

& basis of descriptions

Client: **CFS HOLE No. GW06** Project: CFS Brukunga TEMPLATE 2.00.GDT SHEET 1 OF 2 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Surface RL: 297.67m Position: 312419.7 E -6122349.1 N MGA94 54 Angle from Horiz.: 90° Processed: MH DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Rig Type: Date Completed: 26/5/2020 Date Started: 26/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL Bore Construction** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Components Samples & Tests Observations then **Drilling Method** Hole Support \ Casing Bore Construction 1 Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects Natural top soil, pale brown, Μ S 0.15 (297.52) low plasticity, poorly sorted. SP SM S SAND, pale brown, fine grained, well sorted. SP SAND, pale brown. D Fb GEO 1.90 (295.77) SP SANDSTONE, white to yellow, 2 Fb weathered 3.00 (294.67) .3 SP SANDSTONE, white to yellow. SM Н Hammer Ē 4.10 (293.57) SP SANDSTONE, orange. D Fb ٩ 5 SCHIST, light to medium grey. Fb SM 6.00 (291.67) 6 SCHIST, light to medium grey, W Fb fractured. Ţ **GHD** Job No. See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com details of abbreviations 12516828

CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

Client: **CFS HOLE No. GW06** CFS Brukunga Project: SHEET 2 OF 2 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Position: 312419.7 E -6122349.1 N MGA94 54 Surface RL: 297.67m Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 26/5/2020 Date Started: 26/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO **Bore Construction Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Samples & Tests Components Observations **Drilling Method** then Consistency / Density Index Hole Support \ Casing SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects W Fb Air Hammer Ħ GEO End of borehole at 10.00 metres. Target Depth 12 13 15 Job No. **GHD** See standard sheets for GHD details of abbreviations

Client: **CFS HOLE No. GW07** Project: CFS Brukunga TEMPLATE 2.00.GDT SHEET 1 OF 3 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: 312229.9 E -6122568.2 N MGA94 54 Surface RL: 303.33m Angle from Horiz.: 90° Processed: MH Position: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Checked: Rig Type: Date Started: 29/5/2020 Date Completed: 29/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL Bore Construction** BRUKUNGA LOGS VERZ.GPJ GHD **Description** [COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Samples & Tests Components Observations then **Drilling Method** Bore Construction Consistency / Density Index Hole Support SOIL NAME: plasticity / primary particle **USC Symbol** Graphic Log SCALE (m) Depth/(RL) metres characteristics, colour, secondary and \ Casing minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration (SP-FILL; Clayey SAND, pale Road base and Μ SC) brown, poorly sorted with trace organic matter BOREHOLE AS1726 2017 12516828 gravels observed. SCHIST, pale brown, SM Fb weathered, with silver mica. 1.50 SCHIST, pale brown, Fb D GEO weathered, with silver mica. 2 .3 Hammer Ē ٩ 5 SCHIST, light grey/silver with D Fb silver mica. 6 6.20 (297.13) SCHIST, pale brown, with D Fb silver mica SCHIST, light grey/silver with D Fb silver mica. **GHD** Job No. See standard sheets for

See standard sheets for details of abbreviations & basis of descriptions



Client: **CFS HOLE No. GW07** Project: CFS Brukunga TEMPLATE 2.00.GDT SHEET 2 OF 3 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Surface RL: 303.33m Position: 312229.9 E -6122568.2 N MGA94 54 Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 29/5/2020 Date Started: 29/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL Bore Construction** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD **Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Components Samples & Tests Observations **Drilling Method** then Bore Construction 1 Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects D Fb GEO 10 Hammer Ē Ă 15 ¥ Job No. **GHD** See standard sheets for

See standard sheets for details of abbreviations & basis of descriptions



& basis of descriptions

Client: **CFS HOLE No. GW07** Project: CFS Brukunga TEMPLATE 2.00.GDT SHEET 3 OF 3 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Surface RL: 303.33m Position: 312229.9 E -6122568.2 N MGA94 54 Angle from Horiz.: 90° Processed: MH Rig Type: DH400 Air Hammer Mounting: Land Rover Contractor: WDS Driller: MW Checked: Date Completed: 29/5/2020 Date Started: 29/5/2020 Logged by: JC Date: 14/2/2021 **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO **Bore Construction Description**[COBBLES/BOULDERS/FILL/TOPSOIL] Comments/ Moisture Condition Bore Construction Log Components Samples & Tests Observations **Drilling Method** then Hole Support \ Casing Consistency / Density Index SOIL NAME: plasticity / primary particle Graphic Log **USC Symbol** SCALE (m) Depth/(RL) metres characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration defects D Fb GEO 18 19 Air Hammer Ħ 20 21.00 (282.33)  $\nabla$ SCHIST, light grey/silver with W Fb silver mica. 22 End of borehole at 23.00 metres. **Target Depth** Job No. **GHD** See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com details of abbreviations 12516828

CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

Client: **CFS HOLE No. SB01** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked: Date Completed: 7/5/2020 **Date Started:** 7/5/2020 Logged by: SS Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests **Observations Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log **JSC Symbol** SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects SW SAND, fine to coarse grained, brown, some organics SM VLSB01\_0-0.2 SB\$1\_0.2-0.4 0.40 Hand Auger SC Clayey SAND, fine to coarse grained, pale brown, some Μ L Ħ Sandy CLAY, low plasticity, dark brown, fine to coarse CL VM S grained sand GEO SB01\_0.9-1.1 End of borehole at 1.10 metres. Refusal. Groundwater not encountered. 2 3 Job No. **GHD** See standard sheets for details of abbreviations

Client: **CFS HOLE No. SB02** CFS Brukunga Project: TEMPLATE 2.00.GDT SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Position: See location plan Rig Type: Mounting: Land Rover Contractor: WB Drilling Driller: IW EziProbe Checked: Date Started: 7/5/2020 Date Completed: 7/5/2020 Logged by: SS Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Moisture Condition Comments/ Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects 0.10 CONCRETE Pushtu Concrete Sc FILL; Gravelly sand, fine to medium grained, poorly SM L graded, brown to grey, fine grained subrounded gravel SB\$2\_0.1-0.3 Ħ 0.50 FILL; Gravel, coarse grained, well graded, subangular to D Н 0.60 subrounded, white CL-CI S Sandy CLAY, low to medium plasticity, pale brown, fine to SB\$2\_0.6-0.8 0.80 medium grained sand SB02\_0.8-0.95 GP D L Sandy GRAVEL, coarse grained, poorly graded, grey, 00 0.95 angular to subangular, fine to coarse grained sand GEO End of borehole at 0.95 metres. Refusal. Groundwater not encountered. 2 3 **GHD** Job No. See standard sheets for details of abbreviations

Client: **HOLE No. SB03** Project: CFS Brukunga TEMPLATE 2:00.GDT SHEET 1 OF 1 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA AHD Angle from Horiz.: 90° Processed: RW Position: See location plan MGA94 54 Surface RL: Nil Mounting: Land Rover Contractor: WB Drilling Rig Type: EziProbe Checked: **Date Started:** 7/5/2020 Date Completed: 7/5/2020 Logged by: SS Date: 14/2/2021 **DRILLING** MATERIAL BRUKUNGA LOGS VERZ.GPJ GHD Description Moisture Condition Comments/ Samples & Tests Observations **Drilling Method** Consistency / Density Index Hole Support [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary Casing and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Gravelly sand, fine to coarse grained, poorly graded, D VL pale brown-grey, fine to medium grained, subangular to SB03\_0-0.2 BOREHOLE AS1726 2017 12516828 0.20 subrounded gravels SC D F Clayey SAND, fine to coarse grained, poorly graded, pale red brown, some fine to medium grained, subangular to 0.40 subrounded gravel SC D L Clayey SAND, fine to coarse grained, poorly graded, SB\$3\_0.4-0.6 0.60 yellow brown to red brown GP D L Sandy GRAVEL fine to coarse, poorly graded, angular to subangular, white-grey with dark red, fine to coarse, poorly 0.80 graded sand. SP-D L 0.90 SC Clayey SAND fine to coarse, poorly graded, dark brown, D L SPand gravel, angular to subangular, fine to coarse, poorly GEO SB\$3\_0.9-1.1 graded gravel. SC Clayey SAND, fine to coarse, poorly graded, brown, with gravel, subangular to subrounded, fine to medium, poorly 1.30 graded gravel. D L Sandy CLAY, low plasticity, dark brown - red, trace gravel, fine to coarse, poorly graded sand, angular to subangular, 1.50 fine to medium, poorly graded gravel. VL SM Silty SAND, find to medium, well graded, grey-brown, SM 1.70 some gravel, subangular to subrounded, fine to medium, SP D L \poorly graded gravel. Pushtube SB\$\$3\_1.7-1.9 :0 Gravelly SAND, fine to coarse grained, poorly graded, Ħ red-brown, angular to subangular, fine to coarse, poorly 0 2 00 graded gravel. SP D L Gravelly SAND, fine to coarse grained, poorly graded, :0 red-brown and white, angular to subangular, medium to 0 coarse grained, poorly graded gravel. Ò 'n SB\$3 2.3-2.8 Ò 2.90 CL Sandy CLAY, low plasticity, brown with gravel, fine to S SM coarse grained well graded sand, subangular to subrounded, find to coarse grained well graded gravel. SB03\_3-3.2 3.20 CL-Sandy CLAY, low to medium plasticity, grey with silt, fine to SM S coarse grained, well graded sand. 3.80 End of borehole at 3.80 metres. Refusal. Groundwater not encountered. Job No. See standard sheets for details of abbreviations

Client: **CFS HOLE No. SB04** Project: CFS Brukunga SHEET 1 OF 1 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked: Date Completed: 7/5/2020 **Date Started:** 7/5/2020 Logged by: SS Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** GEO BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests **Observations Drilling Method** Consistency / Density Index Hole Support \ Casing [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log **USC Symbol** SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects SC Clayey SAND, fine to coarse grained, well graded, orange Hand Auger SM L Ē SB04\_0-0.2 brown mottle, some organics End of borehole at 0.30 metres. Refusal. Groundwater not encountered. 2 3 Job No. **GHD** See standard sheets for

See standard sheets for details of abbreviations & basis of descriptions



Client: **HOLE No. SB05** CFS Brukunga Project: SHEET 1 OF 1 TEMPLATE 2:00.GDT CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Position: See location plan MGA94 54 Mounting: Land Rover Contractor: WB Drilling Rig Type: EziProbe Checked: **Date Started:** 7/5/2020 Date Completed: 7/5/2020 Logged by: SS Date: 14/2/2021 **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD Description Moisture Condition Comments/ Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects CONCRETE 1 0.10 SB\$5\_0.1-0.2 SC Clayey SAND, fine to coarse grained, poorly graded, pale D L brown 0.30 SB\$5\_0.3-0.4 PEAT, black, faint organic smell 0.40 SC Clayey SAND, fine to coarse grained, poorly graded, pale SM red, with fine to coarse grained, subangular to subrounded SB\$5\_0.8-1.0 GEO 1.50 GP Sandy GRAVEL, fine to coarse grained, poorly graded, D L blue to grey, fine to coarse grained sand 1.70 SB\$\$5\_1.7-1.9 SC Clayey SAND, fine to coarse grained, poorly graded, Pushtube D L Ħ brown, some fine to coarse grained subangular to subrounded gravel 3.00 GF Sandy GRAVEL, fine to coarse grained, poorly graded, D 3.10 grey, fine to coarse grained sand D VL SAND, fine to coarse grained, well graded, yellow to SB\$5\_3.1-3.3 brown, with silt 3.60 End of borehole at 3.60 metres. Refusal. Groundwater not encountered. **GHD** Job No. See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com details of abbreviations 12516828 & basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

Client: **HOLE No. SB06** CFS Brukunga Project: TEMPLATE 2:00.GDT SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Position: See location plan MGA94 54 Mounting: Land Rover Contractor: WB Drilling Rig Type: EziProbe Checked: **Date Started:** 7/5/2020 Date Completed: 7/5/2020 Logged by: SS Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING** MATERIAL BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD Description Moisture Condition Comments/ Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects CONCRETE 4 Š Δ. Δ Concrete 0.23 SC Clayey SAND, fine to medium grained, poorly graded, grey SM SB\$6\_0.2-0.4 brown, with fine to coarse grained angular to subangular GF D Н 0 0 GRAVEL, very coarse grained, angular, grey SB\$6\_0.4-0.6 0 0.60 SP Gravelly SAND, medium to coarse grained, poorly graded, D MD .o 0.70 orange with fine to medium grained, subangular to SC D S subrounded white gravel GP D Н Sandy CLAY, low plasticity, red brown with medium to coarse grained, angular to subangular white gravel 0 1.00 SC D S GEO Sandy GRAVEL, coarse grained, angular to subangular, GP D L well graded, grey orange, medium to coarse grained sand SB\$6\_1.0-1.2 1.20 Ē Sandy CLAY, low plasticity, red brown with medium to Pushtube SC SM S coarse grained, angular to subangular white gravel Sandy GRAVEL, medium to coarse grained, angular to subangular, well graded, grey to red brown, fine to coarse grained sand Sandy CLAY, low plasticity, red brown to pale orange with medium to coarse grained, subangular to subrounded 1.70 GP \gravel SM L Gravelly SAND, fine to coarse grained, poorly graded, pale 1 90 red brown with pale yellow, medium to coarse grained F SM angular to subangular sand 2 SB\$6\_1.9-2.1 Sandy CLAY, low plasticity, red to pale yellow, fine to coarse grained sand End of borehole at 2.40 metres. Refusal. Groundwater not encountered. 3 Job No. See standard sheets for details of abbreviations

Client: **CFS HOLE No. SB07** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked: **Date Started:** 7/5/2020 Date Completed: 7/5/2020 Logged by: SS Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** GEO BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests **Observations Drilling Method** Consistency / Density Index Hole Support \ Casing [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log **JSC Symbol** SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects SW SAND, fine to medium grained, well graded, brown with SM VL SB07\_0-0.2 organics Hand Auger 0.30 Ħ SW SAND, fine to medium grained, well graded, brown, trace D VLfine grained rounded gravel SB\$7\_0.4-0.6 0.60 End of borehole at 0.60 metres. Refusal. Groundwater not encountered. 2 3 Job No. **GHD** See standard sheets for details of abbreviations

Client: **CFS HOLE No. SB08** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW See location plan Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked: **Date Started:** 7/5/2020 Date Completed: 7/5/2020 Logged by: SS Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects CONCRETE 4.4 0.10 **Cashtetæ** SC Clayey SAND, fine to coarse grained, poorly graded, dark SM L SB\$\$\_0.1-0.3 grey to orange. Ħ 0.30 GP Gravelly SAND, fine to coarse grained, poorly graded, pale o. D L brown, fine to coarse grained, subangular to subrounded SB\$\$\_0.3-0.5 0 0.50 End of borehole at 0.50 metres. Refusal. Groundwater not encountered. GEO 2 3 Job No. **GHD** See standard sheets for

details of abbreviations & basis of descriptions

Client: **CFS HOLE No. SW01** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Checked: Date Started: 8/5/2020 Date Completed: 7/5/2020 Logged by: RW Date: 14/2/2021 **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests **Observations Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Sandy SILT, no plasticity, orange brown, coarse AMD Sludge М L grained sand. SW\$1\_0.1-0.3 GEO Pushtube Ħ SW\$1\_1.9-2.0 3.30 SC Clayey gravelly SAND, fine to coarse grained, orange SW01\_3.3-3.6 brown, fine to medum grained gravel, low plasticity fines. 3.80 End of borehole at 3.80 metres. Refusal. Groundwater not encountered. Job No. **GHD** See standard sheets for details of abbreviations

Client: **CFS HOLE No. SW02** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked: Date Completed: 7/5/2020 Date Started: 8/5/2020 Logged by: RW Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Consistency / Density Index Hole Support \ Casing [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Sandy SILT, no plasticity, orange brown, coarse AMD Sludge М L grained sand SW\$2\_0.1-0.3 Pushtube -Ħ GEO SW02\_0.9-1.1 Clayey gravelly SAND, fine to coarse grained, orange brown, fine to medum grained gravel, low plasticity fines. SC М Н 1.50 SW02\_1.4-1.5 End of borehole at 1.50 metres. Refusal. Groundwater not encountered. 2 3 Job No. **GHD** See standard sheets for details of abbreviations

Client: **CFS HOLE No. SW03** Project: CFS Brukunga SHEET 1 OF 1 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked: Date Completed: 7/5/2020 **Date Started:** 7/5/2020 Logged by: RW Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Consistency / Density Index Hole Support \ Casing [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log **JSC Symbol** SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Sandy SILT, no plasticity, orange brown, coarse AMD Sludge М L SW03\_0-0.2 grained sand. SW\$3\_0.5-0.7 GEO SW\$3\_1.5-1.7 2 Pushtube Ē W SW\$3\_4.8-4.9 End of borehole at 5.00 metres Refusal. Groundwater not encountered. Job No. **GHD** See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia details of abbreviations

Client: **CFS HOLE No. SW04** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Checked: **Date Started:** 7/5/2020 Date Completed: 7/5/2020 Logged by: RW Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Sandy SILT, no plasticity, orange brown, coarse AMD Sludge М L SW04\_0-0.2 grained sand. GEO SW\$4\_1.0-1.3 2 SW\$4\_2.0-2.1 Pushtube Ē 3 3.85 FILL; SILT, no plasticity, grey white. М SW04 3.85-3.9 L FILL; Sandy SILT, no plasticity, orange brown, coarse М grained sand. W SW\$4\_4.5-4.6 End of borehole at 4.60 metres. Refusal. Groundwater not encountered. Job No. **GHD** See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com details of abbreviations 12516828 & basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

Client: **CFS HOLE No. SW05** Project: CFS Brukunga SHEET 1 OF 1 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked: Date Completed: 7/5/2020 **Date Started:** 7/5/2020 Logged by: RW Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log **JSC Symbol** SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Sandy SILT, no plasticity, orange brown, coarse AMD Sludge М L SW05\_0-0.2 grained sand. GEO SW\$5\_1.0-1.1 2 SW\$5\_2.0-2.2 Pushtube ₩ SW05\_3.4-3.6 End of borehole at 4.90 metres. Refusal. Groundwater not encountered. Job No. **GHD** See standard sheets for details of abbreviations

Client: **CFS HOLE No. SW06** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked: **Date Started:** 7/5/2020 Date Completed: 7/5/2020 Logged by: RW Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests **Observations Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Sandy SILT, no plasticity, orange brown, coarse AMD Sludge М L grained sand. SW\$6\_0.5-0.7 GEO Pushtube Ħ SW\$6 4.1-4.2 4.30 Clayey gravelly SAND, fine to coarse grained, orange brown, fine to medum grained gravel, low plasticity fines. М Н SW\$6\_4.3-4.4 End of borehole at 4.40 metres. Refusal. Groundwater not encountered. Job No. **GHD** See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com details of abbreviations 12516828 & basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

Client: **CFS HOLE No. SW07** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Checked: **Date Started:** 8/5/2020 Date Completed: 8/5/2020 Logged by: RW Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD Description Comments/ Moisture Condition Samples & Tests **Observations Drilling Method** Consistency / Density Index Hole Support \ Casing [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Sandy SILT, no plasticity, orange brown, coarse AMD Sludge М L grained sand SW\$7\_0.2-0.3 GEO SW\$7\_1.0-1.2 Pushtube ₹ SW\$7\_2.5-2.8 4.20 W L 4.30 SW\$7\_4.2-4.3 М L 4.50 End of borehole at 4.50 metres. Refusal. Groundwater not encountered. Job No. **GHD** See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com details of abbreviations 12516828 & basis of descriptions

CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

| 5  | Client :<br>Project :  |                                                                                                                                                                                                                                                                           | CFS                   | S<br>S Bruki | ında                     |                 |                  |                         |                                                                                                                                                                                            | HOLE N                                                                                       | 0.                                                        | SV                             | V08                                  |
|----|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|--------------------------|-----------------|------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|--------------------------------------|
|    |                        | ation                                                                                                                                                                                                                                                                     |                       |              | _                        | Centre,         | Brukur           | nga an                  | d surrounding investigation area., SA                                                                                                                                                      |                                                                                              |                                                           | SHE                            | ET 1 OF 1                            |
| ۱. |                        | ition :                                                                                                                                                                                                                                                                   |                       | locatio      | •                        |                 | GA94             |                         | Surface RL: Nil AHD                                                                                                                                                                        | Angle from Horiz.: 90°                                                                       | )                                                         |                                | Processed: RW                        |
| ìH | Rig Type               |                                                                                                                                                                                                                                                                           |                       |              | unting:                  |                 |                  | Contractor: WB Drilling | Driller : IW                                                                                                                                                                               |                                                                                              |                                                           | Checked: RW                    |                                      |
| ŀ  | Date Started: 8/5/2020 |                                                                                                                                                                                                                                                                           | 10                    |              | Dat                      | e Com           | pleted: 8/5/2020 | Logged by : RW          |                                                                                                                                                                                            |                                                                                              | Date: 14/2/2021  Note: * indicates signatures on original |                                |                                      |
|    |                        |                                                                                                                                                                                                                                                                           | DRILL                 | ING          |                          |                 |                  |                         | MATERIAL                                                                                                                                                                                   |                                                                                              |                                                           |                                | issue of log or last revision of log |
|    | SCALE (m)              | Drilling Method                                                                                                                                                                                                                                                           | Hole Support \ Casing | Water        | Samples & Tests          | Depth<br>metres | Graphic Log      | USC Symbol              | Description  [COBBLES/BOULDERS/FILL SOIL NAME: plasticity / primary particle cha and minor components, zon ROCK NAME: grain size, colour, fabric / components, durability, strength, weath | /TOPSOIL] then racteristics, colour, secondary ing (origin) and texture, inclusions or minor | Moisture Condition                                        | Consistency /<br>Density Index | Comments/<br>Observations            |
|    |                        |                                                                                                                                                                                                                                                                           | 1                     |              |                          |                 |                  |                         | FILL; Sandy SILT, no plasticity, oran grained sand                                                                                                                                         | nge brown, coarse                                                                            | М                                                         | L                              | AMD Sludge                           |
|    | 1 3 3                  | - Pushtube                                                                                                                                                                                                                                                                | -Nil                  | SW           | 08_0.5-0.6<br>08_2.3-2.4 | 2.30<br>2.40    |                  |                         | granieu Sanu                                                                                                                                                                               |                                                                                              | W<br>M                                                    | L                              |                                      |
|    | 5                      |                                                                                                                                                                                                                                                                           |                       |              | 08_4.95-5                | 5.00            |                  |                         |                                                                                                                                                                                            |                                                                                              |                                                           |                                |                                      |
| H  |                        | 4                                                                                                                                                                                                                                                                         | ale ·····l            | - h 4        | for =                    |                 | GHI              | <u> </u>                | End of borehole at 5.00 metres.  Refusal. Groundwater not encounted.                                                                                                                       | ered.                                                                                        |                                                           | ob N                           | No.                                  |
|    |                        |                                                                                                                                                                                                                                                                           |                       | sheets       |                          |                 | Level            | 4, 211 \                | /ictoria Square, Adelaide SA 5000 Australi                                                                                                                                                 | a                                                                                            | ا ا                                                       |                                |                                      |
|    |                        | details of abbreviations  R basis of descriptions  CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS  Level 4, 211 victoria Square, Adelaide SA 5000 Australia  T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com  CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS |                       |              |                          |                 |                  |                         |                                                                                                                                                                                            |                                                                                              |                                                           |                                |                                      |

Client: **CFS HOLE No. SW09** Project: CFS Brukunga SHEET 1 OF 2 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked:  $\textbf{Logged by}: \overline{\mathsf{RW}}$ **Date Started:** 8/5/2020 Date Completed: 8/5/2020 Date: 14/2/2021 **DRILLING MATERIAL** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests **Observations Drilling Method** Consistency / Density Index Hole Support \ Casing [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Depth metres Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Sandy SILT, no plasticity, orange brown, coarse AMD Sludge М L grained sand SW\$9\_0.1-0.2 GEO SW\$9\_1.6-1.8 2 00 2 W L 2 10 SW\$9\_2.0-2.2 М L Pushtube Ē SW\$9\_4.0-4.2 Job No. **GHD** See standard sheets for

details of abbreviations & basis of descriptions



Client: **CFS HOLE No. SW09** Project: CFS Brukunga SHEET 2 OF 2 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Driller: IW Checked: Date Started: 8/5/2020 Date Completed: 8/5/2020 Logged by: RW Date: 14/2/2021 ote: \* indicates signatures on origin issue of log or last revision of log **DRILLING MATERIAL** GEO BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Comments/ Moisture Condition Samples & Tests **Observations Drilling Method** Consistency / Density Index Hole Support \ Casing [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log **JSC Symbol** SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects М L Pushtube Ħ SW\$9\_5.5-5.7 End of borehole at 5.70 metres. Refusal. Groundwater not encountered. 8 Job No. **GHD** See standard sheets for

details of abbreviations & basis of descriptions

Client: **CFS HOLE No. SW10** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW See location plan Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Checked: Date Started: 8/5/2020 Date Completed: 8/5/2020 Logged by: RW Date: 14/2/2021 **MATERIAL DRILLING** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Moisture Condition Comments/ Samples & Tests **Observations Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Clayey SAND with gravel, fine to medium grained, SM S SW10\_0-0.2 brown, low plasticity clay 0.80 FILL; SAND, fine to meduim grained, pale yellow SM SW10\_0.8-0.9 GEO 1.40 Pushtube FILL; Sandy CLAY, low plasticity, brown, fine to meduim W S Ħ grained sand SW10\_1.5-1.7 2 00 2 FILL; As above, mottled dark brown and green W s 2.70 FILL, As above, mottled pale brown and black, organic W S SW 0\_2.7-2.8 odour 3.00 3 End of borehole at 3.00 metres. Refusal. Groundwater not encountered. **GHD** Job No. See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com details of abbreviations 12516828 & basis of descriptions

CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

Client: **CFS HOLE No. SW11** Project: CFS Brukunga SHEET 1 OF 1 CFS State Training Centre, Brukunga and surrounding investigation area., SA Location: Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: EziProbe Mounting: Land Rover Contractor: WB Drilling Checked: Date Started: 8/5/2020 Date Completed: 8/5/2020 Logged by: RW Date: 14/2/2021 **MATERIAL DRILLING** BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO Description Moisture Condition Comments/ Samples & Tests Observations **Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then **JSC Symbol** Graphic Log SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and Water ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Clayey SAND with gravel, fine to medium grained, SM S SW11\_0-0.1 brown, low plasticity clay SW11\_0.4-0.5 GEO FILL; Sandy CLAY, low plasticity, brown, fine to meduim grained sand SW11\_1.3-1.5 Pushtube 1.90 Ħ FILL; As above, mottled pale brown and black, organic W s SW11\_2.0-2.3 3.00 FILL; CLAY, low plasticity, orange SM S SW11\_3.0-3.2 3.80 End of borehole at 3.80 metres. Refusal. Groundwater not encountered. Job No. **GHD** See standard sheets for Level 4, 211 Victoria Square, Adelaide SA 5000 Australia T: +61 8 8111 6600 F: +61 8 8111 6699 E: adlmail@ghd.com details of abbreviations 12516828 & basis of descriptions CONSULTING GEOTECHNICAL ENGINEERS AND GEOLOGISTS

GEO BOREHOLE AS1726 2017 12516828 BRUKUNGA LOGS VER2.GPJ GHD GEO

Client: **CFS HOLE No. SW15** Project: CFS Brukunga SHEET 1 OF 1 Location: CFS State Training Centre, Brukunga and surrounding investigation area., SA Position: See location plan MGA94 54 Surface RL: Nil AHD Angle from Horiz.: 90° Processed: RW Rig Type: Hand auger Mounting: Nil Contractor: Nil Driller: SS Checked: Date Completed: 8/5/2020 Date Started: 8/5/2020 Logged by: SS Date: 14/2/2021 **DRILLING MATERIAL** Description Comments/ Moisture Condition Samples & Tests **Observations Drilling Method** Hole Support \ Casing Consistency / Density Index [COBBLES/BOULDERS/FILL/TOPSOIL] then Graphic Log **JSC Symbol** SCALE (m) SOIL NAME: plasticity / primary particle characteristics, colour, secondary and minor components, zoning (origin) and ROCK NAME: grain size, colour, fabric / texture, inclusions or minor components, durability, strength, weathering / alteration, defects FILL; Sandy CLAY, low to meduiim plasticity, orange, fine SM S to coarse grained sand, some gravel SW15\_0-0.1 Hand Auger FILL; As above, dark orange SM Ē End of borehole at 0.45 metres. Refusal. Groundwater not encountered. Job No. **GHD** 

See standard sheets for details of abbreviations & basis of descriptions



# SOIL DESCRIPTION AND CLASSIFICATION



Soil is described in general accordance with <u>Australian Standard AS 1726-2017</u> (Geotechnical Site Investigations) in terms of visual and tactile properties, with potential refinement by laboratory testing. AS 1726 defines soil as particulate materials that occur in the ground and can be disaggregated or remoulded by hand in air or water without prior soaking. Classification of the soil is undertaken following description.

## **SOIL DESCRIPTION**

The soil description includes a) Composition, b) Condition, c) Structure, d) Origin and e) Additional observations. 'FILL', 'TOPSOIL' or a 'MIXTURE OF SOIL AND COBBLES / BOULDERS' (with dominant fraction first) is denoted at the start of a soil description where applicable.

## a) Soil Composition (soil name, colour, plasticity or particle characteristics, secondary and then minor components)

**Soil Name:** A soil is termed a *coarse grained soil* where the dry mass of sand and gravel particles exceeds <u>65%</u> of the total. Soils with more than <u>35%</u> fines (silt or clay particles) are termed *fine grained soils*. The soil name is made up of the primary soil component (in BLOCK letters), prefixed by applicable secondary component qualifiers. Minor components are applied as a qualifiers to the soil name (using the words 'with' or 'trace').

Particles are differentiated on the basis of size. 'Boulders' and 'cobbles' are outside the soil particle range, though their presence (and proportions) is noted. While individual particles may be designated as silt or clay based on grain size, fine grained soils are characterised as silt or clay based on tactile behaviour or Atterberg Limits, and not the relative composition of silt or clay sized particles.

**Colour:** The prominent colour is noted, followed by (spotted, mottled, streaked etc.) then secondary colours as applicable. Roughly equally proportioned colours are prefixed by (spotted, mottled, streaked etc.). Colour is described in its moist condition, though both wet and dry colours may also be provided if appropriate.

**Plasticity:** Fine grained soils are designated within standard ranges of plasticity based on tactile assessment or laboratory assessment of the Liquid Limit.

**Particle Characteristics:** The particle shape, particle distribution and particle size range within a coarse grained soil is described using standard terms. Particle composition may be described using rock or mineral names, with specific terms for carbonate soils.

**Secondary and Minor Components:** The primary soil is described and modified by secondary and minor components, with assessed ranges as tabulated.

**Carbonate Soils:** Carbonate content can be assessed by use of dilute '10%' HCl solution. Resulting clear sustained effervescence is interpreted as a *Carbonate soil* (approximately >50% carbonate), while weak or sporadic effervescence indicates *Calcareous soil* (< 50% carbonate). No effervescence is interpreted as a non-calcareous soil.

**Organic and Peat Soils:** Where identified, organic content is noted. *Organic soil* (2% to 25% organic matter) is usually identified by colour (usually dark grey/black) and odour (i.e. 'mouldy' or hydrogen sulphide odour). *Peat* (>25% organic matter) is identified by a spongy feel and fibrous texture. Peat soils' decomposition may be described as 'fibrous' (little / no decomposition), 'pseudo-fibrous' (moderate decomposition) or 'amorphous' (full decomposition).

| Fraction          | Compone | ents   | Particle Size (mm) |
|-------------------|---------|--------|--------------------|
| Oversize          | BOULDER | S      | > 200              |
| Oversize          | COBBLES |        | 63 - 200           |
|                   |         | Coarse | 19 - 63            |
|                   | GRAVEL  | Medium | 6.7 -19            |
| Coarse grained    |         | Fine   | 2.36 - 6.7         |
| soil particles    | SAND    | Coarse | 0.6 - 2.36         |
|                   |         | Medium | 0.21 - 0.6         |
|                   |         | Fine   | 0.075 - 0.21       |
| Fine grained soil | SILT    |        | 0.002 - 0.075      |
| particles         | CLAY    |        | < 0.002            |

| Plasticity Terms | Laboratory Liquid |                 |
|------------------|-------------------|-----------------|
| Silt             | Clay              | Limit Range     |
| N/A              | N/A               | (Non Plastic)   |
| Low Blockicity   | Low Plasticity    | ≤ 35%           |
| Low Plasticity   | Medium Plasticity | > 35% and ≤ 50% |
| High Plasticity  | High Plasticity   | > 50%           |

| Particle Distribution Terms (Coarse Grained Soils) |                                                   |  |  |  |  |
|----------------------------------------------------|---------------------------------------------------|--|--|--|--|
| Well graded                                        | good representation of all particle sizes         |  |  |  |  |
| Poorly graded                                      | one or more intermediate sizes poorly represented |  |  |  |  |
| Gap graded                                         | one or more intermediate sizes absent             |  |  |  |  |
| Uniform                                            | essentially of one size                           |  |  |  |  |

| Particle Shape Terms (Coarse Grained Soils) |             |                |  |  |  |
|---------------------------------------------|-------------|----------------|--|--|--|
| Rounded                                     | Sub-angular | Flaky or Platy |  |  |  |
| Sub-rounded                                 | Angular     | Elongated      |  |  |  |

| Secondary and Minor Components for Coarse Grained Soils |                             |                      |                             |  |  |
|---------------------------------------------------------|-----------------------------|----------------------|-----------------------------|--|--|
| Fines (%)                                               | Modifier<br>(as applicable) | Accessory coarse (%) | Modifier<br>(as applicable) |  |  |
| ≤ 5                                                     | 'trace silt / clay'         | ≤ 15                 | 'trace sand / gravel'       |  |  |
| <b>&gt;</b> 5, ≤ 12                                     | 'with clay / silt'          | <b>&gt;</b> 15, ≤ 30 | 'with sand / gravel'        |  |  |
| > 12                                                    | prefix 'silty / clayey'     | > 30                 | prefix 'gravelly / sandy'   |  |  |

| Secondary and Minor Components for Fine Grained Soils |                                |  |  |  |
|-------------------------------------------------------|--------------------------------|--|--|--|
| % Coarse                                              | Modifier (as applicable)       |  |  |  |
| ≤ 15                                                  | add "trace sand / gravel"      |  |  |  |
| <b>&gt;</b> 15, ≤ 30                                  | add "with sand / gravel"       |  |  |  |
| > 30                                                  | prefix soil "sandy / gravelly" |  |  |  |

# SOIL DESCRIPTION AND **CLASSIFICATION**



## b) Soil Condition (moisture, relative density or consistency)

Moisture: Fine grained soils are described relative to plastic or liquid limits, while coarse grained soils are assessed based on appearance and feel. The observation of seepage or free water is noted on the test hole logs.

| Mois  | Moisture - Coarse Grained Soils |                                                                                            |  |  |  |  |  |
|-------|---------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| Term  |                                 | Tactile Properties                                                                         |  |  |  |  |  |
| Dry   | ('D')                           | Non-cohesive, free running                                                                 |  |  |  |  |  |
| Moist | ('M')                           | Feels cool, darkened colour, tends to stick together                                       |  |  |  |  |  |
| Wet   | ('W')                           | Feels cool, darkened colour,<br>tends to stick together, free<br>water forms when handling |  |  |  |  |  |

| Moisture - Fine Grained Soils |                    |                                                   |  |  |  |  |
|-------------------------------|--------------------|---------------------------------------------------|--|--|--|--|
| Term                          |                    | Tactile Properties                                |  |  |  |  |
| Moist, dry of plastic limit   | ('w < PL')         | Hard and friable or powdery                       |  |  |  |  |
| Moist, near plastic limit     | $(`w \approx PL')$ | Can be moulded                                    |  |  |  |  |
| Moist, wet of plastic limit   | ('w > PL')         | Weakened, free water forms on hands with handling |  |  |  |  |
| Wet, near liquid limit        | $(`w \approx LL')$ | Highly weakened, tends to flow when tapped        |  |  |  |  |
| Wet, wet of liquid limit      | ('w > LL')         | Liquid consistency, soil flows                    |  |  |  |  |

Relative Density (Non Cohesive Soils): The Density Index is inherently difficult to assess by visual or tactile means, and is normally assessed by penetration testing (e.g. SPT, DCP, PSP or CPT) with published correlations. Assessment may be affected by moisture and in situ stress conditions. Density Index assessment may be refined by combination of in situ density testing and laboratory reference maximum and minimum density ranges.

Consistency (Cohesive Soils): May be assessed by direct measurement (shear vane, CPT etc.), or approximate tactile correlations. Cohesive soils include fine grained soils, and coarse grained soils with sufficient fine grained components to induce cohesive behaviour. A 'design shear strength' must consider the mode of testing, the in situ moisture content and potential for variations of moisture which may affect the shear strength.

| Relative Densi                              | <b>Relative Density (Non-Cohesive Soils)</b> |                    |  |  |  |
|---------------------------------------------|----------------------------------------------|--------------------|--|--|--|
| Term and (Symb                              | ol)                                          | Density Index (%)  |  |  |  |
| Very Loose                                  | (VL)                                         | ≤ 15               |  |  |  |
| Loose                                       | (L)                                          | > 15 and $\leq$ 35 |  |  |  |
| Medium Dense                                | (MD)                                         | > 35 and ≤ 65      |  |  |  |
| Dense                                       | (D)                                          | > 65 and ≤ 85      |  |  |  |
| Very Dense                                  | (VD)                                         | > 85               |  |  |  |
| Consistency assessment can be influenced by |                                              |                    |  |  |  |

| Very Dense                                  | (VD) | > 85 |  |  |  |  |
|---------------------------------------------|------|------|--|--|--|--|
| Consistency assessment can be influenced by |      |      |  |  |  |  |
| moisture variation.                         |      |      |  |  |  |  |

| Consistency (Cohesive Soils) |       |                                                     |                             |  |  |
|------------------------------|-------|-----------------------------------------------------|-----------------------------|--|--|
| Term and (Symbol)            |       | Tactile Properties                                  | Undrained<br>Shear Strength |  |  |
| Very Soft                    | (VS)  | Extrudes between fingers when squeezed              | < 12 kPa                    |  |  |
| Soft                         | (S)   | Can be moulded by light finger pressure             | 12 - 25 kPa                 |  |  |
| Firm (F)                     |       | Can be moulded by strong finger pressure            | 25 - 50 kPa                 |  |  |
| Stiff                        | (St)  | Cannot be moulded by fingers                        | 50 - 100 kPa                |  |  |
| Very Stiff                   | (VSt) | Can be indented by thumb nail                       | 100 - 200 kPa               |  |  |
| Hard                         | (H)   | Can be indented with difficulty by thumb nail       | > 200 kPa                   |  |  |
| Friable                      | (Fr)  | Easily crumbled or broken into small pieces by hand | -                           |  |  |

## c) Structure (zoning, defects, cementing)

**Zoning:** The *in situ* zoning is described using the terms below. 'Intermixed' may be used for an irregular arrangement.

'layer' (a continuous zone across the exposed sample)

'pocket' (an irregular inclusion of different material).

mass, formed by infilling of open defects)

'lens' (a discontinuous layer with lenticular shape)

'interbedded' or "interlaminated' (alternating soil types)

Defects: Described using terms below, with dimension orientation and spacing described where practical.

'parting' (an open or closed surface or crack sub parallel to layering with little / no tensile strength - open or closed)

'softened zone' (in clayey soils, usually adjacent to a defect with associated higher moisture content)

'fissure' (as per a parting, though not parallel or sub parallel to layering - may include desiccation cracks)

'tube' (tubular cavity, singly or one of a large number, often formed from root holes, animal burrows or tunnel erosion)

'sheared seam' (zone of sub parallel near planar closely spaced intersecting smooth or slickensided fissures dividing the mass into lenticular or wedge shaped blocks)

'tube cast' (an infilled tube - infill may vary from uncemented through to cemented or have rock properties)

'sheared surface' (a near planar, curved or undulating smooth, polished or slickensided surface, indicative of displacement)

'infilled seam' (sheet like soil body cutting through the soil

Cementation: Soils may be cemented by various substances (e.g. iron oxides and hydroxides, silica, calcium carbonate, gypsum), and the cementing agent shall be identified if practical. Cemented soils are described as:

'weakly cemented' easily disaggregated by hand in air or water

'moderately cemented' effort required to disaggregate the soil by hand in air or water

Materials extending beyond 'moderately cemented' are encompassed within the rock strength range. Where consistent cementation throughout a soil mass is identified as a duricrust, it is described in accordance with duricrust rock descriptors. Where alternate descriptors of cementation development are applied for consistency with regional practices or geology, or client requirements, these are outlined separately.

# SOIL DESCRIPTION AND CLASSIFICATION



## d) Origin

An interpretation is provided based on observations of landform, geology and fabric, and may further include assignment of a stratigraphic unit. The use of terms 'possibly' or 'probably' indicates a higher degree of uncertainty regarding the assessed origin or stratigraphic unit. Typical origin descriptors include:

Residual Formed directly from in situ weathering with no visible structure or fabric of the parent soil or rock.

Extremely weathered Formed directly from in situ weathering, with remnant and/or fabric from the parent rock.

Alluvial Deposited by streams and rivers (may be applied more generically as transported by water).

Estuarine Deposited in coastal estuaries, including sediments from inflowing rivers, streams, and tidal currents.

Marine Deposited in a marine environment.

Lacustrine Deposited in freshwater lakes.

Aeolian Transported by wind.

Colluvial and Soil and rock debris transported down slopes by gravity (with or without assistance of water). Colluvium is typically applied to thicker / localised deposits, and slopewash for thinner / widespread deposits.

TOPSOIL Surficial soil, typically with high levels of organic material. Topsoils buried by other transported soils are

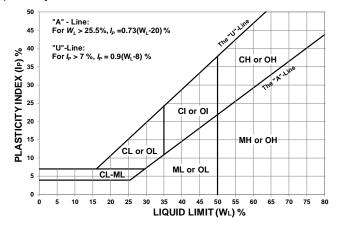
termed 'remnant topsoil'. Tree roots within otherwise unaltered soil does not characterise topsoil.

FILL Any material which has been placed by anthropogenic processes (i.e. human activity).

## e) Additional Observations

Additional observations may be included to supplement the soil description. Additional observations may consist of notations relating to soil characteristics (odour, contamination, colour changes with time), inferred geology (with delineation of soil horizons or geological time scale) or notes on sampling and testing application (including the reliability, recovery, representativeness, or condition of samples or test conditions and limitations). If the material is assessed to be not representative, terms such as 'poor recovery', 'non-intact', 'recovered as' or 'probably' are applied.

## **SOIL CLASSIFICATION**


Classification allocates the material within distinct soil groups assigned a two character Group Symbol:

| Coarse Grained (sand and gravel: |              | l coarser than 0.075 mm) | Fine Grained Soils (silt and clay: more | than <u>35%</u> of soil fine | r than 0.075 mm)        |
|----------------------------------|--------------|--------------------------|-----------------------------------------|------------------------------|-------------------------|
| <b>Major Division</b>            | Group Symbol | Soil Group               | Major division                          | Group Symbol                 | Soil Group              |
| GRAVEL                           | GW           | GRAVEL, well graded      |                                         | ML                           | SILT, low plasticity    |
| (more than half                  | GP           | GRAVEL, poorly graded    | SILT and CLAY                           | CL                           | CLAY, low plasticity    |
| of the coarse fraction is        | GM           | Silty GRAVEL             | (low to medium plasticity)              | CI                           | CLAY, medium plasticity |
| > 2.36 mm)                       | GC           | Clayey GRAVEL            |                                         | OL                           | Organic SILT            |
| SAND                             | SW           | SAND, well graded        |                                         | МН                           | SILT, high plasticity   |
| (more than half                  | SP           | SAND, poorly graded      | SILT and CLAY (high plasticity)         | СН                           | CLAY, high plasticity   |
| of the coarse fraction is        | SM           | Silty SAND               | ( 3   1   1   1   1   1                 | ОН                           | Organic CLAY / SILT     |
| < 2.36 mm)                       | SC           | Clayey SAND              | Highly Organic                          | Pt                           | PEAT                    |

Coarse grained soils with fines contents between 5% and 12% are provided a dual classification comprising the two group symbols separated by a dash, e.g. for a poorly graded gravel with between 5% and 12% silt fines (poorly graded 'GRAVEL with silt'), the classification is GP-GM.

For the purpose of classification, *poorly graded, uniform,* or *gap graded* soils are all designated as poorly graded. Soils that are dominated by boulders or cobbles are described separately and are not classified.

Classification is routinely undertaken based on tactile assessment with the soil description. Refinement of soil classification may be applied using laboratory assessment, including particle size distribution and Atterberg Limits. Atterberg Limits testing is applied to the sample portion finer than 0.425 mm. Fine grained soil components are assessed on the basis of regions defined within the Modified Casagrande Chart.



# **GLOSSARY OF SYMBOLS**



This standard sheet should be read in conjunction with all test hole log sheets and any idealised geological sections prepared for the investigation report.

| Symbol   Description   Disturbed Sample   R   Rising Head Permeability Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                      |                    |                 | GE          | NERAL    |             |            |           |                                         |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|--------------------|-----------------|-------------|----------|-------------|------------|-----------|-----------------------------------------|-----------|
| D Disturbed Sample B Bulk Sample C S Core Sample (suffixed by sample size or tube diameter in mm if applicable) CS Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C D S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm) C S Core Sample (suffixed by diameter in mm | Symbol    | Description          |                    |                 |             |          | Symbol      | Descript   | ion       |                                         |           |
| B Bulk Sample U(50) Undisturbed Sampled (suffixed by sample size or tube diameter in mm if applicable) CS Core Sample (suffixed by diameter in mm) ES Soil sample for environmental sampling Photoionisation Detector SPT Standard Penetration Test (with blows per 0.15m) N SPT Value Point Load Test (axial) Point Load Test (diametric) Point Load Test (diametric) Point Load (kPa) PK Packer Test (kPa) PR Pezometer Installation PM Pressuremeter Test  SOIL SYMBOLS  Main Components  Minor Components  SOIL SYMBOLS  Main Components  SOIL SYMBOLS  ROCK SYMBOLS  Sedimentary  CLAY SHALE SHALE COAL  BASALT C ROCK NATURAL DEFECTS (Coding)  Defect Type Orientation  Pattendard Permeability Test Plate Bearing Test Water Inflow (make) Water Outflow (loss)  Pethodocors Perporation Water Outflow (loss)  Perporation of Clays Patter Level Perporaty Water Outflow (loss)  Point Load Test (axial) Point Load Test (axial) Point Load Test (axial) Point Load Test (axial) Point Load Test (daimetric) Point Load Te |           |                      | nle                |                 |             |          |             |            |           | meability Tes                           | st        |
| U(50) Undisturbed Sampled (suffixed by sample size or tube diameter in mm if applicable)  CS Core Sample (suffixed by diameter in mm)  ES Soil sample for environmental sampling PID Photoinisation Detector  PT Standard Penetration Test (with blows per 0.15m)  N SPT Value N SPT Value Point Load Test (axial) PPHP Pocket/Hand Penetrometer (suffixed by value kPa) PK Packer Test (kPa) PZ Piezometer Installation PM Pressuremeter Test  SOIL SYMBOLS  Main Components  SOIL SYMBOLS  Main Components  SOIL SYMBOLS  ROCK SYMBOLS  Sodimentary  SOIL SYMBOLS  Sodimentary  SOIL SYMBOLS  Sodimentary  SOIL SYMBOLS  CONGLOMERATE  COAL  SILT GRANITI CROCK  BASALT IC ROCK  BASALT IC ROCK  NATURAL DEFECTS (Coding)  Defect Type  Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В         |                      |                    |                 |             |          |             | _          |           | •                                       |           |
| CS Core Sample (suffixed by diameter in mm)  ES Soil sample for environmental sampling  PID Photoinisation Detector  SPT Standard Penetration Test (with blows per 0.15m)  N SPT Value  N SPT Value  Point Load Test (axial)  HB/HW SPT Hammer Bouncing/Hammer Weight  PP/HP Pocket/Hand Penetrometer (suffixed by value kPa)  PK Packer Test (kPa)  PZ Piezometer Installation  PM Pressuremeter Test  SOIL SYMBOLS  Main Components  Minor Components  Minor Components  SAND  FILL  SILT  SILT  Sandy  Vegetation, roots  ROCK SYMBOLS  Sedimentary  CLAY  SANDSTONE  SHALE  COAL  SHALE  COAL  BASALT  IC ROCK  NATURAL DEFECTS (Coding)  Defect Type  Orientation  Water Inflow (make)  Water Outflow (loss)  Water Devited Sevel  Temporary Water Level  Final Water Level  Fin  | U(50)     | Undisturbed Sa       |                    | d by sample     | size or     | tube     | PBT         | _          |           | -                                       |           |
| Soil sample for environmental sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CS        |                      |                    | neter in mm     | )           |          | -           | Water Inf  | low (ma   | ıke)                                    |           |
| PID Photoionisation Detector  SPT Standard Penetration Test (with blows per 0.15m)  SPT Value  Point Load Test (axial)  Point Load Test (axial)  Point Load Test (diametric)  Point Load (SPa)  Impression Device Test  Soll SYMBOLS  SOIL SYMBOLS  SAND  SAND  SAND  SAND  SILT  SONG  CONGLOMERATE  SAND  SANDSTONE  SANDSTONE  SANDSTONE  SILTSTONE  SAND  SANDSTONE  SANDSTO | ES        |                      | •                  |                 | •           |          | <b>—</b>    |            | •         |                                         |           |
| SPT Standard Penetration Test (with blows per 0.15m)  N SPT Value  Point Load Test (axial)  Point Load Test (diametric)  Point Load Test (diametric)  Point Load (kPa)  Presuremeter Test  Solit Symbols  Minor Components  Solit Symbols  Main Components  Minor Components  Sand  Solit Symbols  Main Components  Solit Symbols  Soli | PID       |                      |                    | . 0             |             |          | $\nabla$    |            | •         | ,                                       |           |
| N SPT Value  HB/HW SPT Hammer Bouncing/Hammer Weight SPT Hammer Bouncing/Hammer Weight Point Load Test (diametric) Point Load Test (diametric) Point Load (kPa) Point Load Test (diametric) Point Load (kPa) Point Load Test (diametric) Point Load (kPa) Point Load (kPa) Pressuremeter Test Pressuremeter Test  Soll SYMBOLS  Sall SYMBOLS  ROCK SYMBOLS  Sedimentary  Igneous Igne | SPT       | Standard Pene        | tration Test (wi   | h blows pe      | r 0.15m)    |          | 7           | •          | •         |                                         |           |
| HB/HW SPT Hammer Bouncing/Hammer Weight PP/HP Pocket/Hand Penetrometer (suffixed by value kPa) PK Packer Test (kPa) Pk Packer Test (kPa) Pk Piezometer Installation Pk Piezometer Installation Pk Pressuremeter Test  SOIL SYMBOLS  Main Components  SAND FILL SILT FILL SILT FOR GRAVEL SILT FOR SYMBOLS  ROCK SYMBOLS  ROCK SYMBOLS  Sedimentary SANDSTONE SILTSTONE SHALE COAL SAND SILTSTONE S | N         |                      | ·                  | •               | ,           |          |             | Point Loa  | d Test    | (axial)                                 |           |
| PP/HP Pocket/Hand Penetrometer (suffixed by value kPa) PK Packer Test (kPa) PZ Piezometer Installation PM Pressuremeter Test  SV/VS Shear Vane Test (suffixed by value in kPa)  SOIL SYMBOLS  Main Components  Minor Components  SAND  FILL  SILT  GRAVEL  TOPSOIL  TOPSOIL  CLAY  TOPSOIL  SAND  SOIL SYMBOLS  ROCK SYMBOLS  ROCK SYMBOLS  Sedimentary  SAND  SAND  SILTSTONE  SAND  SILTSTONE  SAND  SILTSTONE  SAND  CONGLOMERATE  TOPSOIL  CONGLOMERATE  TOPSOIL  SHALE  COAL  BASALT  IC  ROCK  ROCK  ROCK  ROCK  ROCK  MATURAL DEFECTS (Coding)  Defect Type  Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HB/HW     | SPT Hammer I         | Bouncing/Hamn      | ner Weight      |             |          | 0           |            |           | . ,                                     |           |
| PK Packer Test (kPa) IMP Impression Device Test PZ Piezometer Installation PM Pressuremeter Test  SVIVS Shear Vane Test (suffixed by value in kPa)  SOIL SYMBOLS  Main Components  Minor Components  SAND  SILT  S | PP/HP     |                      | _                  | _               | alue kPa    | 1)       | PL          |            |           | ,                                       |           |
| PZ Piezometer Installation SVIVS Shear Vane Test (suffixed by value in kPa)  SOIL SYMBOLS  Main Components  Minor Components  SAND  FILL  SILT  GRAVEL  SILT  SONGLOMERATE  SILTSTONE  SIL |           |                      |                    | ,               |             | ,        | IMP         |            |           |                                         |           |
| SOIL SYMBOLS  Main Components  SAND  SAND  SILT  | PZ        |                      |                    |                 |             |          | РМ          |            |           |                                         |           |
| SOIL SYMBOLS  Main Components  SAND  SAND  SILT  | SV/VS     | Shear Vane Te        | est (suffixed by   | /alue in kPa    | a)          |          |             |            |           |                                         |           |
| Main Components  SAND  SAND  FILL  Sandy  Vegetation, roots  SILT  SOL  COMBLOMERATE  SEMINITION  CONGLOMERATE  SANDSTONE  SILTSTONE  SHALE  COAL  SHALE  SHALE  COAL  SHALE  SHALE  SHALE  COAL  SHALE   |           |                      |                    |                 |             | SYMBOL   | S           |            |           |                                         |           |
| SAND  FILL  Sandy  Vegetation, roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Main Co   | mnononto             |                    |                 |             |          |             |            |           |                                         |           |
| CLAY  TOPSOIL  Clayey  Note: Natural soils are generally a combination of constituents, e.g. sandy CLAY  ROCK SYMBOLS  Sedimentary  Igneous  CONGLOMERATE  COAL  BASALT  IC  ROCK  Note: Additional rock symbols may be allocated for a particular project  NATURAL DEFECTS (Coding)  Defect Type  Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                      | FILL               |                 |             |          | TIES<br>(X) | vege       | tation, r | oots                                    |           |
| ROCK SYMBOLS  Sedimentary  SANDSTONE  SILTSTONE  SHALE  COAL  BASALT  IC  ROCK  ROCK  BASALT  IC  ROCK  Note: Additional rock symbols may be allocated for a particular project  NATURAL DEFECTS (Coding)  Defect Type  Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-0       | GRAVEL               | SILT               |                 | 0000        | gravelly |             | Silty      |           |                                         |           |
| ROCK SYMBOLS  Sedimentary  SANDSTONE  SILTSTONE  CONGLOMERATE  COAL  BASALT  IC  ROCK  Note: Additional rock symbols may be allocated for a particular project  NATURAL DEFECTS (Coding)  Defect Type  Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | CLAY                 | TOPS               | OIL             |             | clayey   |             |            |           | CLAY                                    |           |
| Sedimentary  SANDSTONE SILTSTONE SILTSTONE CONGLOMERATE  SILTSTONE COAL  BASALT IC ROCK PYKE  Note: Additional rock symbols may be allocated for a particular project  NATURAL DEFECTS (Coding)  Defect Type Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V//A      |                      | المثمثمثم          |                 | 2/4         | OV44504  |             |            |           | ,                                       | V://Z     |
| SANDSTONE  SILTSTONE  SILTSTONE  CONGLOMERATE  SILTSTONE  CONGLOMERATE  SILTSTONE  COAL  BASALT  IC  ROCK  BASALT  IC  ROCK  Note: Additional rock symbols may be allocated for a particular project  NATURAL DEFECTS (Coding)  Defect Type  Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                      |                    |                 | ROCK        | SYMBOL   | .S          |            |           |                                         |           |
| CLAYSTONE SHALE COAL BASALT IC ROCK  Note: Additional rock symbols may be allocated for a particular project  NATURAL DEFECTS (Coding)  Defect Type Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sedimer   |                      |                    |                 | 0.000       |          |             | Igneous    | 00.44     | ·-·                                     |           |
| Note: Additional rock symbols may be allocated for a particular project  NATURAL DEFECTS (Coding)  Defect Type  Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | SANDSTONE            | SILTS              | STONE           |             | CONGLO   | DMERATE     | ++++       |           |                                         | IGNEOUS   |
| Note: Additional rock symbols may be allocated for a particular project  NATURAL DEFECTS (Coding)  Defect Type  Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | CLAYSTONE            | SHAL               | E               |             | COAL     |             |            | BASALT DY |                                         |           |
| Defect Type Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note: Add | ditional rock symbol | ls may be allocate | ed for a partic | cular proje | ect      |             |            |           |                                         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                      |                    | NATU            | RAL DE      | EFECTS   | (Coding)    |            |           |                                         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Defect T  | vpe                  | Orientatio         | 1               |             |          |             |            |           |                                         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Joint                |                    |                 | ed core .   | "Dip" an | ale (ea. 5° | ) measured | relative  | to horizonta                            | ıl.       |
| Pt Parting For inclined non-oriented core "Angle" measured relative to core axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pt        | Parting              |                    |                 |             | •        |             | •          |           |                                         |           |
| SS Sheared Surface For inclined oriented core "Dip" angle and "Dip Direction" angle (eg. 45°/225° mag.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                      |                    |                 |             |          |             |            |           |                                         | ag.).     |
| WSm Weathered Seam Orientation (con't) Roughness Coating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                      |                    |                 |             |          |             |            | ` ` `     |                                         |           |
| SSm Sheared Seam VT Vertical Pol Polished Cn Clean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | Sheared Seam         |                    |                 |             |          |             |            |           |                                         |           |
| CSm Crushed Seam HZ or 0° Horizontal So Smooth Sn Stained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                      |                    | Horizonta       | l           |          |             |            |           |                                         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                      |                    |                 |             |          |             |            | Ve Veneer |                                         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                      |                    | 9               |             |          |             | ıh         |           |                                         |           |
| VN Vein Slk Slickensided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                      |                    |                 |             |          | •           |            |           | o o a a a a a a a a a a a a a a a a a a |           |
| Shape Infilling / Common Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 70                   |                    |                 |             |          |             |            |           |                                         |           |
| PIn Planar St Stepped CLAY Clay Mi Micaceous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | Planar               | St                 | Stepped         |             | Ĭ        |             |            | Mi        | Micaceous                               |           |
| Cu Curved Ir Irregular Ca Calcite Mn Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                      |                    |                 |             |          |             |            |           |                                         |           |
| Un Undulating Dis Discontinuous X Carbonaceous Py Pyrite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                      |                    | _               | Jous        |          |             | eous       |           |                                         |           |
| Others Kt Chlorite Qz Quartz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |                      |                    |                 |             |          |             |            | _         |                                         |           |
| OP Open CL Closed Ti Tight Fe Iron Oxide MU Unidentified Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Open CL              | Closed             | Ti Tio          | ht          |          |             |            |           |                                         | d Mineral |

|                               | 3                          | K                                                | V.                         |                        |                                                          | INS                                              | STALLAT                                               | TION DE              | TAIL           |                                                                   |                   | HOLE<br>PAGE : 1         | <b>N(</b><br>1 OF | ): <b>E</b>  | 3H1        | 18                         |
|-------------------------------|----------------------------|--------------------------------------------------|----------------------------|------------------------|----------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|----------------------|----------------|-------------------------------------------------------------------|-------------------|--------------------------|-------------------|--------------|------------|----------------------------|
| PROJE                         | ECT                        | : Brukı                                          | unga Si                    | ite Invest             | igation                                                  | SURFACE                                          | ELEVATION :                                           | : 365.84 m (A        | HD)            |                                                                   | JOB               | NO : VE                  | 236               | 88           |            |                            |
| POSIT                         | ION                        | : E: 31                                          | 1640, 1                    | N: 61248               | 14 ( MGA94)                                              | SURFACE                                          | CONDITIONS                                            | : Made grou          | nd             |                                                                   |                   | ATION :                  |                   |              | a Min      | e Site                     |
| RIG T                         |                            |                                                  |                            |                        |                                                          |                                                  | TOR : Drilling                                        | *                    |                | _                                                                 |                   | / AZIMUTI                |                   |              |            |                            |
|                               | drill<br>Rillin            |                                                  | 6/10/12<br>T               | 2 to 16/10             | 0/12                                                     | LOGGED E                                         | BY: KF<br>ERIAL                                       | CHECKE               | DBY:H          | В                                                                 | STA               | NDARD :                  | : AS              | 1726         | -1993      | 3                          |
|                               |                            | 1                                                |                            | T                      |                                                          | IVIAT                                            |                                                       |                      |                |                                                                   |                   |                          |                   | Z            |            |                            |
| DRILLING &<br>WATER<br>DETAIL | TCR/RQD                    | FIELD TESTS                                      | RL (m)<br>DEPTH (m)        | GRAPHIC<br>LOG         |                                                          | (text                                            | DE<br>OCK TYPE : Coure, fabric, mir<br>teration, ceme | neral composit       | ion, hardr     | ness                                                              |                   |                          | Weathering        | INSTALLATION | 2 0        | COMMENTS                   |
| 4 2                           |                            | "                                                |                            |                        | (GM) Silty GRAVEL of grained quartz and m                |                                                  | fine to coarse grai                                   | ned gravel up to 10  | ) mm diamete   | er, tan, non-plastic                                              | silt, fine to coa | ırse                     | SW                | M            |            |                            |
| 25/10/12                      |                            |                                                  | 363.8 2.0                  |                        | QUARTZ MICA SCH                                          | HST, medium gra                                  | ined, grey, 1% pyr                                    | ite, strength estim  | ated from chi  | ippings.                                                          |                   |                          | FR                |              |            |                            |
|                               |                            |                                                  | 163.8 2.0                  |                        | QUARTZ MICA SCH                                          | IIST, medium gra                                 | ined, grey, 1% pyr                                    | ite, evidence of irc | n staining, st | trength estimated f                                               | rom chippings.    |                          | SW<br>to<br>FR    |              |            |                            |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
|                               |                            |                                                  | 359.8—6.0                  |                        | QUARTZ MICA SCH                                          | IIST, medium gra                                 | ined, grey, 1% pyr                                    | ite, strength estima | ated from chi  | ippings.                                                          |                   |                          | FR                |              |            |                            |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            | Cement                     |
|                               |                            |                                                  | 357.8 8.0                  |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            | Capped PVC                 |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
| — АН<br>—                     |                            |                                                  | 355.8                      | .0                     |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
|                               |                            |                                                  | 353.8 12.1                 |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
|                               |                            |                                                  | 353.8 12                   |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
|                               |                            |                                                  | 351.8—14.1                 | .0                     |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              | <b>–</b>   | 4.5 m<br>Bentonite<br>5 m  |
|                               |                            |                                                  | 349.8—16.                  |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              | . <u>1</u> | 6.1 m                      |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            | Gravel filter              |
|                               |                            |                                                  | 347.8—18.                  |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              | •          | pack<br>3 m slotted<br>PVC |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              | 1          | 9.1 m                      |
| <u> </u>                      |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            | Collapse<br>0 m            |
|                               |                            |                                                  |                            |                        |                                                          |                                                  |                                                       |                      |                |                                                                   |                   |                          |                   |              |            |                            |
|                               |                            |                                                  |                            |                        | RILLING                                                  |                                                  |                                                       |                      |                | SAI                                                               | MPLES & FIE       |                          |                   |              |            |                            |
|                               | HA<br>AD<br>WB<br>RR<br>AH | Hand A<br>Auger I<br>Washbo<br>Rock R<br>Air Han | Drilling<br>bre<br>dolling | HQ<br>NQ<br>PQ<br>NMLC | HQ Coring TC<br>NQ Coring RC<br>PQ Coring<br>NMLC Coring | CR % core run<br>QD % core run<br>(rock fraction | recovered<br>> 100mm long<br>n only measured)         |                      | ;              | D Disturbed Sa<br>W Water Samp<br>SPT SPT Sample<br>U Undisturbed | le EV             | Env Soil S<br>V Env Wate | Samp<br>er Sar    | le<br>nple   |            |                            |
|                               |                            |                                                  |                            | <b>y</b> = \           | IDWATER SYMBOLS  Water level (static)                    |                                                  |                                                       |                      | F              | PHOTOGRAPHS<br>NOTES                                              | YES               | ×                        | ₃                 | NO           |            |                            |
|                               |                            |                                                  |                            | ∑ =1                   | Nater level (during drill                                | ing)                                             |                                                       |                      |                | -                                                                 | <del></del>       |                          |                   |              |            |                            |

| (                   | S                          | K                                                | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |                                                                      | INSTAL                                                            | LATIO                      | ON DETAI                                                                   | L                    |                      | HOLE<br>PAGE :                          | <b>NC</b><br>1 OF | ): <b>B</b>            | H19                                                                                  |
|---------------------|----------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|----------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------|----------------------|----------------------|-----------------------------------------|-------------------|------------------------|--------------------------------------------------------------------------------------|
| PRO                 | JECT                       | : Brukı                                          | ınga s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Site I    | Investi        | gation                                                               | SURFACE ELEVA                                                     | TION: 36                   | 65.71 m (AHD)                                                              |                      |                      | JOB NO : VE                             | 2368              | 38                     |                                                                                      |
|                     |                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                | 14 ( MGA94)                                                          | SURFACE CONDI                                                     |                            |                                                                            |                      |                      | LOCATION :                              |                   |                        | Mine Site                                                                            |
|                     |                            | : MK5/1                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                |                                                                      | CONTRACTOR:                                                       |                            |                                                                            |                      |                      | DIP / AZIMUT                            |                   |                        |                                                                                      |
| _                   |                            | LED : 1                                          | 9/10/ <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 to     | 19/10          | )/12                                                                 | LOGGED BY : HI                                                    | В                          | CHECKED BY                                                                 | : ST                 |                      | STANDARD :                              | : AS              | 1726-1                 | 993                                                                                  |
| <b>-</b>            | ORILLIN                    |                                                  | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                |                                                                      | MATERIAL                                                          |                            |                                                                            |                      |                      |                                         |                   | Z                      |                                                                                      |
| DRILLING &<br>WATER | DETAIL                     | FIELD TESTS                                      | RL (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DEPTH (m) | GRAPHIC<br>LOG |                                                                      | (texture, fab                                                     | PE : Colou<br>oric, minera | RIPTION<br>ir, Grain size, Str<br>al composition, h<br>tion, etc as applic | ardness              |                      |                                         | Weathering        | INSTALLATION<br>DETAIL | COMMENTS                                                                             |
| AH       19/10/12   | UEF                        |                                                  | 363.7—363.7—363.7—363.7—363.7—363.7—363.7—363.7—363.7—363.7—363.7—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70—363.70— | 3.0       |                | .00m chippings up to 60 mn                                           |                                                                   | rritic, inferred           | from air hammer chip                                                       | pings (angular, fii  |                      |                                         | SW to DW          |                        | Cement  Capped PVC  1.3 m  Bentonite  1.8 m  2 m  Gravel filter pack 3 m slotted PVC |
|                     | HA<br>AD<br>WB<br>RR<br>AH | Hand A<br>Auger I<br>Washbo<br>Rock R<br>Air Han | Orilling<br>ore<br>olling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | HQ<br>NQ<br>PQ | RILLING  HQ Coring  NQ Coring  PQ Coring  NMLC Coring                | R % core run recovere D % core run > 100mr (rock fraction only me | m long                     |                                                                            | W Water<br>SPT SPT S | oed Sample<br>Sample | & FIELD TESTS ES Env Soil S EW Env Wate | Sample<br>er Sam  | e<br>iple              |                                                                                      |
|                     |                            |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         | <b>V</b> = V   | DWATER SYMBOLS<br>Vater level (static)<br>Vater level (during drilli | ng)                                                               |                            |                                                                            | PHOTOGRAF<br>NOTES   | PHS                  | YES 🔀                                   | <u> </u>          | Ю                      |                                                                                      |

| S                                     | K                           | V                                               |                                         |                       | INSTALLA                                                                                                                                                                                                                                                        | TION DETAIL                                                                                              | HOLE<br>PAGE : 1  |                                           |                        | 122                                                                          |
|---------------------------------------|-----------------------------|-------------------------------------------------|-----------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------|------------------------|------------------------------------------------------------------------------|
| PROJECT                               | Γ : Brul                    | kunga                                           | Site In                                 | vesti                 | gation SURFACE ELEVATION                                                                                                                                                                                                                                        | : 367.01 m (AHD)                                                                                         | JOB NO: VE        | 2368                                      | 8                      |                                                                              |
|                                       |                             |                                                 |                                         |                       | 88 ( MGA94) SURFACE CONDITIONS                                                                                                                                                                                                                                  |                                                                                                          | LOCATION :        |                                           |                        | line Site                                                                    |
| RIG TYPE                              |                             |                                                 |                                         |                       | CONTRACTOR: Drillin /12 LOGGED BY: KF                                                                                                                                                                                                                           | g Solutions CHECKED BY: HB                                                                               | DIP / AZIMUTI     |                                           |                        | 202                                                                          |
| DATE DRI<br>DRILL                     |                             | T 10/                                           | / 12 10                                 | 15/10                 | MATERIAL                                                                                                                                                                                                                                                        | CHECKED BY . HB                                                                                          | STANDARD :        | ASI                                       | 720-18                 | 993                                                                          |
|                                       | 音声 TCR/RQD<br>FIELD TESTS   | RL (m)                                          | DEPTH (m)<br>GRAPHIC                    | POO                   | DE<br>ROCK TYPE : C<br>(texture, fabric, mi                                                                                                                                                                                                                     | SCRIPTION<br>olour, Grain size, Structure<br>neral composition, hardness<br>entation, etc as applicable) |                   | Weathering                                | INSTALLATION<br>DETAIL | COMMENTS                                                                     |
| ————————————————————————————————————— |                             | 384.0                                           |                                         |                       | QUARTZ MICA SCHIST, medium grained, grey, 1% py  QUARTZ MICA SCHIST, medium grained, grey, 1% py  QUARTZ MICA SCHIST, medium grained, grey, 1% py                                                                                                               | rite, vuggy, iron stained, strength estimated                                                            | from chippings.   | SW ZZ |                        | Capped PVC  1.3 m Bentonite  1.8 m 1.9 m  Gravel filter pack 3 m slotted PVC |
| HA<br>AD<br>WE<br>RR<br>AH            | D Auger<br>B Wash<br>R Rock | Auger<br>r Drilling<br>bore<br>Rolling<br>ammer | J N P N N N N N N N N N N N N N N N N N | IQ<br>IQ<br>Q<br>IMLC | RILLING HQ Coring NQ Coring PQ Coring NMLC Coring NMLC Coring NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring  NMLC Coring | W Water<br>SPT SPT S                                                                                     | urbed Tube Sample | r Samp                                    | ole                    |                                                                              |
|                                       |                             |                                                 | $\bar{\Sigma}$                          | _ = v<br>_ = v        | /ater level (static)<br>/ater level (during drilling)                                                                                                                                                                                                           | NOTES                                                                                                    | YES X             | ] NO                                      | 0                      |                                                                              |



# DRILLHOLE No. C05

FΙ

٧L

VH

EΗ

Ext. low

Very low

Medium

Very high

Ext. high

Low

High

< 0.03

0.03-0.1

0.1-0.3

0.3-1.0

1.0-3.0

3-10

>10

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151

Client: PIRSA Start - Finish Date: 19/2/09 - 19/2/09

Bore dia: 96.0 mm

Driller: SPK Geodrill Rig: UDR 650

Surface Conditions:Topsoil

Northings: 6124036mN Eastings: 312470mE

RL: 377m AHD

Logged: KF Checked: KE

Oriented: -90

ROCK Point Load MINOR DEFECT DATA FIELD DATA **ROCK DESCRIPTION** COMMENTS (MPa) CONDITION rock type, degree of weathering, colour, grain size minor defect s50 field tests ground water texture and fabric, structure, angle of bedding dip, description: minor field & other tests drilling method, well sample type <u>6</u> defect spacing type, dip/dip geological formation  $\widehat{\Xi}$ construction, water 1850 moisture condition direction, colour, coating, thickness graphic ors and additional depth ( (mm) major defect description - type, dip, colour, filling, Axial rock observations 100 (mm), roughness thickness (mm), roughness orange-red, crumbly, moderate strength, slightly 100 mm, Class 9 PVC casing 0-0.7m micaceous, dry SILTSTONE (SM) mottled tan-yellow, weathered saprolite, 70% micas, soft, fine, smooth, crumbly SCHIST (SW) grey, slightly weathered at base, fine grained, ~90% micas, soft, crumbly Sv70(op)2(sm) B60(op)60(sm) Hollow Flight Auger with Split Spoon 0-0.7m grey, slightly weathered, fine grained, ~40% micas, Sh45-10(op)1(ro) RQD 42% Sh20(op)<1(ro) CR 100% Sh20(op)<1(ro) SCHIST (SW) grey, slightly weathered at base, fine grained, ~90% Diamond Core Drilling 0.7-5.1m micas, soft, crumbly T0(cl)<1(ro) Sv90(cl)<1(ro) SCHIST (FR) grey, unweathered, fine-med grained, 40% micas, strong, bedding at 45-70 degrees CR 100% **RQD 70%** B60(cl)<1(sm) SCHIST (FR) 2Sh45,0(cl)<1(sm,ro) grev, unweathered, fine-med grained, 60% micas. strong, bedding at 45-70 degrees 5 B60(cl)<1(sm) Borehole terminated at 5.1 m LABORATORY DATA MINOR DEFECT DATA FIELD DATA SYMBOLS MAJOR DEFECT DATA ROCK STRENGTH Unconfined Comp. Strength (MPa)
Unconsolidated Undrained Triaxial
Unconsolidated Undrained Triaxial
N = Natural
S = Saturated (<10mm thickness) (>10mm thickness) Packer Interval (Is(50) Point Load Index) B Bedding plane joint
Sv Sub-vertical joint
Sh Sub-horizontal joint
T Transverse to bedding plane
RQD % core run >100mm long

Point Load Test

Core recovered

% Core Loss per Run

Large core >100mm long

Small core <100mm long

FIELD DATA ABBREVIATIONS

Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer)

Standard Penetration Test

(SPT top = start of N blowcount)

SH

CR

NF

Sheared seam

Crushed seam

EW Extremely Weathered seam

MOISTURE CONDITION

D = Dry M = Moist W = Wet

Infilled seam

BRUKUNGA ARE 24 02 09.GPJ SKM 001 2008 05 07 DS.GDT SKM 001 ROCK 1

**GROUNDWATER SYMBOLS** 

= Water level (during drilling)

- = Outflow / Inflow

= Water level (static)

8/4/09



# DRAFT REPORT OF BOREHOLE: GAMW-03

CLIENT: DMITRE COORDS: 311927.0 m 6124980.0 m GDA94 MGA54

SURFACE RL: DATUM: AHD

INCLINATION: -90°

SHEET: 1 OF 3

PROJECT: WELL INSTALLATION DRILL RIG: LX12 BOART LONGYEAR

LOCATION: BRUKUNGA MINE, SA CONTRACTOR: CRC CARE

LOGGED: AJB

DATE: 14/3/13 DATE: 7/4/13

GAP gINT FN. F06

137666003 JOB NO: HOLE DIA: 120 mm HOLE DEPTH: 25.00 m CHECKED: Drilling Field Material Description and Instrumentation CONSTRUCTION AIRLIFT YIELD (L/s) SOIL/ROCK MATERIAL GRAPHIC LOG CAVITY/FRACTURE METHOD WATER DESCRIPTION DEPTH RL FILL GRAVEL, fine to coarse grained, pale grey, with cobbles up to 0.25 m in size, orange brown and red brown, trace of clayey sand in some zones, core loss from 0.0m to 1.2m 0.10: Core Run: 0.0m to 1.9m, 4 inch diameter PVC TCR-35% casing cemented in ground to protect standpipe 0.40: drilling water loss from 0.4m depth 1.90: Core Run: 1.9m to 3.3m 1.9m to 2.5m. core loss TCR=55% Bentonite slurry 3.20 3.2m to 3.3m, Clayey SAND, fine grained, brown, low plasticity clay 3.30: Core Run: 3.3m to 4.5m TCR=50% 3.3m to 3.9m, core loss 50 mm Class 18 PVC pipe 4.50: Core Run: 4.5m to 6.0m TCR=50%, RQD=45%, SCR=55% 4.60: Average Defect Spacing (ADS) QUARTZ MICA SCHIST 4.80 fine grained, slightly foliated, abundant mica, grey brown
medium strength, extremely weathered to
highly weathered 10mm to 30mm 5.10 4.60: Defects are generally observed to be joints, Set 1: 30 degrees to 45 degrees, Un, Ro, Vr fines or Sn Fe; Set pale orange, pale brown and red brown in PO 2: 60 degrees to 85 degrees, Un Ro,Sn Fe, some joints are closed or partially thin layers, very low to low strength, 5.70 extremely weathered extremely low to very low strength, residual closed. Descriptions of individual 6.00 defects are retained on Golder's project medium strength, highly weathered 4.80: roots present dark grey, low to medium strength, extremely 5.10: ADS 100mm to 300mm weathered 5.70: ADS 10mm to 30mm 6.00: Core Run: 6.0m to 9.1m: medium to high strength, moderately 6.70 TCR=100%, RQD=95%, SCR=100% 6.00: ADS 300mm to 1000mm high strength, moderately weathered to slightly weathered 8.00 8.00: ADS 100mm to 300mm QUARTZITE medium to coarse grained, very high to extremely high strength, slightly weathered, clear and colourless, white and orange 8.30 8.30: strength and weathering is FINAL GP. variable, 8.30m to 11.15m brown QUARTZ MICA SCHIST fine grained, slightly foliated, dark grey low to high strength, extremely weathered to highly weathered 9.10: Core Run: 9.1m to 12.2m: TCR=100%, RQD=95%, SCR=100% 10 GAP WELL 2 10.95; weathered zone, orange brown, This report of borehole must be read in conjunction with accompanying notes and abbreviations. It has been prepared for hydrogeological purposes only, without attempt to assess geotechnical properties or possible contamination. Any reference to

geotechnical properties or potential contamination are for information only and do not necessarily indicate the presence or absence

of the properties stated.



# **DRILLHOLE No. H01**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151 Client: PIRSA Driller: SPK Geodrill Start - Finish Date:05/02/2009 - 5/2/09 Rig: UDR 650

Bore dia: 96.0mm

Surface Conditions:Topsoil

Northings: 6124478.0mN Logged: KH
Eastings: 311784.0mE Checked: KF
RL: 350.0m AHD Oriented: -90

| Water<br>Quality | FIE                    | ELD DATA                                   |           |             | ROCK DESCRIPTION                                                                                                                                                                                                                                          |                 | RO<br>COND               | CK<br>ITION           | COMMENTS                                                           |
|------------------|------------------------|--------------------------------------------|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|-----------------------|--------------------------------------------------------------------|
| EG (mS/cm)       | field & other<br>tests | sample type<br>field tests<br>ground water | depth (m) | graphic log | rock type, degree of weathering, colour, grain six<br>texture and fabric, structure, angle of bedding d<br>geological formation<br>major defect description - type, dip, colour, fillin<br>thickness (mm), roughness                                      | ip,             | rock or soil<br>strength | moisture<br>condition | drilling method, we construction, wate and additional observations |
|                  |                        | <u>_</u>                                   | 4 _       |             | SILT (GM) grey fine grained with schist, tan and grey, highly weathered  CLAY (CL) brown, medium plasticity with muscovite rich schist; grey and tan, n weathered  SCHIST (HW) brown and grey, medium-highly weathered with abundant muscovite CLAY; grey |                 |                          |                       | Cement bentoning and backfill 0-12.5m  50 mm, Class 9 PVC (blank)  |
|                  |                        | 10.2m minor<br>WC                          | 8         |             | Silty CLAY (CL) brown and grey, medium plasticity with muscovite rich schist; grey a weathered                                                                                                                                                            | and tan, highly |                          |                       | Filter pack                                                        |
|                  |                        | 14.7m major<br>WC                          | 14        |             | SCHIST (MW) moderately weathered, fine grained, very hard (hard drilling)  Borehole terminated at 15.5 m                                                                                                                                                  |                 |                          |                       | 50 mm, Class 9<br>PVC (slotted)<br>12.5-15.5m                      |

SKM 001 ROCK BRUKUNGA\_HYDRO.GPJ SKM\_001\_2008 05 07\_DS.GDT 24/3/09

N Unconfined Comp. Strength (MPa)
S Unconfined Comp. Strength (MPa)
N Unconsolidated Undrained Triaxial
S Unconsolidated Undrained Triaxial
N = Natural
S = Saturated

GROUNDWATER SYMBOLS

Water level (static)

Water level (during drilling)

= Outflow / Inflow

ININOR DEFECT DATA

(<10mm thickness)

B Bedding plane joint

Sv Sub-vertical joint

Sh Sub-horizontal joint

T Transverse to bedding plane

RQD % core run >100mm long

FIELD DATA ABBREVIATIONS

Is(50) Point Load Index (MPa)

N SPT blows per 300mm

FPM Field permeability (packer)

FIELD DATA SYMBOLS

Packer Interval

Point Load Test
Standard Penetration Test
(SPT top = start of N blowcount)

Core recovered

W Core Loss per Run

Standard Penetration Test
(SPT top = start of N blowcount)

Core recovered

Core recovered

Core Loss per Run

Large core >100mm long

Small core <100mm long

■ Small core <100mm long

SH Sheared seam

u maex) <0.03 FI Ext. low 0.03-0.1 VLVery low 0.1-0.3 L Low Medium 0.3-1.0 High 1.0-3.0 Very high VH 3-10 EΗ Ext. high >10



# **DRILLHOLE No. H02**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151

Client: PIRSA Driller: SPK Geodrill Start - Finish Date:06/02/2009 - 6/2/09 Rig: UDR 650

Bore dia: 96.0mm

Surface Conditions:Topsoil

Northings: 6124383.0mN Logged: KH Eastings: 311950.0mE Checked: KF 342.0m AHD Oriented: -90

| Water<br>Quality | FI                     | ELD DATA                                                 |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROCK DESCRIPTION                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CK<br>DITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COMMENTS                                                                                              |
|------------------|------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| EG (mS/cm)       | field & other<br>tests | sample type<br>field tests<br>ground water               | depth (m)                                       | graphic log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rock type, degree of weathering, colour, grain size, texture and fabric, structure, angle of bedding dip, geological formation  major defect description - type, dip, colour, filling, thickness (mm), roughness                                                                           | rock or soil<br>strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | moisture<br>condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | drilling method, we construction, wate and additional observations                                    |
| 2.91 6.1         | fiel tes               | sar Air                                                  | 1 2 3 4 5 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | graduation of the control of the con | SCHIST (MW)  light grey, fine grained, moderate weathered with abundant muscovite, <1% schist, tan, highly weathered and minor white quartz.  SCHIST (MW)  light grey, fine grained, moderate weathered with abundant muscovite, <1% schist, tan, highly weathered and minor white quartz. | OCI CONTRACTOR OF THE PROPERTY | ool document to the control of the c | Filter pack 7-12m  50 mm, Class 9 PVC (blank)  Filter pack 7-12m  50 mm, Class 9 PVC (slotted)  8-12m |
| 4.94 5.9         |                        |                                                          | 12                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Borehole terminated at 12 m                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |
|                  |                        | DRY DATA  np. Strength (Minp. Strength (Mindrained Triax | 13                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MINOR DEFECT DATA FIELD DATA SYMBOLS MAJOR DEFECT D  (<10mm thickness) Packer Interval (>10mm thickness)                                                                                                                                                                                   | ATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROCK STRENGTH                                                                                         |

SKM 001 ROCK BRUKUNGA\_HYDRO.GPJ SKM\_001\_2008 05 07\_DS.GDT 24/3/09

GROUNDWATER SYMBOLS = Water level (static) = Water level (during drilling)

■ = Outflow / Inflow

FIELD DATA ABBREVIATIONS Is(50) Point Load Index (MPa)

N SPT blows per 300mm

FPM Field permeability (packer)

10% % Core Loss per Run Large core >100mm long ■ Small core <100mm long</p>

0.3-1.0 1.0-3.0 EW Extremely Weathered seam High MOISTURE CONDITION VH Very high 3-10 D = Dry M = Moist W = Wet EΗ Ext. high >10



# **DRILLHOLE No. H04a**

Sheet 1 of 1

Oriented: -90

1.0-3.0

3-10

>10

VH

EΗ

Very high

Ext. high

High

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151

Client: PIRSA Start - Finish Date:9/02/2009 - 9/2/09

Bore dia: 96.0mm

Driller: SPK Geodrill Rig: UDR 650

Surface Conditions:Topsoil

342.0m AHD

Northings: 6124210.0mN Logged: KF Eastings: 311973.0mE Checked: KF

| Water<br>Quality                                           | FIELD                                                                                            | DATA                                                                        |                                |                           | ROCK DESCRIPTION                                                                                                                                                                                                                                                                                                  | RC                       | OCK<br>DITION | COMMENTS                                                                                                                         |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------|
| EG (mS/cm)                                                 | field & other tests                                                                              | sample type<br>field tests<br>ground water                                  | depth (m)                      | graphic log               | rock type, degree of weathering, colour, grain size, texture and fabric, structure, angle of bedding dip, geological formation  major defect description - type, dip, colour, filling, thickness (mm), roughness                                                                                                  | rock or soil<br>strength |               | drilling method, well<br>construction, water<br>and additional<br>observations                                                   |
|                                                            |                                                                                                  | <u>*</u>                                                                    | 2 3                            |                           | Silty SAND (SM) brown, fine-medium grained with minor clay and weathered schist gravels  Silty SAND (SM) brown, medium grained with minor clay low-medium plasticity  Silty SAND (SM) dark brown, increasing clay content, medium plasticity  CLAY (CH) dark brown, medium plasticity  Borehole terminated at 4 m |                          |               | Cement bentonite and backfill 0-0.5m  Filter pack 0.5-4m  50 mm, Class 9 PVC (slotted) 1-4m                                      |
|                                                            |                                                                                                  |                                                                             | 5 - 6 - 7 - 8 8 10 111 112 113 |                           |                                                                                                                                                                                                                                                                                                                   |                          |               |                                                                                                                                  |
| UCN Uncor<br>UCS Uncor<br>TQN Uncor<br>TQS Uncor<br>N = Na | ABORATORY Infined Comp. S Infined Comp. S Insolidated Undi Insolidated Undi Itural S INDOWATER S | Strength (MF<br>Strength (MF<br>rained Triax<br>rained Triax<br>= Saturated | Pa)<br>Pa)<br>ial<br>ial       | B<br>Sv<br>Sh<br>T<br>RQD | MINOR DEFECT DATA (<10mm thickness) Bedding plane joint Sub-horizontal joint Transverse to bedding plane √9 core run >100mm long LD DATA ABBREVIATIONS  MAJOR DEFECT D (>10mm thicknes Standard Penetration Test (SPT top = start of N blowcount)  © Core recovered  WE Extremely Weather                         | s)                       | EL<br>VL<br>L | ROCK STRENGTH<br>s(50) Point Load Index)<br>Ext. low <0.03<br>Very low 0.03-0.1<br>Low 0.1-0.3<br>Medium 0.3-1.0<br>High 1.0-3.0 |

10% % Core Loss per Run

Large core >100mm long

Small core <100mm long</p>

Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer)

MOISTURE CONDITION

D = Dry M = Moist W = Wet

= Water level (during drilling)

= Water level (static)

= Outflow / Inflow



# **DRILLHOLE No. H04b**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151 Client: PIRSA Driller: SPK Geodrill
Start - Finish Date:11/02/2009 - 27/2/09Rig: UDR 650/Sonic
Bore dia: 96.0mm Surface Conditions:Topsoil

Northings: 6124213.0mN Logged: KF Eastings: 311970.0mE Checked: KF RL: 342.0m AHD Oriented: -90

| Water<br>Quality | FIE                    | LD DATA                                    |           |             | ROCK DESCRIPTION                                                                                                                                                                                                            |                          | OCK<br>DITION         | COMMENTS                                                                     |
|------------------|------------------------|--------------------------------------------|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|------------------------------------------------------------------------------|
| EG (mS/cm)       | field & other<br>tests | sample type<br>field tests<br>ground water | depth (m) | graphic log | rock type, degree of weathering, colour, grain size,<br>texture and fabric, structure, angle of bedding dip,<br>geological formation<br>major defect description - type, dip, colour, filling,<br>thickness (mm), roughness | rock or soil<br>strength | moisture<br>condition | drilling method, we<br>construction, water<br>and additional<br>observations |
|                  |                        | <u> </u>                                   | 2         |             | Silty SAND (SM) tan-light brown, fine grained, quartz sands, well sorted                                                                                                                                                    |                          |                       | Cement bentonite and backfill 0-9.8                                          |
|                  |                        |                                            | 6 _       |             | SCHIST (MW) light grey, fine to grained, moderate weathered with abundant muscovite with 5% highly weathered, tan schist.                                                                                                   |                          |                       |                                                                              |
|                  |                        | 9.5m minor<br>WC                           | 10        |             | SCHIST (MW) dark grey, fine to medium grained, moderate weathered with abundant muscovite Fracture at 9.5 m                                                                                                                 |                          |                       | Filter pack<br>9.8-13.8m<br>50 mm, Class 9<br>PVC (slotted)<br>10.3-13.3m    |
| 5.20             |                        | WC 12.5m                                   | 12 _      |             |                                                                                                                                                                                                                             |                          |                       |                                                                              |
|                  |                        |                                            | 16        |             | Borehole terminated at 14 m                                                                                                                                                                                                 |                          |                       | pr 120                                                                       |

SKM 001 ROCK BRUKUNGA\_HYDRO.GPJ SKM\_001\_2008 05 07\_DS.GDT 24/3/09

TQS Unconsolidated Undrained Triaxial N = Natural S = Saturated GROUNDWATER SYMBOLS

W = Water level (static)

W = Water level (during drilling)

= Outflow / Inflow

(<10mm thickness)
B Bedding plane joint
Sub-vertical joint
Sh Sub-horizontal joint
T Transverse to bedding plane
RQD % core run >100mm long
FIELD DATA ABBREVIATIONS
Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer)

FIELD DATA SYMBOLS

Packer Interval
Point Load Test
Standard Penetration Test
(SPT top = start of N blowcount)
Core recovered

Core Less per Pure

% Core Loss per Run

Large core >100mm long

Small core <100mm long

0.03-0.1 ٧L Very low CR Crushed seam 0.1-0.3 L Low NF Infilled seam Μ Medium 0.3-1.0 EW Extremely Weathered seam High 1.0-3.0 MOISTURE CONDITION VH Very high 3-10 D = Dry M = Moist W = Wet EΗ Ext. high >10



# **DRILLHOLE No. H06a**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151

Client: PIRSA Driller: SPK Geodrill Start - Finish Date:11/02/2009 - 11/2/09Rig: UDR 650

Bore dia: 96.0mm

Surface Conditions:Topsoil

Northings: 6124217.0mN Logged: KH Eastings: 312024.0mE Checked: KF 341.0m AHD Oriented: -90

| Wa<br>Qua         |                         | FIE                                                 | LD DATA                                    |                    |             | ROCK DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RC<br>CONE               | OCK<br>DITION         | COMMENTS                                                                                                          |
|-------------------|-------------------------|-----------------------------------------------------|--------------------------------------------|--------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|
| EG (mS/cm)        | рН                      | field & other<br>tests                              | sample type<br>field tests<br>ground water | depth (m)          | graphic log | rock type, degree of weathering, colour, grain size,<br>texture and fabric, structure, angle of bedding dip,<br>geological formation<br>major defect description - type, dip, colour, filling,<br>thickness (mm), roughness                                                                                                                                                                                                                                                                                                     | rock or soil<br>strength | moisture<br>condition | drilling method, well<br>construction, water<br>and additional<br>observations                                    |
| 7.80              | 3.4                     |                                                     | <u> </u>                                   | 2                  |             | Gravelly SAND (GC) red and orange, fine to medium grained with highly weathered schist gravels  Silty SAND (SM) dark brown, grey, increasing clay content, very low plasticity                                                                                                                                                                                                                                                                                                                                                  |                          |                       | Cement bentonite and backfill 0-0.5m Filter pack 0.5-4.4m  50 mm, Class 9 PVC (slotted) 1.4-4.4m  Noticable odour |
|                   |                         |                                                     |                                            | 6                  |             | Borehole terminated at 4.4 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                       |                                                                                                                   |
| UCN<br>UCS<br>TQN | Uncon<br>Uncon<br>Uncon | ABORATOR<br>fined Comp<br>fined Comp<br>solidated U | RY DATA                                    | Pa)<br>Pa)<br>Pial | B<br>Sv     | MINOR DEFECT DATA (<10mm thickness) Bedding plane joint Sub-vertical joint |                          | (l:                   | ROCK STRENGTH<br>s(50) Point Load Index)<br>Ext. low <0.03                                                        |

SKM 001 ROCK BRUKUNGA\_HYDRO.GPJ SKM\_001\_2008 05 07\_DS.GDT 24/3/09

UCS Unconfined Comp. Strength (MPa)
UCS Unconsolidated Undrained Triaxial
TQS Unconsolidated Undrained Triaxial
N = Natural S = Saturated

GROUNDWATER SYMBOLS = Water level (static) = Water level (during drilling)

= Outflow / Inflow

B Bedding plane joint
Sv Sub-vertical joint
Sh Sub-horizontal joint
T Transverse to bedding plane
RQD % core run >100mm long FIELD DATA ABBREVIATIONS Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer)

Point Load Test Standard Penetration Test (SPT top = start of N blowcount) Core recovered

CR

NF

10% % Core Loss per Run Large core >100mm long

Small core <100mm long</p>

FI Ext. low SH Sheared seam VLVery low Crushed seam L Low Infilled seam М Medium EW Extremely Weathered seam High MOISTURE CONDITION VH Very high D = Dry M = Moist W = Wet EΗ Ext. high

0.03-0.1

0.1-0.3

0.3-1.0

1.0-3.0

3-10

>10



# **DRILLHOLE No. H09**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151

Client: PIRSA Driller: SPK Geodrill Start - Finish Date:04/02/2009 - 4/2/09 Rig: UDR 650

Bore dia: 96.0mm

Surface Conditions:Topsoil

Northings: 6123667.0mN Logged: KH Eastings: 311762.0mE Checked: KF 333.0m AHD Oriented: -90

VH

EΗ

MOISTURE CONDITION

D = Dry M = Moist W = Wet

Very high

Ext. high

High

1.0-3.0

3-10

>10

| Wa <sup>s</sup><br>Qua |                                              | FIE                                                          | LD DATA                                                                        |                                         |                           | ROCK DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                       |                          | OCK<br>DITION         | COMMENTS                                                                                                         |
|------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|
| EG (mS/cm)             | рН                                           | field & other<br>tests                                       | sample type<br>field tests<br>ground water                                     | depth (m)                               | graphic log               | rock type, degree of weathering, colour, grain size, texture and fabric, structure, angle of bedding dip, geological formation major defect description - type, dip, colour, filling, thickness (mm), roughness                                                                                                                                                                                                        | rock or soil<br>strength | moisture<br>condition | drilling method, well<br>construction, water<br>and additional<br>observations                                   |
|                        |                                              |                                                              | <u></u>                                                                        | 1                                       |                           | SCHIST (MW) light grey, fine to medium grained, moderate weathered with abundant muscovite with minor clay; light brown medium plasticity.  SCHIST (MW) light grey, fine to medium grained, moderate weathered with abundant muscovite with 5% highly weathered, tan schist, very minor clay; light brown medium plasticity.                                                                                           |                          |                       | Cement bentonite<br>and backfill 0-5m                                                                            |
|                        |                                              |                                                              | 3.2m minor<br>WC                                                               | 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                           | SCHIST (MW) grey, fine grained, moderately weathered with abundant muscovite with <2% quartzite white, coarse grained.  small fracture at 5.2 m                                                                                                                                                                                                                                                                        |                          |                       | Filter pack 15-12m                                                                                               |
| 3.87                   | 5.7                                          |                                                              | 7.6m WC                                                                        | 7                                       |                           | 7.8-8.4 m fracture zone                                                                                                                                                                                                                                                                                                                                                                                                |                          |                       | 50 mm, Class 9<br>PVC (slotted)<br>6-12m                                                                         |
| 4.39<br>4.50           | 6.0<br>5.8                                   |                                                              | Yield<br>0.05-0.2L/s<br>Yield<br>0.05-0.2L/s                                   | 9   1                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |                       |                                                                                                                  |
| 4.36<br>4.42           | 5.9                                          |                                                              | Yield<br>0.05-0.2L/s<br>Yield<br>0.05-0.2L/s                                   | 11                                      |                           | Borehole terminated at 12 m                                                                                                                                                                                                                                                                                                                                                                                            |                          |                       |                                                                                                                  |
| TQS                    | Uncon<br>Uncon<br>Uncon<br>Uncon<br>N = Nati | fined Com<br>fined Com<br>solidated U<br>solidated U<br>ural | RY DATA p. Strength (MF p. Strength (MF drained Triax S = Saturated ER SYMBOLS | iial                                    | B<br>Sv<br>Sh<br>T<br>RQD | MINOR DEFECT DATA (<10mm thickness) Bedding plane joint Sub-vertical joint Sub-horizontal joint Transverse to bedding plane % core run >100mm long Core recovered  FIELD DATA SYMBOLS  Packer Interval Packer Interval Point Load Test Standard Penetration Test (SPT top = start of N blowcount) Core recovered  MAJOR DEFECT D (>10mm thickness SH Sheared seam CR Crushed seam NF Infilled seam EW Extremely Weathe | s)                       | EL<br>VL<br>L         | ROCK STRENGTH<br>s(50) Point Load Index)<br>Ext. low <0.03<br>Very low 0.03-0.1<br>Low 0.1-0.3<br>Medium 0.3-1.0 |

10% % Core Loss per Run

Large core >100mm long

Small core <100mm long</p>

= Water level (during drilling)

= Water level (static)

= Outflow / Inflow

Is(50) Point Load Index (MPa)

N SPT blows per 300mm

FPM Field permeability (packer)



# **BOREHOLE No. H10**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151 Client: PIRSA Driller: SPK Geodrill Start - Finish Date:27/01/2009 - 28/1/09Rig: Edson 3000

Bore dia: 96.0mm

Surface Conditions:Topsoil

Northings: 6123131mN Eastings: 311834mE RL: 323m AHD Logged: KH Checked: KF Oriented: -90

| oint Load<br>(MPa)           | MINOR DEFEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T DATA                                            | FIELD                                | DATA                                                    |             | ROCK DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | OCK<br>DITION         | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|---------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Axial Is50<br>Diametral Is50 | minor defect<br>description:<br>type, dip/dip<br>direction, colour,<br>coating, thickness<br>(mm), roughness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | minor<br>defect<br>spacing<br>(mm)                | field & other<br>tests               | sample type<br>field tests<br>ground water<br>depth (m) | graphic log | rock type, degree of weathering, colour, grain sizexture and fabric, structure, angle of bedding digeological formation  major defect description - type, dip, colour, filling thickness (mm), roughness                                                                                                                                                                                                                                                     | or soil   | moisture<br>condition | drilling method, we construction, wate and additional observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Axii<br>Dia                  | 2 T70(cl)<1(sm) = B45(cl)<1(sm) = S45(cl)<1(sm) = Sh35(cl)<1(ro) = S70(op)1(sm) = S120(cl)<1(sm) = B45(op)2(sm) = B45(op)1(sm) = B45(op)1(sm) = S120(cl)<1(sm) = B60(cl)<1(sm) = Sh45(cl)<1(sm) = Sh45(cl)<1(sm) = Sh45(cl)<1(sm) = B45(cl)<1(sm) = B45(cl)<1( | CR 42%<br>RQD 0%<br>CR 96%<br>RQD 57%<br>RQD 100% | 1.00 —<br>2.80 —<br>5.10 —<br>6.00 — | dap dap day         | 8.00        | TOPSOIL light brown, residual soil, weathering bedrock, Gravel size, Silty matrix with abundant muscovite  QUARTZ-MUSCOVITE SCHIST (HW) medium gray - silver, fine grained, highly weathered, joints filled with brown oxidised material  Core loss  SCHIST (HW) light grey, comprising of quartz-moscuvite, highly weathered 3.2-3.7, fracture zone PYRITIC SCHIST (MW) medium grey, fine grained, moderately weathered with 10% pyrite Pitting and vugging | SM  MH  H | mo                    | Cement bentonit and backfill 0-0.5 Filter pack 0.5-20 South 1-19m |
|                              | Sh40(cl)×1(ro) = 860(cl)×1(sm) = 860(cl)×1(sm) = 865(cl)×1(sm) = 870(cl)×1(sm) = 870(cl)×1(ro) = 8h20(cl)×1(ro) = 8h20(cl)×1(ro) = 8h20(cl)×1(ro) = 8h20(cl)×1(ro) = 3 865(cl)×1(ro) = 3 865(cl)×1(ro) = 860(cl)×1(sm) = 860(c |                                                   | 8.60 —<br>11.70 —<br>14.45 —         | 10-                                                     |             | minor pitting PYRITIC SCHIST (SW) medium grey, fine grained, minor weathered with 10% pyrite                                                                                                                                                                                                                                                                                                                                                                 | / н       |                       | H. Losing water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                              | B60(cl)<1(sm) Sh40(cl)<1(ro) Sh10(cl)<1(ro) Sh45(cl)<1(sm) B20-40(cl)<1(sm/ro) Sh35(cl)<1(sm) Sh35(cl)<1(ro) Sh0(cl)<1(sm) B60(cl)<1(ro) Sh0(cl)<1(ro) Sh0(cl)<1(ro) Sh0(cl)<1(ro) Sh0(cl)<1(ro) Sh0(cl)<1(ro) Sh0(cl)<1(sm) B60(cl)<1(sm) Sh40(cl)<1(sm) Sh40(cl)<1(sm) Sh40(cl)<1(sm) Sh40(cl)<1(sm) Sh40(cl)<1(sm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CR 100%<br>RQD 100%<br>CR 100%<br>RQD 100%        | 17.55 —                              | 16-                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                       | at 14.2 m due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

SKM 001 ROCK 1 BRUKUNGA\_ARE\_24\_02\_09.GPJ SKM\_001\_2008 05 07\_DS.GDT 24/3/09

UCN Unconfined Comp. Strength (MPa)
UCS Unconfined Comp. Strength (MPa)
UCS Unconsolidated Undrained Triaxial
TQS Unconsolidated Undrained Triaxial
N = Natural S = Saturated

GROUNDWATER SYMBOLS

= Water level (static)

= Water level (during drilling)

- Outflow / Inflow

MINOR DEFECT DATA
(<10mm thickness)
B Bedding plane joint
Sv Sub-vertical joint
Sh Sub-horizontal joint
T Transverse to bedding plane
RQD % core run >100mm long
FIELD DATA ABBREVIATIONS
Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer)

FIELD DATA SYMBOLS

Packer Interval

Point Load Test
Standard Penetration Test
(SPT top = start of N blowcount)
Core recovered

Standard Penetration Test
(SPT top = start of N blowcount)

Core recovered

Core recovered

Large core >100mm long

Small core <100mm long

Small core <100mm long

SH

(>10mm thickness)

Sheared seam

(Is(50) Point Load Index) FI Ext. low < 0.03 0.03-0.1 ٧L Very low 0.1-0.3 Low Medium 0.3-1.0 High 1.0-3.0 VH Very high 3-10

Ext. high

>10

EΗ



# **DRILLHOLE No. H12**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151

Client: PIRSA Driller: SPK Geodrill Start - Finish Date:16/02/2009 - 16/2/09Rig: UDR 650

Bore dia: 96.0mm

Surface Conditions:Topsoil

Northings: 6124185.0mN Logged: KH Eastings: 311922.0mE Checked: KF 342.0m AHD Oriented: -90

| Water<br>Quality | FII                                                                                     | FIELD DATA                |             |                                                                                                                                                                                                                  | ROCK DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                                                                               | COMMENTS                              |  |
|------------------|-----------------------------------------------------------------------------------------|---------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|---------------------------------------|--|
| EG (mS/cm)       | pH<br>field & other<br>tests<br>sample type<br>field tests<br>ground water<br>depth (m) |                           | graphic log | rock type, degree of weathering, colour, grain size, texture and fabric, structure, angle of bedding dip, geological formation  major defect description - type, dip, colour, filling, thickness (mm), roughness |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | drilling method, wel<br>construction, water<br>and additional<br>observations |                                       |  |
|                  |                                                                                         |                           | 1 _         |                                                                                                                                                                                                                  | Silty SAND (SM) red and orange , fine to medium grained with gravel schists, moderatly- highly weathered, grey with some oxidation  SCHIST (MW) light grey, fine to medium grained, moderate weathered with abundant muscovite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rock or soil strength |                                                                               | Cement/bentonite and backfill 0-2.5t  |  |
|                  |                                                                                         | <u> </u>                  | 2           |                                                                                                                                                                                                                  | SCHIST (MW) light grey, fine to medium grained, moderate weathered with abundant muscovite with minorsilty clay, light brown low plasticity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                                                               | Filter pack 2.5-6 r                   |  |
|                  |                                                                                         | 3.5 m minor<br>WC         | 3 _         |                                                                                                                                                                                                                  | SCHIST (MW) light grey, fine to medium grained, moderate weathered with abundant muscovite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                               | 50 mm, Class 9<br>PVC (slotted) 3-6   |  |
|                  |                                                                                         | 4.5 m WC                  | 5 _         |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                               |                                       |  |
|                  | LABORATO                                                                                | DRY DATA  p. Strength (Mi | 6           |                                                                                                                                                                                                                  | Borehole terminated at 6 m  MINOR DEFECT DATA (<10mm thickness) Bedding plane joint  Point Load Test  Borehole terminated at 6 m  MAJOR DEFECT (>10mm thickness) CHOCKNESS | DATA                  |                                                                               | ROCK STRENGTH s(50) Point Load Index) |  |

SKM 001 ROCK BRUKUNGA\_HYDRO.GPJ SKM\_001\_2008 05 07\_DS.GDT 24/3/09

UCS Unconfined Comp. Strength (MPa)
UCS Unconsolidated Undrained Triaxial
TQS Unconsolidated Undrained Triaxial
N = Natural S = Saturated

GROUNDWATER SYMBOLS = Water level (static)

FIELD DATA ABBREVIATIONS Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer) = Water level (during drilling) = Outflow / Inflow

B Bedding plane joint Sv Sub-vertical joint Sh Sub-horizontal joint T Transverse to bedding plane RQD % core run >100mm long Point Load Test Standard Penetration Test (SPT top = start of N blowcount) Core recovered

10% % Core Loss per Run Large core >100mm long

CR Crushed seam NF Infilled seam EW Extremely Weathered seam MOISTURE CONDITION Small core <100mm long</p>

EL Ext. low < 0.03 SH Sheared seam 0.03-0.1 VLVery low 0.1-0.3 L Low М Medium 0.3-1.0 High 1.0-3.0 VH Very high 3-10 D = Dry M = Moist W = Wet EΗ Ext. high >10



# **DRILLHOLE No. H13**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151

Client: PIRSA Driller: SPK Geodrill Start - Finish Date:16/02/2009 - 16/2/09Rig: UDR 650

Bore dia: 96.0mm

Surface Conditions:Topsoil

Northings: 6123853.0mN Logged: KH Eastings: 311842.0mE Checked: KF 330.0m AHD Oriented: -90

| Water<br>Quality FIELD DATA |                        | ROCK DESCRIPTION                           |           |             |                   | ROCK<br>CONDITION                                                                                                                                                  |                | COMMENTS                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------|------------------------|--------------------------------------------|-----------|-------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EG (mS/cm)                  | field & other<br>tests | sample type<br>field tests<br>ground water | depth (m) | graphic log | texture and fa    | gree of weathering, colour, grain<br>abric, structure, angle of bedding<br>geological formation<br>description - type, dip, colour, fil<br>ickness (mm), roughness | dip,           | rock or soil<br>strength | moisture<br>condition | drilling method, we construction, water and additional observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                        | ₹                                          | 1 2 3 3   |             | weathered         | th abundant muscovite and schist, gre                                                                                                                              | ey, moderatly  |                          | М                     | Cement bentonit and backfill and backfill and backfill control of the control of |
|                             | ABORATOF               |                                            | 4 _       |             | MINOR DEFECT DATA | FIELD DATA SYMBOLS                                                                                                                                                 | MAJOR DEFECT D |                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

SKM 001 ROCK BRUKUNGA\_HYDRO.GPJ SKM\_001\_2008 05 07\_DS.GDT 24/3/09

UCS Unconfined Comp. Strength (MPa)
TQN Unconsolidated Undrained Triaxial
TQS Unconsolidated Undrained Triaxial
N = Natural S = Saturated

GROUNDWATER SYMBOLS = Water level (static) = Water level (during drilling)

= Outflow / Inflow

B Bedding plane joint
Sv Sub-vertical joint
Sh Sub-horizontal joint
T Transverse to bedding plane
RQD % core run >100mm long FIELD DATA ABBREVIATIONS Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer)

Point Load Test Standard Penetration Test (SPT top = start of N blowcount) Core recovered

CR

NF

10% % Core Loss per Run Large core >100mm long

Small core <100mm long</p>

Ext. low < 0.03 SH Sheared seam 0.03-0.1 VLVery low Crushed seam 0.1-0.3 L Low Infilled seam Medium 0.3-1.0 EW Extremely Weathered seam High 1.0-3.0 MOISTURE CONDITION VH Very high 3-10 D = Dry M = Moist W = Wet EΗ Ext. high >10



## **DRILLHOLE No. H14a**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151

Client: PIRSA Driller: SPK Geodrill Start - Finish Date:16/02/2009 - 16/2/09Rig: UDR 650

Bore dia: 96.0mm

Surface Conditions:Topsoil

Northings: 6123542.0mN Logged: KH Eastings: 311750.0mE Checked: KF 327.0m AHD Oriented: -90

| Water<br>Quality                                           | FIEI                                                                | LD DATA                                                                                 |                                 |                           | ROCK DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RC<br>CONE               | OCK<br>DITION         | COMMENTS                                                                                         |
|------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------|
| EG (mS/cm)<br>pH                                           | field & other<br>tests                                              | sample type<br>field tests<br>ground water                                              | depth (m)                       | graphic log               | rock type, degree of weathering, colour, grain size, texture and fabric, structure, angle of bedding dip, geological formation  major defect description - type, dip, colour, filling, thickness (mm), roughness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rock or soil<br>strength | moisture<br>condition | drilling method, well<br>construction, water<br>and additional<br>observations                   |
|                                                            |                                                                     | <b>Y</b> = 4.5m WC                                                                      | 1                               |                           | Silty SAND (SM) light brown, with minor clay, low plasticity with abundant muscovite and schist, grey, moderatly weathered  Silty CLAY (CL) brown, low- medium plasticity  SCHIST (HW) highly weathered, tan with light brown silty clay, low plasticity  Borehole terminated at 5 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S S                      | M                     | Cement bentonite and backfill 0-1m  Filter pack 1-5m  50 mm, Class 9 PVC (slotted) 2-5m          |
| L                                                          | ABORATOR                                                            | RY DATA                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>- |                           | MINOR DEFECT DATA FIELD DATA SYMBOLS MAJOR DEFECT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                       | ROCK STRENGTH                                                                                    |
| UCN Uncor<br>UCS Uncor<br>TQN Uncor<br>TQS Uncor<br>N = Na | nfined Comp<br>nfined Comp<br>nsolidated U<br>nsolidated U<br>tural | b. Strength (MF) b. Strength (MF) ndrained Triax ndrained Triax S = Saturated R SYMBOLS | Pa)<br>Pa)<br>tial<br>tial      | B<br>Sv<br>Sh<br>T<br>RQD | (<10mm thickness) Bedding plane joint Sub-vertical joint Sub-horizontal joint Transverse to bedding plane y % core run >100mm long LD DATA ABBREVIATIONS    Packer Interval   (>10mm thickne)   Point Load Test   SH Sheared seam   CR Crushed seam   CR Crushed seam   NF Infilled seam   NF Infilled seam   NF Infilled seam   CR Crushed seam   NF Infilled sea | ss)                      | EL<br>VL<br>L         | s(50) Point Load Index) Ext. low <0.03 Very low 0.03-0.1 Low 0.1-0.3 Medium 0.3-1.0 High 1.0-3.0 |

MOISTURE CONDITION

D = Dry M = Moist W = Wet

1.0-3.0

3-10

>10

VH

EΗ

High

Very high

Ext. high

10% % Core Loss per Run

Large core >100mm long

Small core <100mm long</p>

Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer)

SKM 001 ROCK BRUKUNGA\_HYDRO.GPJ SKM\_001\_2008 05 07\_DS.GDT 24/3/09

= Water level (during drilling)

= Water level (static)

= Outflow / Inflow



## **DRILLHOLE No. H14b**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151

Client: PIRSA Start - Finish Date:16/2/09 - 17/2/09

Bore dia: 96.0mm

Driller: SPK Geodrill Rig: UDR 650

Surface Conditions:Topsoil

Northings: 6123545.7mN Logged: KF Eastings: 311750.2mE Checked: KF 326.7m AHD

Oriented: -90

| Wa<br>Qua                |                                             | FIE                                                          | ELD DATA                                                                                 |                    |                           | ROCK DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                        | RO<br>CONI               | OCK<br>DITION         | С                    | OMMENTS                                                                              |
|--------------------------|---------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|----------------------|--------------------------------------------------------------------------------------|
| EC (mS/cm)               | pH                                          | field & other<br>tests                                       | sample type<br>field tests<br>ground water                                               | depth (m)          | graphic log               | rock type, degree of weathering, colour, grain size,<br>texture and fabric, structure, angle of bedding dip,<br>geological formation<br>major defect description - type, dip, colour, filling,<br>thickness (mm), roughness                                                                                                                                                                             | rock or soil<br>strength | moisture<br>condition | const                | g method, well<br>truction, water<br>d additional<br>oservations                     |
|                          |                                             |                                                              | <u> </u>                                                                                 | 2 -                |                           | Silty SAND (SM) grey and orange-tan, fine grained, loose, dry                                                                                                                                                                                                                                                                                                                                           |                          |                       | 711X111X111X111X111X | Cement<br>bentonite and<br>backfill 0-8m<br>100 mm,<br>Class 12<br>PVC,<br>Precoller |
|                          |                                             |                                                              | 6.5 m minor                                                                              | 5                  |                           | SCHIST (HW) grey-orange, highly weathered, moderate-hard, with some weathered clays and iron stained micas  SCHIST (SW) grey and minor orange, slightly weathered, some iron staining, fine grained                                                                                                                                                                                                     | -                        |                       | <u> </u>             | 100 mm,<br>Class 12<br>PVC,<br>Precoller                                             |
| 5.69                     | 4.1                                         |                                                              | Yield<br>0.2L/s                                                                          | 8                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                       | X///X///XX/:···:     | Filter pack<br>8-12m                                                                 |
| 5.11                     | 4.3                                         |                                                              | Yield<br>0.2-0.5L/s                                                                      | 9 -                |                           |                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                       |                      | 50 mm, Class<br>9 PVC<br>(slotted)<br>9-12m                                          |
| 4.49<br>6.18<br>6.18     | 5.0<br>5.6<br>5.6                           |                                                              | 10.5 m WC<br>Yield<br>0.2-0.5L/s<br>Yield<br>0.2-0.5L/s<br>Yield<br>0.2-0.5L/s           | 11                 |                           | Fracturing at 11 m                                                                                                                                                                                                                                                                                                                                                                                      |                          |                       |                      |                                                                                      |
| 50                       |                                             |                                                              |                                                                                          | 12 -               |                           | Borehole terminated at 12 m                                                                                                                                                                                                                                                                                                                                                                             |                          |                       |                      |                                                                                      |
| UCN<br>UCS<br>TQN<br>TQS | Uncon<br>Uncon<br>Uncon<br>Uncon<br>N = Nat | fined Com<br>fined Com<br>solidated I<br>solidated I<br>ural | DRY DATA  pp. Strength (M  pp. Strength (M  Undrained Tria: Undrained Tria: S = Saturate | Pa)<br>Pa)<br>xial | B<br>Sv<br>Sh<br>T<br>RQE | MINOR DEFECT DATA (<10mm thickness) Bedding plane joint Sub-vertical joint Sub-horizontal joint Transverse to bedding plane ) % core run >100mm long  FIELD DATA SYMBOLS  Packer Interval  Packer Interval  Point Load Test Standard Penetration Test (SPT top = start of N blowcount) Core recovered  MAJOR DEFECT D (>10mm thickness SH Sheared seam CR Crushed seam NF Infielde seam NF Infield seam | s)                       | EL<br>VL<br>L         |                      | ow 0.03-0.1<br>0.1-0.3                                                               |

SKM 001 ROCK BRUKUNGA\_HYDRO.GPJ SKM\_001\_2008 05 07\_DS.GDT 12/6/09

GROUNDWATER SYMBOLS = Water level (static) = Water level (during drilling)

= Outflow / Inflow

B Bedding plane joint
Sv Sub-vertical joint
Sh Sub-horizontal joint
T Transverse to bedding plane
RQD % core run >100mm long FIELD DATA ABBREVIATIONS Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer)

Point Load Test Standard Penetration Test (SPT top = start of N blowcount) Core recovered 10% % Core Loss per Run

Large core >100mm long

Small core <100mm long</p>

Sheared seam CR Crushed seam NF Infilled seam EW Extremely Weathered seam MOISTURE CONDITION D = Dry M = Moist W = Wet

<0.03 0.03-0.1 ٧L Very low 0.1-0.3 L Low М Medium 0.3-1.0 High 1.0-3.0 VH Very high 3-10 EΗ Ext. high >10



## **DRILLHOLE No. H15**

Sheet 1 of 1

Project: Brukunga Mine Remediation

Location:Brukunga Job No: VE23151 Client: PIRSA Start - Finish Date:18/02/09 - 24/2/09

Bore dia: 96.0mm

Driller: SPK Geodrill Rig: UDR 650 Surface Conditions:Topsoil Northings: 6123586.0mN Logged: KF Eastings: 312478.0mE Checked: KF RL: 361.0m AHD Oriented: -90

| Water<br>Quality | FIE                    | LD DATA                                    |           |             | ROCK DESCRIPTION                                                                                                                                                                                                                                                                            |                                     | RO<br>CONE               | CK<br>DITION          | COMMENTS                                                                      |
|------------------|------------------------|--------------------------------------------|-----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-----------------------|-------------------------------------------------------------------------------|
| EG (mS/cm)       | field & other<br>tests | sample type<br>field tests<br>ground water | depth (m) | graphic log | rock type, degree of weathering, colour, grain size texture and fabric, structure, angle of bedding dip geological formation major defect description - type, dip, colour, filling thickness (mm), roughness                                                                                | Ο,                                  | rock or soil<br>strength | moisture<br>condition | drilling method, wel<br>construction, water<br>and additional<br>observations |
|                  |                        | ₹. 29.5m WC                                | 2         |             | Sitly CLAY (CH) brown-tan, grey, dry, high plasticity, mottled  SCHIS (HW) tan-grey, highly weathered, moderate strength, ~20% micas  SCHIST (FR) grey, unweathered, strong, ~20%micas, minor kalonite from 6-7m an SCHIST (SW) tan-grey, slightly weathered, moderate strength, ~20% micas | d 12-13m                            |                          |                       | Filter pack 23.5-29.5m  50 mm, Class 9 PVC (slotted) 26.5-29.5m               |
|                  | ABORATO                | RY DATA<br>p. Strength (MI                 | Pa)       |             | MINOR DEFECT DATA (<10mm thickness) Redding place inint  T Packer Interval                                                                                                                                                                                                                  | MAJOR DEFECT DA<br>(>10mm thickness | ATA<br>s)                | ():                   | ROCK STRENGTH<br>s(50) Point Load Index)                                      |

SKM 001 ROCK BRUKUNGA\_HYDRO.GPJ SKM\_001\_2008 05 07\_DS.GDT 24/3/09

JCN Unconfined Comp. Strength (MPa) JCS Unconfined Comp. Strength (MPa) ICN Unconsolidated Undrained Triaxial ICS Unconsolidated Undrained Triaxial N = Natural S = Saturated

GROUNDWATER SYMBOLS

Water level (static)

Water level (during drilling)

= Outflow / Inflow

(<10mm thickness)
B Bedding plane joint
S Sub-vertical joint
Sh Sub-horizontal joint
T Transverse to bedding plane
ROD % core run >100mm long
FIELD DATA ABBREVIATIONS
Is(50) Point Load Index (MPa)
N SPT blows per 300mm
FPM Field permeability (packer)

FIELD DATA SYMBOLS

Packer Interval

Point Load Test

Standard Penetration Test
(SPT top = start of N blowcount)

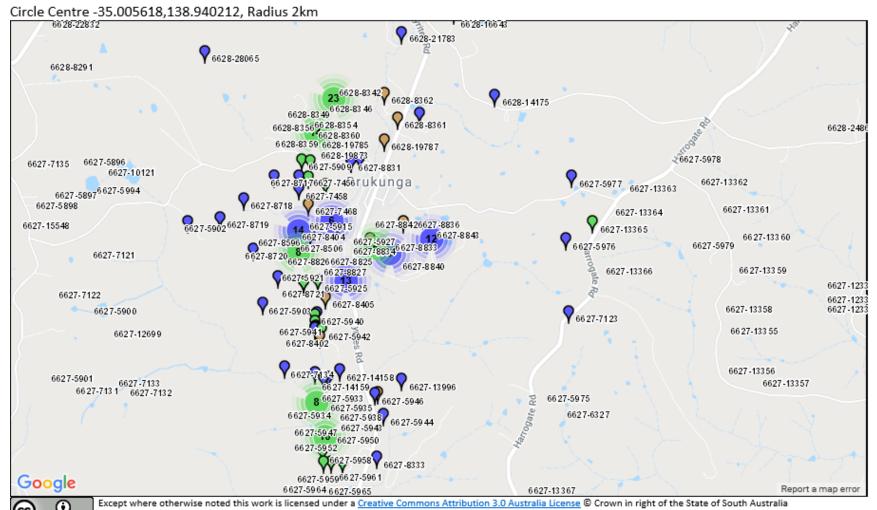
Core recovered

Standard Penetration Test
(SPT top = start of N blowcount)

☐ Core recovered

☐ W Extremely W

☐ Large core >100mm long


☐ Small core <100mm long

d Index) <0.03 FI Ext. low SH Sheared seam 0.03-0.1 VLVery low Crushed seam 0.1-0.3 Low Infilled seam Medium 0.3-1.0 EW Extremely Weathered seam High 1.0-3.0 MOISTURE CONDITION Very high VH 3-10 D = Dry M = Moist W = Wet EΗ Ext. high >10

# **Appendix C** – Registered Bore Search



# WaterConnect





# WaterConnect

Circle Centre -35.005618,138.940212, Radius 1km 6628-83496628-8346 66 28-13 623 6628-8361 peggy Buxton Ru 6627-8718 6627-8719 6627-5902 Brukung 6627-597 6627-139936627-140016627-8834 Brukunga Pyrite Mine 6627-8826 6627-8825 & 6627-8721 6627-59246627-5925 6627-8405 Y 6627-5903 Google Report a map error Except where otherwise noted this work is licensed under a Creative Commons Attribution 3.0 Australia License © Crown in right of the State of South Australia



# Groundwater Data Report



Circle Centre -35.005618,138.940212, Radius 2km

| Unit No   | Max Depth<br>(m) | Latest<br>Depth (m) | Yield<br>(L/sec) | Yield Date | TDS (mg/L) | TDS Date   | Aquifer | Status | SWL (m) | SWL Date   | Date       | Cased To<br>(m) | Obs No | Purpose | Permit No |
|-----------|------------------|---------------------|------------------|------------|------------|------------|---------|--------|---------|------------|------------|-----------------|--------|---------|-----------|
| 6627-5902 | 41.45            | 0                   | 0.38             | 01/01/1984 | 1644       | 15/02/1950 | Eob     | BKF    |         |            |            | (111)           |        |         |           |
| 6627-5903 | 122.53           | 122.53              | 0.36             | 01/01/1984 | 876        | 16/12/1970 |         | DKF    | 9.75    | 16/12/1970 |            |                 |        |         | +         |
| 6627-5908 | 6.1              | 6.1                 |                  |            | 1801       | 18/01/1950 | +       |        | 1.83    | 18/01/1950 |            |                 |        |         | +         |
| 6627-5908 | 102.72           | 102.72              |                  |            | 1801       | 18/01/1950 |         | UKN    | 1.83    | 18/01/1950 | 12/09/1951 |                 |        |         |           |
| 6627-5909 | 181.97           | 181.97              |                  |            |            |            |         | UKN    | _       |            |            |                 |        |         | _         |
|           |                  |                     |                  |            |            |            |         | UKN    |         |            | 08/08/1951 |                 |        |         |           |
| 6627-5911 | 187.7            | 187.7               |                  |            |            |            |         | LUZNI  |         |            | 08/03/1951 |                 |        |         | +         |
| 6627-5912 | 51.21            | 51.21               |                  |            |            |            |         | UKN    |         |            | 19/10/1951 |                 |        |         |           |
| 6627-5913 | 13.72            | 13.72               |                  |            |            |            |         | UKN    |         |            | 24/10/1951 |                 |        |         |           |
| 6627-5914 | 149.35           | 149.35              |                  |            |            |            |         | UKN    |         |            | 01/01/1950 |                 |        |         |           |
| 6627-5915 | 37.19            | 37.19               |                  |            |            |            |         | UKN    |         |            | 13/04/1951 |                 |        |         |           |
| 6627-5916 | 156.97           | 156                 |                  |            |            |            |         | UKN    |         | <u> </u>   | 01/01/1950 |                 |        |         |           |
| 6627-5918 | 114              | 114                 | 0.25             | 15/01/1952 | 2101       | 15/01/1952 | Elt     |        | 0       | 15/01/1952 |            |                 |        |         |           |
| 6627-5919 |                  |                     |                  |            |            |            |         |        |         |            |            |                 |        |         |           |
| 6627-5920 | 34.14            | 34.14               | 0.3              | 10/05/1950 | 1944       | 25/05/1950 | Elt     |        | 1.22    | 10/05/1950 | 10/05/1950 | 14.4            |        |         |           |
| 6627-5921 | 128.93           | 128                 |                  |            |            |            |         | UKN    |         |            | 01/01/1950 |                 |        |         |           |
| 6627-5922 | 178.31           | 157.89              |                  |            |            |            |         | UKN    |         |            | 01/01/1950 |                 |        |         |           |
| 6627-5923 | 117.35           | 117.35              |                  |            |            |            |         | UKN    |         |            |            |                 |        |         |           |
| 6627-5924 | 30.78            | 30.78               |                  |            |            |            |         | UKN    |         |            | 13/04/1951 |                 |        |         |           |
| 6627-5925 | 170.08           | 170.08              |                  |            |            |            |         | UKN    |         |            |            |                 |        |         |           |
| 6627-5926 | 21.95            | 21.95               |                  |            |            |            |         | ABD    |         | 24/07/1997 | 20/11/1967 |                 | KAN009 | OBS     |           |
| 6627-5927 | 12.19            | 12.19               |                  |            |            |            |         | UKN    |         |            |            |                 |        |         |           |
| 6627-5928 | 7.62             | 7.62                |                  |            |            |            |         | UKN    |         |            |            |                 |        |         |           |
| 6627-5929 | 10.67            | 10.67               |                  |            |            |            |         | UKN    |         |            |            |                 |        |         |           |
| 6627-5930 | 16.76            | 16.76               |                  |            |            |            |         | UKN    |         |            |            |                 |        |         |           |
| 6627-5931 | 14.33            | 14.33               |                  |            |            |            |         | UKN    |         |            |            |                 |        |         |           |
| 6627-5932 |                  |                     |                  |            | 8820       | 01/01/1972 |         |        |         |            |            |                 | KAN010 | OBS     |           |
| 6627-5933 | 13.11            | 13.11               |                  |            |            |            |         | UKN    |         |            | 30/05/1967 |                 |        |         |           |
| 6627-5934 | 15.24            | 15.24               |                  |            |            |            |         | UKN    |         |            | 25/05/1967 |                 |        |         |           |
| 6627-5935 | 18.29            | 18.29               |                  |            |            |            |         | UKN    |         |            | 26/05/1967 |                 |        |         |           |
| 6627-5936 | 14.69            | 14.69               |                  |            |            |            |         | UKN    |         |            | 09/05/1967 |                 |        |         |           |
| 6627-5937 | 17.01            | 17.01               |                  |            |            |            |         | UKN    |         |            | 06/05/1967 |                 |        |         |           |
| 6627-5938 | 85.95            | 85.95               |                  |            |            |            |         | UKN    |         |            | 18/05/1967 |                 |        |         |           |
| 6627-5939 | 6.1              | 6.1                 |                  |            |            |            |         | UKN    |         |            | 22/05/1967 |                 |        |         | 1         |
| 6627-5940 | 50.29            | 50.29               |                  |            |            |            |         |        |         |            | 12/11/1917 |                 |        | 1       | 1         |
| 6627-5941 | 72.24            | 72.24               |                  |            |            |            |         |        |         |            | 02/10/1917 |                 |        |         | +         |
| 6627-5942 | 178.61           | 178.61              |                  |            |            |            |         | UKN    |         |            | 20/06/1951 |                 |        |         | +         |
| 6627-5943 | 10.67            | 10.67               |                  |            |            |            |         | UKN    | 1       |            | 18/05/1967 |                 |        |         | 1         |

| Unit No   | Max Depth<br>(m) | Latest<br>Depth (m) | Yield<br>(L/sec) | Yield Date  | TDS (mg/L) | TDS Date                                 | Aquifer | Status | SWL (m) | SWL Date    | Date          | Cased To<br>(m) | Obs No | Purpose | Permit No |
|-----------|------------------|---------------------|------------------|-------------|------------|------------------------------------------|---------|--------|---------|-------------|---------------|-----------------|--------|---------|-----------|
| 6627-5944 | 28.35            | 28.35               | 1.26             | 01/01/1950  | 1873       | 04/08/1960                               | Ek      |        |         |             |               | 6.1             |        |         |           |
| 6627-5945 |                  |                     |                  |             | 9761       | 05/01/1973                               |         |        |         |             |               |                 |        | RIV     | 1         |
| 6627-5946 |                  |                     |                  |             |            |                                          |         |        |         |             |               |                 |        |         | 1         |
| 6627-5947 | 13.72            | 13.72               |                  |             |            |                                          |         | UKN    |         |             | 12/05/1967    |                 |        |         | 1         |
| 6627-5948 | 12.68            | 12.68               |                  |             |            |                                          |         | UKN    |         |             | 10/05/1967    |                 |        |         | 1         |
| 6627-5949 | 20.39            | 20.39               |                  |             |            |                                          |         | UKN    |         |             | 02/06/1967    |                 |        |         | 1         |
| 6627-5950 | 19.66            | 19.66               |                  |             |            |                                          |         | UKN    |         |             | 30/05/1967    |                 |        |         | 1         |
| 6627-5951 | 84.58            | 84.58               |                  |             |            |                                          |         | UKN    |         |             | 11/07/1967    |                 |        |         | 1         |
| 6627-5952 | 25.91            | 25.91               |                  |             |            |                                          |         | UKN    |         |             | 17/05/1967    |                 |        |         | 1         |
| 6627-5953 | 22.86            | 22.86               |                  |             |            |                                          |         | UKN    |         |             | 26/05/1967    |                 |        |         | 1         |
| 6627-5954 | 32               | 32                  |                  |             |            |                                          |         | UKN    |         |             | 06/06/1967    |                 |        |         | 1         |
| 6627-5955 | 30.18            | 30.18               |                  |             |            |                                          |         | UKN    |         |             | 09/06/1967    |                 |        |         | 1         |
| 6627-5956 | 157.89           | 157.89              |                  |             |            |                                          |         | UKN    |         |             | 20/06/1951    |                 |        |         | 1         |
| 6627-5957 | 121.31           | 121.31              |                  |             |            |                                          |         | UKN    |         |             | 24/09/1951    |                 |        |         | 1         |
| 6627-5958 | 39.32            | 39.32               |                  |             |            |                                          |         | UKN    |         |             | 15/06/1967    |                 |        |         | 1         |
| 6627-5959 | 39.32            | 39.32               |                  |             |            |                                          |         | UKN    |         |             | 16/06/1967    |                 |        |         | 1         |
| 6627-5960 | 39.01            | 39.01               |                  |             |            |                                          |         | UKN    |         |             | 19/06/1967    |                 |        |         | 1         |
| 6627-5976 | 60.96            | 60.96               | 0.38             | 01/01/1984  | 5690       | 16/02/1950                               | Elt     | ABD    |         |             |               |                 |        |         |           |
| 6627-5977 | 64.01            | 64.01               |                  | , ,         | 3962       | 11/07/1984                               |         | ABD    | 0.69    | 11/07/1984  | 01/01/1955    |                 |        |         | 1         |
| 6627-7123 |                  |                     |                  |             |            | , , , , ,                                | Elt     | ABD    |         | , , , , , , | , , , , , , , |                 |        |         |           |
| 6627-7134 | 19               | 19                  |                  |             |            |                                          | Eeb     | OPR    | 7.96    | 17/07/1984  | 17/07/1984    |                 |        | STK     |           |
| 6627-7454 | 21.6             | 21.6                |                  |             | 14800      | 27/11/1985                               |         | OPR    | 0.99    |             | 13/11/1985    | 0.5             | KAN011 | OBS     | 17323     |
| 6627-7455 | 25               | 25                  | 0.13             | 14/11/1985  |            |                                          | Esa     |        | 1.02    |             | 14/11/1985    |                 | KAN012 | OBS     | 17324     |
| 6627-7456 | 20.6             | 20.6                |                  | · ·         | 5690       | 09/05/1986                               | Esa     |        | 4.06    |             | 15/11/1985    |                 | KAN013 | OBS     | 17325     |
| 6627-7457 | 25               | 25                  |                  |             |            |                                          | Esa     |        | 1.69    |             | 15/11/1985    |                 | KAN014 | OBS     | 17326     |
| 6627-7458 | 7                | 7                   | 0.13             | 16/11/1985  | 4809       | 16/11/1985                               |         |        | 2.23    |             | 16/11/1985    |                 | KAN015 | OBS     | 17327     |
| 6627-7459 | 25               | 25                  |                  | , ,         | 9837       | 09/05/1986                               |         |        | 2.2     |             | 18/11/1985    |                 | KAN016 | OBS     | 17328     |
| 6627-7468 |                  |                     | 0.23             | 01/01/1985  | 100        | 07/03/2019                               |         |        |         | , ,         |               |                 | KAN004 | OBS     |           |
| 6627-7469 |                  |                     | 0.04             | 01/01/1985  |            | 08/09/1993                               |         |        |         |             |               |                 | KAN005 | OBS     | 1         |
| 6627-8333 | 31               | 31                  | 1.38             | 19/11/1990  |            | 23/11/1990                               |         | OPR    | 6       | 23/11/1990  | 19/11/1990    | 18              |        | DOM     | 95630     |
| 6627-8402 |                  |                     |                  | , , , , , , | 1782       | 08/09/1993                               |         |        |         | 1 . , ====  | . ,           |                 | KAN002 | OBS     | 1         |
| 6627-8403 |                  |                     |                  |             | 1788       | 08/09/1993                               |         |        |         |             |               |                 | KAN007 | OBS     | 1         |
| 6627-8404 |                  |                     |                  |             | 1496       | 08/09/1993                               |         |        |         |             |               |                 | KAN001 | OBS     | 1         |
| 6627-8405 |                  |                     |                  |             | 15370      | 08/09/1993                               |         |        |         |             |               |                 | KAN006 | OBS     | +         |
| 6627-8406 |                  |                     |                  |             | 5304       | 08/09/1993                               |         |        |         |             |               |                 | KAN008 | DAM     | 1         |
| 6627-8407 |                  |                     |                  |             | 2210       | 08/09/1993                               |         |        |         |             |               |                 | KAN003 | OBS     | 1         |
| 6627-8506 |                  |                     |                  |             | 14952      | 04/06/1992                               |         |        |         |             |               |                 | KAN017 | OBS     | 1         |
| 6627-8596 | 20               | 20                  |                  |             |            |                                          | Esa     |        |         |             | 04/02/1992    | 1.5             | KAN018 | OBS     | 26924     |
| 6627-8597 | 20               | 20                  | 0.25             | 03/02/1992  | 3408       | 03/02/1992                               |         |        | 1.9     | 03/02/1992  | 03/02/1992    |                 | KAN019 | OBS     | 26926     |
| 6627-8598 | 4                | 0                   |                  |             |            | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | Esa     | ABD    | 0       |             | 01/02/1992    |                 | 1      | OBS     | 26926     |
| 6627-8599 | 30               | 30                  |                  |             |            |                                          | Esa     |        | -       |             | 04/02/1992    |                 | KAN020 | OBS     | 26925     |
| 6627-8600 | 96               | 96                  | 1                | 15/01/1992  |            | 1                                        | Esa     |        |         |             | 15/01/1992    |                 | KAN021 | INV     | 26538     |

Page 2 of 5 Wednesday, 18 March 2020, 9:31:05 AM

| Unit No                | Max Depth<br>(m) | Latest<br>Depth (m) | Yield<br>(L/sec) | Yield Date | TDS (mg/L) | TDS Date   | Aquifer    | Status | SWL (m) | SWL Date   | Date       | Cased To<br>(m) | Obs No | Purpose | Permit No |
|------------------------|------------------|---------------------|------------------|------------|------------|------------|------------|--------|---------|------------|------------|-----------------|--------|---------|-----------|
| 6627-8601              | 100              | 100                 | 0.3              | 15/01/1992 | 2047       | 20/12/1991 |            |        | 0       | 13/12/1991 | 15/01/1992 | 28              | KAN022 | INV     | 26539     |
| 6627-8716              | 67               | 67                  | 0.33             | 07/05/1993 | 2841       | 07/05/1993 | Eeb        |        | 8.86    | 27/12/2001 | 07/05/1993 | 2               | KAN023 | INV     | 29559     |
| 6627-8717              | 65               | 65                  | 0.33             | 10/05/1993 | 2803       | 10/05/1943 | Eeb        |        | 16.77   | 11/02/2000 | 10/05/1993 | 0.5             | KAN024 | INV     | 29560     |
| 6627-8718              | 30               | 30                  | 0.33             | 11/05/1993 | 1990       | 12/05/1993 | Eeb        | FL     | -8.47   | 27/12/2001 | 11/05/1993 | 12              | KAN025 | INV     | 29561     |
| 6627-8719              | 67               | 67                  | 0.33             | 14/05/1993 | 1795       | 13/05/1993 | Eeb        |        | 3.25    | 27/12/2001 | 14/05/1993 | 1               | KAN026 | INV     | 29562     |
| 6627-8720              | 67               | 67                  | 0.33             | 18/05/1993 | 1310       | 19/05/1993 | Eeb        |        | 3.75    | 27/12/2001 | 18/05/1993 | 1               | KAN027 | INV     | 29563     |
| 6627-8721              | 67               | 67                  | 0.33             | 18/05/1993 | 2040       | 19/05/1993 | Eeb        |        | 12.62   | 27/12/2001 | 18/05/1993 | 1               | KAN028 | INV     | 29564     |
| 6627-8823              | 11               | 0                   |                  |            |            |            | Elt        | ABD    |         |            | 16/02/1994 |                 |        | OBS     | 31070     |
| 6627-8824              | 39               | 39                  |                  |            |            |            | Elt        |        |         |            | 16/02/1994 | 37              | KAN037 | OBS     | 31070     |
| 6627-8825              | 44               | 44                  |                  |            |            |            | Elt        |        |         |            | 17/02/1994 |                 | KAN033 | OBS     | 31071     |
| 6627-8826              | 6                | 4.5                 |                  |            |            |            | Elt        |        |         |            | 17/02/1994 | 4.5             | KAN034 | OBS     | 31075     |
| 6627-8827              | 6.8              | 6.8                 |                  |            |            |            | Elt        |        |         |            | 22/02/1994 |                 | KAN036 | OBS     | 31076     |
| 6627-8828              | 37               | 16                  |                  |            |            |            | Elt        |        |         |            | 25/02/1994 |                 | KAN035 | OBS     | 31156     |
| 6627-8829              | 28.8             | 28.8                |                  |            |            |            | Elt        |        |         |            | 18/02/1994 |                 | KAN030 | OBS     | 31072     |
| 6627-8830              | 24               | 24                  |                  |            |            |            | Elt        |        |         |            |            | 22              | KAN031 | OBS     | 31073     |
| 6627-8831              | 8.5              | 8.5                 |                  |            |            |            | Elt        |        |         |            | 21/02/1994 |                 | KAN032 | OBS     | 31074     |
| 6627-8832              | 10               | 10                  |                  |            |            |            | Elt        |        |         |            | 22/02/1994 |                 | KAN038 | OBS     | 31068     |
| 6627-8833              | 10               | 9.5                 |                  |            |            |            | Elt        |        |         | 1          | 22/02/1994 |                 | KAN039 | OBS     | 31069     |
| 6627-8834              | 33               | 33                  |                  |            | 3690       | 11/05/1994 | Elt        |        | 18.6    | 08/01/2007 | 09/04/1994 |                 | KAN040 | INV     | 31295     |
| 6627-8835              | 20               | 20                  |                  |            | 4834       |            | Elt        |        | 12.78   |            | 25/03/1994 |                 | KAN040 | INV     | 31291     |
| 6627-8836              | 13               | 13                  |                  |            | 3851       |            | Elt        |        | 6.54    |            | 28/03/1994 |                 | KAN041 | INV     | 31292     |
| 6627-8837              | 15.5             | 15.5                |                  |            | 7603       |            | Elt        |        | 4.86    |            | 12/04/1994 |                 | KAN045 | INV     | 31292     |
| 6627-8838              | 21               | 21                  |                  |            | 5664       | · ·        | Elt        |        | 8.17    | +          | 30/03/1994 |                 | KAN045 | INV     | 31290     |
| 6627-8839              | 26               | 26                  |                  |            | 2273       |            |            |        | 13.06   | , , ,      | 14/04/1994 |                 |        | INV     | 31293     |
|                        |                  | 18                  |                  |            |            |            | Elt<br>Elt |        | 16.05   |            | 06/04/1994 |                 | KAN051 | INV     |           |
| 6627-8840<br>6627-8841 | 18               | 11.3                |                  |            | 3167       | 11/05/1994 |            |        | 16.05   | 08/01/2007 |            | 12              | KAN052 | IINV    | 31294     |
|                        | +                |                     |                  |            |            |            | Elt        |        |         | 1          | 23/03/1994 |                 | KAN042 |         | -         |
| 6627-8842              | 3.5              | 3.5                 |                  |            |            |            | Elt        |        |         |            | 23/03/1994 | 4               | KAN044 |         | -         |
| 6627-8843              | 1                | 1                   |                  |            |            |            | Elt        |        |         | 1          | 23/03/1994 |                 | KAN046 |         |           |
| 6627-8844              | 2                | 2                   |                  |            |            |            | Elt        |        |         |            | 23/03/1994 | 1               | KAN047 |         |           |
| 6627-8845              | 3                | 3                   |                  |            |            |            | Elt        |        |         |            | 23/03/1994 |                 | KAN049 |         | _         |
| 6627-8846              | 3                | 3                   |                  |            |            |            | Elt        |        |         |            | 23/03/1994 |                 | KAN050 |         | _         |
| 6627-13365             | 3                | 3                   |                  |            |            |            |            | BKF    |         |            | 30/08/1996 | _               |        |         |           |
| 6627-13989             | 3.5              | 3.5                 |                  |            |            |            | Esa        |        |         |            | 16/02/2009 |                 |        | INV     | 159863    |
| 6627-13990             | 5                | 5                   |                  |            |            |            | Esa        |        |         |            | 16/02/2009 | 2               |        | INV     | 159864    |
| 6627-13991             | 33.5             | 33.5                |                  |            |            |            | Elt        |        |         |            | 18/02/2009 |                 |        | INV     | 159850    |
| 6627-13992             | 15.5             | 15.5                |                  |            |            |            | Elt        |        |         |            | 05/02/2009 |                 |        | INV     | 159859    |
| 6627-13993             | 17               | 17                  |                  |            |            |            | Elt        |        |         |            |            | 14              |        | INV     | 159861    |
| 6627-13994             | 12               | 12                  |                  |            |            |            | Elt        |        | 3       | 04/02/2009 | 04/02/2009 |                 |        | INV     | 159862    |
| 6627-13995             | 12               | 12                  |                  |            |            |            | Elt        |        |         |            | 06/02/2009 |                 |        | INV     | 159860    |
| 6627-13996             | 12               | 12                  |                  |            |            |            | Elt        |        |         |            | 17/02/2009 | 12              |        | INV     | 159865    |
| 6627-13998             | 4                | 4                   |                  |            |            |            | Elt        |        |         |            | 09/02/2009 | 1               |        | INV     | 159853    |
| 6627-13999             | 6.5              | 6                   |                  |            |            |            | Elt        |        |         |            | 16/02/2009 | 3               |        | INV     | 159866    |

Page 3 of 5 Wednesday, 18 March 2020, 9:31:05 AM

| Unit No    | Max Depth<br>(m) | Latest<br>Depth (m) | Yield<br>(L/sec) | Yield Date | TDS (mg/L) | TDS Date   | Aquifer | Status | SWL (m) | SWL Date   | Date          | Cased To<br>(m) | Obs No | Purpose | Permit No |
|------------|------------------|---------------------|------------------|------------|------------|------------|---------|--------|---------|------------|---------------|-----------------|--------|---------|-----------|
| 6627-14000 | 4                | 4                   |                  |            |            |            | Elt     |        |         |            | 11/02/2009    | 1               |        | INV     | 159851    |
| 6627-14001 | 4                | 4                   |                  |            |            |            | Elt     |        |         |            | 11/02/2009    | 1               |        | INV     | 159856    |
| 6627-14157 | 30               | 30                  |                  |            |            |            | Elt     |        |         |            | 24/02/2009    |                 |        | INV     | 159846    |
| 6627-14158 | 29.7             | 29.7                |                  |            |            |            | Elt     |        |         |            | 15/01/2009    | 6               |        | INV     | 159857    |
| 6627-14159 | 27               | 27                  |                  |            |            |            | Esa     |        |         |            | 20/01/2009    |                 |        | INV     | 159858    |
| 6627-14504 | 20               | 20                  |                  |            |            |            | Esa     |        |         |            | 11/10/2012    |                 |        |         | 216683    |
| 6627-14505 | 15               | 15                  |                  |            |            |            | Esa     |        |         |            | 11/10/2012    |                 |        |         | 216687    |
| 6627-14506 | 20               | 20                  |                  |            |            |            | Esa     |        |         |            | 11/10/2012    | 8               |        |         | 216878    |
| 6627-14507 | 20               | 20                  |                  |            |            |            | Esa     |        |         |            | 09/10/2012    |                 |        |         | 216879    |
| 6627-14508 | 20               | 20                  |                  |            |            |            | Esa     |        |         |            | 09/10/2012    |                 |        |         | 216880    |
| 6627-14547 | 20               | 20                  |                  |            |            |            | Elt     |        |         |            | 16/10/2012    |                 |        | INV     | 216691    |
| 6627-14548 | 18.7             | 18.7                |                  |            |            |            | Elt     |        | 12      | 18/10/2012 | 18/10/2012    |                 |        | INV     | 216688    |
| 6627-14549 | 5                | 5                   |                  |            |            |            | Elt     |        | 2       |            | 19/10/2012    |                 |        | INV     | 216690    |
| 6627-14550 | 5                | 5                   |                  |            |            |            | Elt     |        | 2       |            | 21/11/2012    |                 |        | INV     | 216689    |
| 6627-14551 | 25               | 25                  |                  |            |            |            | Elt     |        |         | , , -      | 13/10/2012    |                 |        | INV     | 216884    |
| 6627-15498 | 378.5            | 378.5               |                  |            |            |            |         |        |         |            | 31/07/2013    |                 |        |         |           |
| 6628-8342  | 21               | 21                  |                  |            |            |            |         | UKN    |         |            | 19/04/1967    |                 |        |         |           |
| 6628-8343  | 25.27            | 25.27               |                  |            |            |            |         | UKN    |         |            | 01/04/1967    |                 |        |         | +         |
| 6628-8344  | 25.3             | 25.3                |                  |            | 1099       | 30/08/2004 |         | UKN    |         |            | 23/03/1967    |                 |        |         | +         |
| 6628-8345  | 33               | 33                  |                  |            |            |            |         | UKN    |         |            | 10/03/1967    |                 |        |         |           |
| 6628-8346  | 22.8             | 22.8                |                  |            |            |            |         | UKN    |         |            | 15/03/1967    |                 |        |         |           |
| 6628-8347  | 20.33            | 20.33               |                  |            |            |            |         | UKN    |         |            | 18/03/1967    |                 |        |         | +         |
| 6628-8348  | 37.49            | 37.49               |                  |            |            |            |         | UKN    |         |            | 07/03/1967    |                 |        |         | +         |
| 6628-8349  | 39.62            | 39.62               |                  |            |            |            |         | UKN    |         |            | 01/03/1967    |                 |        |         |           |
| 6628-8350  | 22.46            | 22.46               |                  |            |            |            |         | UKN    |         |            | 22/02/1967    |                 |        |         |           |
| 6628-8351  | 42.52            | 42.52               |                  |            |            |            |         | UKN    |         |            | 06/04/1967    |                 |        |         |           |
| 6628-8352  | 33.22            | 33.22               |                  |            |            |            |         | UKN    |         |            | 11/04/1967    |                 |        |         |           |
| 6628-8353  | 19.78            | 19.78               |                  |            |            |            |         | UKN    |         |            | 18/02/1967    |                 |        |         | +         |
| 6628-8354  | 32.67            | 32.67               |                  |            |            |            |         | UKN    |         |            | 14/04/1967    |                 |        |         | +         |
| 6628-8355  | 16.46            | 16.46               |                  |            |            |            |         | UKN    |         |            | 19/04/1967    |                 |        |         | 1         |
| 6628-8356  | 19.66            | 19.66               |                  |            |            |            |         | UKN    |         |            | 17/04/1967    |                 |        |         |           |
| 6628-8357  | 17.68            | 17.68               |                  |            |            |            |         | UKN    |         |            | 21/04/1967    |                 |        |         | 1         |
| 6628-8358  | 11.55            | 11.55               |                  |            |            |            |         | UKN    |         |            | 15/02/1967    |                 |        |         | +         |
| 6628-8359  | 14.42            | 14.42               |                  |            |            |            |         | UKN    |         |            | 20/04/1967    |                 |        |         | †         |
| 6628-8360  | 13.29            | 13.29               |                  |            |            |            |         | UKN    |         |            | 18/04/1967    |                 |        |         | 1         |
| 6628-8361  |                  |                     |                  |            | 3460       | 16/01/1950 |         |        |         |            | , , , , , , , |                 |        |         | +         |
| 6628-8362  |                  |                     |                  |            | 13737      | 05/01/1973 |         |        |         |            |               |                 |        | SOK     | 1         |
| 6628-8363  | 16.83            | 16.83               |                  |            |            | 1 . ,      |         | UKN    |         |            | 28/04/1967    |                 |        |         | 1         |
| 6628-8364  | 16.89            | 16.89               |                  |            |            |            |         | UKN    |         |            | 22/04/1967    |                 |        |         | +         |
| 6628-8365  | 20.73            | 20.73               |                  |            |            |            |         | UKN    |         |            | 26/04/1967    |                 |        |         | +         |
| 6628-8366  | 16.79            | 16.79               |                  |            |            |            |         | UKN    |         |            | 23/04/1967    |                 |        |         | +         |
| 6628-8367  | 28.56            | 28.56               |                  |            |            |            |         | UKN    |         |            | 15/04/1967    |                 |        |         | +         |

Page 4 of 5 Wednesday, 18 March 2020, 9:31:05 AM

| Unit No    | Max Depth<br>(m) | Latest<br>Depth (m) | Yield<br>(L/sec) | Yield Date | TDS (mg/L) | TDS Date   | Aquifer | Status | SWL (m) | SWL Date   | Date       | Cased To<br>(m) | Obs No | Purpose | Permit No |
|------------|------------------|---------------------|------------------|------------|------------|------------|---------|--------|---------|------------|------------|-----------------|--------|---------|-----------|
| 6628-8368  | 23.1             | 23.1                | , . ,            |            |            |            |         | UKN    |         |            | 12/04/1967 |                 |        |         |           |
| 6628-8369  | 17.47            | 17.47               |                  |            |            |            |         | UKN    |         |            | 08/04/1967 |                 |        |         |           |
| 6628-8370  | 184.51           | 184.51              |                  |            |            |            |         | UKN    |         |            | 21/11/1966 |                 |        |         |           |
| 6628-8371  | 25.42            | 25.42               |                  |            |            |            |         | UKN    |         |            | 01/04/1967 |                 |        |         |           |
| 6628-8372  | 22.19            | 22.19               |                  |            |            |            |         | UKN    |         |            | 05/04/1967 |                 |        |         |           |
| 6628-8373  | 16.06            | 16.06               |                  |            |            |            |         | UKN    |         |            | 10/02/1967 |                 |        |         |           |
| 6628-8374  | 126.49           | 126.49              |                  |            |            |            |         | UKN    |         |            | 25/01/1967 |                 |        |         |           |
| 6628-8375  | 170.69           | 170.69              |                  |            |            |            |         | UKN    |         |            | 11/10/1951 |                 |        |         |           |
| 6628-8376  | 237.44           | 237.44              |                  |            |            |            |         | UKN    |         |            | 30/04/1951 |                 |        |         |           |
| 6628-13623 | 68               | 68                  | 1                | 24/02/1986 | 4211       | 20/12/1985 | Elt     |        | 1       | 21/04/1986 | 24/02/1986 | 5.5             |        |         | 17805     |
| 6628-14175 | 110              | 110                 | 2.5              | 29/02/1988 | 4358       | 22/03/1988 | Elt     |        | 12      | 22/03/1988 | 29/02/1988 | 6               |        |         | 20866     |
| 6628-16643 | 12.8             | 0                   | 0                | 18/04/1994 | 3862       | 05/05/1994 | Elt     | ABD    |         |            | 18/04/1994 |                 |        | IRR     | 31464     |
| 6628-16645 | 22               | 22                  | 0.05             | 20/04/1994 | 3539       | 05/05/1994 | Ek      |        |         |            | 20/04/1994 | 11.7            |        | IRR     | 31464     |
| 6628-19785 | 13.72            | 13.72               |                  |            |            |            |         | UKN    |         |            | 02/02/1967 |                 |        |         |           |
| 6628-19786 | 8.44             | 8.44                |                  |            |            |            |         | UKN    |         |            | 07/02/1967 |                 |        |         |           |
| 6628-19787 |                  | 0                   |                  |            | 940        | 01/01/1972 |         | BKF    |         |            |            |                 |        |         |           |
| 6628-19807 | 16.15            | 16.15               |                  |            |            |            |         | UKN    |         |            | 04/02/1967 |                 |        |         |           |
| 6628-19873 | 15.09            | 15.09               |                  |            |            |            |         | UKN    |         |            | 27/01/1967 |                 |        |         |           |
| 6628-21783 | 48               | 48                  | 4.5              | 24/02/2004 | 2121       | 23/02/2004 | Ek      |        | 1.5     | 24/02/2004 | 24/02/2004 | 12              |        | IRR     | 64346     |
| 6628-21859 |                  | 0                   |                  |            | 950        | 01/08/2003 | Eeb     | BKF    |         |            |            |                 |        |         | 64445     |
| 6628-28065 | 119              | 119                 | 3.5              | 30/11/2015 |            |            |         |        | 31      | 30/11/2015 |            | 12              |        |         | 253825    |

184 records



Except where otherwise noted this work is licensed under a Creative Commons Attribution 3.0 Australia License © Crown in right of the State of South Australia

Page 5 of 5

Wednesday, 18 March 2020, 9:31:05 AM

# **Appendix D** – Conceptual Hydrogeological Model (GHD 2009)

# Conceptual Hydrogeological Model (GHD 2009)

The conceptual hydrogeological model for the CFS STC site and Brukunga Mine is taken largely from GHD's 2009 study for the Brukunga Mine. Although the water level and climatic data are up to 2009, the concept remains valid.

# Aquifer descriptions

Groundwater flow at the site and in the surrounding region can be divided into the following sub zones:

- Waste Rock;
- Tailings;
- Alluvium;
- Surficial soils/regolith;
- Shallow fractured and weathered rock;
- · Intermediate fractured rock; and
- Deep bedrock.

#### Waste Rock

Waste rock is the primary source of acid and dissolved metals discharging to Dawesley Creek. Waste rock has been placed in several dumps adjacent to the western side of Dawesley Creek, in some cases in to the creek, resulting in diversion of creek flow, as shown in the "South Dump" in Figure 1.

The waste rock comprises pyritic meta-siltstone to schist, ranging from hard, competent rock to decomposed, friable clay/silt.

Standing water levels within the stockpiles, where observed, are generally only slightly above the base of the waste (Brukunga Remediation Project – Technical Advisory Group (TAG) pers com), indicating water infiltrates rapidly, probably flowing laterally as a thin perched layer, along the interface with underlying, less permeable material. The absence of a hydraulic gradient from significant thickness of saturated waste rock makes it difficult to quantify groundwater flow rates through the waste rock.

Based on the deposition of the waste rock on the pre-mining land surface, it is likely that most of the water that passes through the waste rock discharges directly to Dawesley Creek or to the creek via shallow fractured and weathered bedrock or alluvium.

No transient water level data were available for waste rock to enable assessment of seasonal variations.

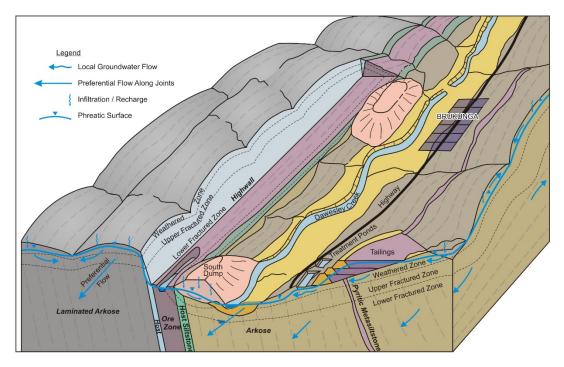



Figure 1 Conceptual hydrogeological model schematic (GHD 2009)

#### Tailings Dam

The pyritic tailings, deposited in a dammed valley to the east of Dawesley Creek, are hydraulically isolated from the waste rock by Dawesley Creek. Groundwater is partially mounded behind the dam embankment, with tailings adjacent to the embankment being partially dry, with water levels 12.6 m bgl (KAN41) to 16.1 m bgl (KAN52) in February 2020. Water levels within the western half of the tailings have dropped over time (Figure 2 and Figure 3) at a rate of approximately 200 mm/y, with the lack of seasonal variation (excluding what appear to be reading errors in January 2001 and July 2002) indicating recharge from rainfall over the period June 2004 to January 2008 was minimal. Assuming an unconfined storage coefficient of 0.1, the fluctuation of less than 50 mm indicates precipitation recharge is less than 5 mm/year over this period, although recharge could be partly masked by the general declining trend. This is less than the average recharge rate estimated for flat-lying, treed areas of 29 mm/y (Section Recharge) for the rest of the region. This is possibly due to the presence of clayey capping soil over the tailings, in contrast to the relatively sandy soils common in the region, and the relatively low rainfall over the period monitored. Alternatively, it is possible that seasonal fluctuations are damped in the deep monitoring bores to the extent that annual fluctuations are not discernible. Given the response noted in similar wells in the area, the former is more likely. It is likely that some of the tailings would remain saturated, due to the sub-surface damming effect of the embankment.

Although the flow of groundwater under the tailings is likely to be predominantly westwards, seeping through or beneath the embankment then beneath the CFS site, it is likely there is some preferential flow along north-south regional fracturing.

Water levels in tailings well KAN45 (Figure 4) appear to have been affected by disposal of sludge top the adjacent ponds, showing cyclic water level changes of approximately 4 m, which is in excess of what would be expected from rainfall recharge. Sludge disposal was changed to a thickened residue in late 2005, after which time the seasonal variation seems to have reduced significantly. Water levels in wells in the middle of the tailings, such as KAN48 (Figure 5) show a combination of gradual decline

with a marked seasonal variation prior to 2006. To some extent, the fluctuation could also be due to runoff within the dam catchment running out over the eastern edge of the tailings.

The presence of dry, oxidised tailings represents a source of acid and metalliferous drainage beneath the southern side of the CFS site and to Dawesley Creek.

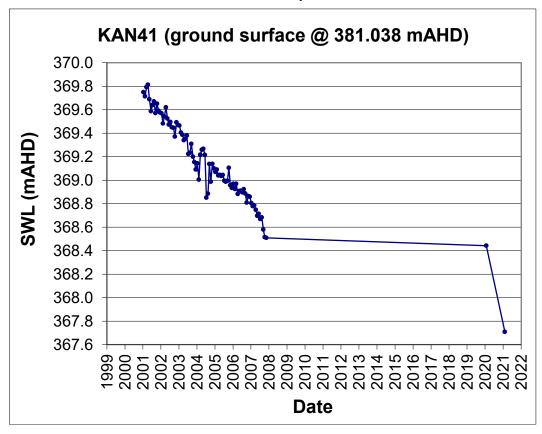



Figure 2 Tailings groundwater level time series Well KAN41

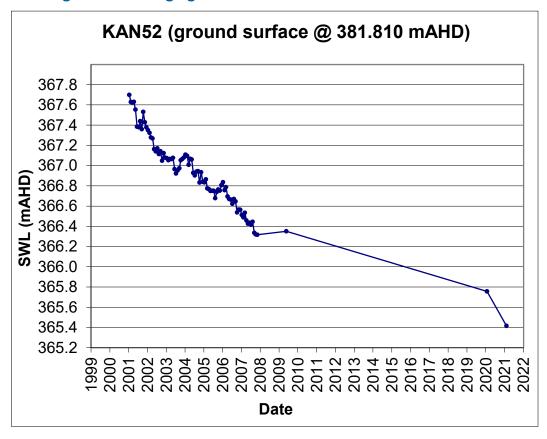
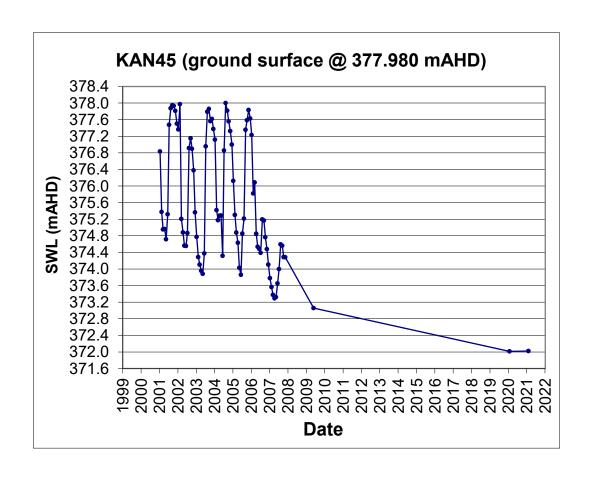




Figure 3 Tailings groundwater level time series Well KAN52.



KAN48 375.2 374.8 374.4 374.0 373.6 SWL (mAHD) 373.2 372.8 372.4 372.0 371.6 371.2 370.8 2000 2002 2005 2006 2001 **Date** 

Figure 4 Tailings groundwater level time series Well KAN45.

Figure 5 Tailings groundwater level time series Well KAN48

#### **Alluvium**

Drilling to date indicates there is only a thin, narrow strip of alluvium/colluvium along Dawesley Creek. SKM (2008) noted that the alluvium was generally less than 2.5 m thick, ranging from clay to bouldery gravels. Given the limited thickness and expected low permeability of the clayey alluvium, it is not likely to represent a significant aquifer, although it may be more permeable than the underlying bedrock, acting as a preferential path for contaminated groundwater emanating from the waste rock and underlying bedrock or recharging from Dawesley Creek during periods of low groundwater levels. Tonkin (2009) noted that water levels in bedrock below the alluvium were higher than in the alluvium and concluded that this was evidence for confining of the bedrock aquifer. It is, however, also consistent with upward flow from the bedrock aquifer, into the alluvium and Dawesley Creek.

#### Surficial soils/regolith

SKM (2008) noted that soils at the mine site are generally thin (<1 m thick) to absent. This is consistent with the general appearance of the area. Soils are generally sandy loam to clayey loam (Northcote classification Uc), (Western and McKenzie, 2004). No permeability data were available for the surface soils, however the lower clayey soil horizons are likely to have relatively low permeability. The clayey subsoil, relatively steep slopes and high evaporation rates are likely to restrict deep drainage of rainfall through the surface soils. It is likely that a significant proportion of the water infiltrating through the ground surface, will flow down-slope as interflow at the base of the upper sandy soil horizon. This is reflected in the low estimated deep drainage recharge rates of 15 mm/year to 22 mm/year estimated for the Eastern Mt Lofty Ranges, a similar environment (Banks et al. 2006).

#### Shallow fractured and weathered rock

Geological mapping and drilling by SKM (2008) indicates that the upper 20 m of weathered bedrock ("Weathered Zone" in Figure 1 and "upper Zone" in Figure 6 – note the orientation of tectonic fracturing is approximately north-south in the mine area) exhibits regional tectonic jointing and fracturing overprinted by sub-horizontal, stress-relief jointing. This is consistent with regional observations (Mortimer et al 2008). SKM (2008) noted that although there was increased horizontal fracturing in the upper 20 m, groundwater flow is likely to be dominantly along bedding planes and other steeply-dipping fractures as unloading tends to dilate steeply dipping fracturing with horizontal fractures remaining closed. The thickness of this layer is likely to vary with topography and local lithology, and the base of this zone is likely to have a significant control on groundwater levels, with the piezometric surface following this surface.

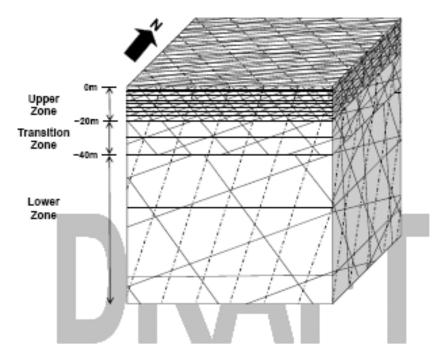



Figure 6 Rock Fracturing Conceptual Model (From SKM 2008 Fig 2-10)

Note Tectonic fracturing in Brukunga Mine area is dipping steeply/sub-vertically to the east.

The pyritic schist within the ore zone west of Dawesley Creek appears to have more closely-spaced jointing than the surrounding meta-arenite (TAG pers com), but the meta-arenite still appears to have an order of magnitude more jointing north-south, parallel to the bedding plane, than east-west.

This hypothesised anisotropy is supported by the observation that there is no sign of significant seepage along the mine's highwall face, but wells drilled horizontally in to the highwall discharge water.

Analysis of permeability data from the site indicates an increase in permeability with decreasing depth (Figure 7). In addition to general jointing and fracturing, there may be discrete fracture zones, especially sub-vertical fractures, running east-west, orthogonal to the regional strike within the model domain. None, however, were identified during surface mapping of the mine site by SKM (2008). The trellis drainage, which characterises the site (Figure 1) and surrounding region, supports the presence of preferential erodibility, if not permeability, parallel and orthogonal to the regional strike.

The shallow fractured and weathered zone has been removed from mined areas but probably extends beneath waste rock dump and tailings areas. This unit represents the most significant aquifer, in terms of permeability and extent, at the site and within the general region.

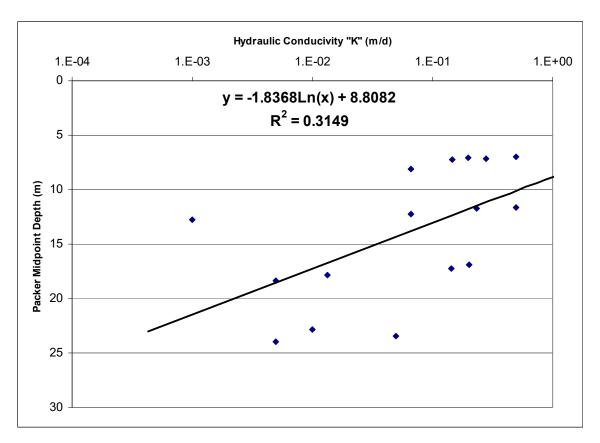



Figure 7 Packer-Tested Bedrock K variation with Depth

#### **Upper Fractured Rock**

The zone from about 20 m to 40 m below surface comprises an intermediate zone of less weathered and less fractured rock ("Upper Fractured Rock" in Figure 1 or "Transition Zone" in Figure 6). This layer is transitional between the near-surface zone with significant stress-relief jointing, and the lower bedrock with only tectonic jointing or fracturing. This zone, which has largely been removed from within the mine footprint, is also a regional aquifer, but tends to be low-yielding and represent only local flow systems, except where significant regional-scale fracturing is present.

Although there is substantial horizontal jointing, along with sub-vertical bedding plane jointing, the stress-relief dilation tends to favour the opening of sub-vertical joints. Consequently, permeability is likely to be dominated by bedding-plane joints and foliation (SKM 2008).

Plots of water levels in wells in the fractured bedrock to the west of the mine show distinct seasonal variations, of approximately 10 m, overprinting a gradual increase in base levels over the period of record from 1995 (Figure 8 and Figure 9). The seasonal response is consistent with a fractured rock aquifer, the magnitude of rainfall and thin soil cover, with the peak levels generally reflecting rainfall intensity. The slowly rising base level over the period is unusual, however, as it occurs over a period of decreasing rainfall. It is possible that it may be due to recovery from dewatering during mining or other groundwater extraction. It may also be a long-term response to increased recharge due to deforestation, although the aerial photographs of the site from 1949 show little change in the vegetation in this area. The water level record is complicated by the fact that the wells appear, from records, to be uncased, allowing interconnection between shallow and deep aquifers.

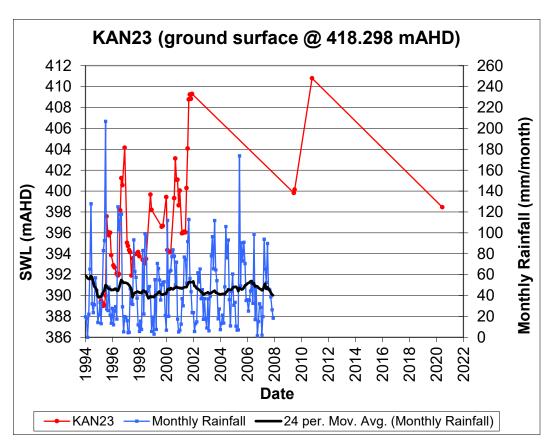



Figure 8 Western fractured rock groundwater level time series Well KAN23.

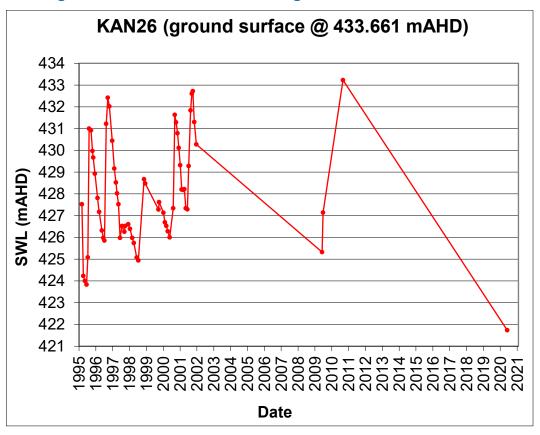



Figure 9 Western fractured rock groundwater level time series Well KAN26.

#### Deep bedrock

This zone is exposed in the Brukunga Mine base. Permeability within this zone is limited to fine foliation sub-parallel to bedding planes as well as widely spaced tectonic jointing. Consequently, this horizon has very low permeability. It is possible that localised areas of higher permeability may exist, associated with regional faulting. One such fault zone runs along Dawesley Creek (Golder 2016). The absence of horizontal stress-relief jointing means deep bedrock permeability, such as it is, will be dominated by jointing parallel to bedding planes, with very little cross-strike permeability. The anisotropy is likely to be significant north of the mine, where the bedding planes dip angle becomes shallower. Although the rocks to the east and west of the ore zone schist may have fewer bedding plane joints, they also have fewer cross (E-W) joints indicating that permeability anisotropy may still be strong in steeply dipping areas around the mine. This is supported by SKM's (2008) structural assessment.

The water levels in wells drilled in the bedrock in the base of the mine, such as KAN16 (Figure 10) show very little fluctuation, considering expected annual recharge and storage capacity, and rapidly return to a well-defined base level, in the case of KAN16, at 362.05 mAHD. This indicates that the lower limit may be controlled by some sort of boundary, such as the elevation of the lowest intersected fracture, which acts as a spill level, or a recharge boundary such as a creek of stable water body. In the absence of any nearby likely recharge boundaries, fracture control is the most likely cause. This indicates that at KAN16, rock above 362.05 mAHD (~5 m below surface) is permeable to some extent, but is effectively impermeable below that level. Other wells, such as KAN11 (Figure 11)and KAN12 (Figure 12) show more variable base levels, indicating fractures are open to below the lowest water level, and are not acting as a spill level.

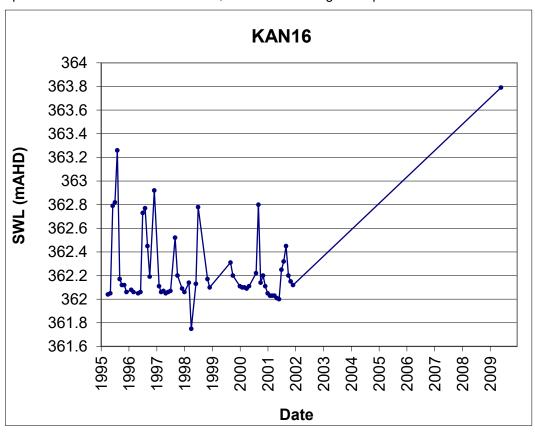



Figure 10 Bedrock groundwater level time series Well KAN16.



Figure 11 Bedrock groundwater level time series Well KAN11.

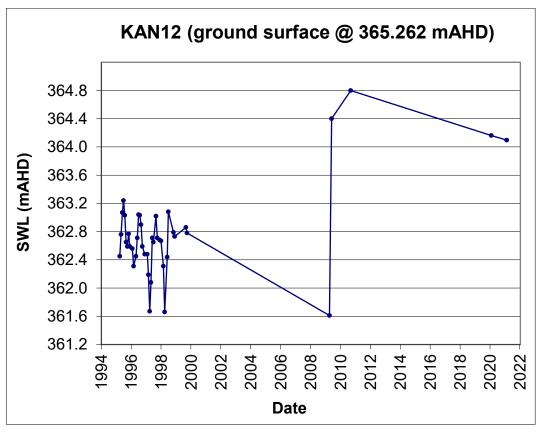


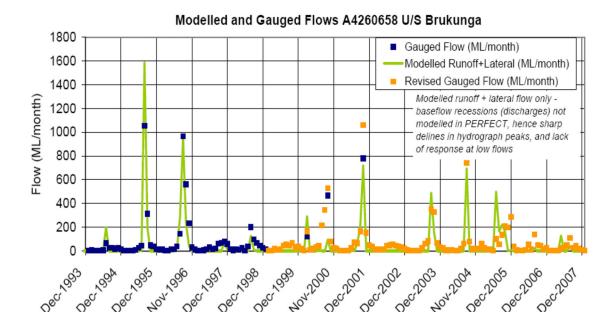

Figure 12 Bedrock groundwater level time series Well KAN12.

#### **Major Cross Structures**

A major NNW-SSE trending lenticular breccia zone is mapped on the 1:50,000 geological map approximately 1 km to the northeast of the Mine. Although on inspection, TAG did not find any evidence of this breccia zone, the high yield from private irrigation well 6628-21783 (4.5 L/s) indicates that this zone is significantly more permeable than the surrounding region. If present, it cuts across inferred the dominant groundwater flow direction and through Dawesley Creek and consequently may act as a collection system, feeding groundwater from a large area to the creek. The change in baseflow rates above and below breccia zone would be of interest.

## **Groundwater Flow Processes**

Over most of the study area, recharge is to the surface layer of soil and weathered and fractured rock. Much of the recharge is likely to flow down-slope, at the base of the upper sand horizon in duplex soils, or at the base of the shallow weathered and fractured rock. Much of the water in the soil is likely to evaporate before it travels over any great lateral distance, but water in the base of the weathered rock is below the reach of vegetation and hence is likely to eventually discharge to major surface drainage lines as baseflow (Figure 1). Little recharge is likely to reach the deeper, less-fractured bedrock. The evaporative losses are indicated by the moderate groundwater salinity recorded in the region.


As noted above, flow in the deeper bedrock layers, greater than 10 m to 20 m below the original land surface, will be dominated by flow along the bedding plane, indicated by the large arrows in Figure 1. Permeability along the bedding plane could be expected to be an order of magnitude higher than across the bedding plane.

## Surface Water Groundwater Interaction

Groundwater flow is expected to generally mimic surface topography, due to the decreasing permeability with depth, and likely higher recharge rates on ridge tops with shallower slopes and soils. The possible exception is flow within the intermediate to deep bedrock, which is probably dominantly along the bedding plane to the north and south. During periods of high groundwater levels, local groundwater discharge to gullies and creeks would be expected, appearing as short-lived baseflow. Given the low permeability and expected low flow rates, however, much of the discharge to low lying areas may not be expressed as baseflow as it will be taken up by evapotranspiration before reaching the surface. Groundwater discharge to alluvium and directly to Dawesley Creek would be expected to continue for longer, and is evident in baseflow recorded at the site (Figure 13) (when flow from the upstream WWTP is removed). Over this part of the cycle, most streams would be "gaining streams".

At the start of the wet season, during initial creek flows and in smaller side creeks and gullies, some loss to the underlying aquifers would occur, where evapotranspiration and down gradient flow has lowered the water table below the gully/creek bed. During this period, they would act as a "loosing streams", although over a short period. Unfortunately, there are insufficient groundwater level data from the alluvial aquifer to confirm this behaviour.

Evaporative loss is expected to be significant in the alluvial aquifer, due to its limited depth and presence of deep-rooted vegetation, in contrast to the almost treeless upland areas. Areas underlain by saline or acidic groundwater, however, are likely to have significantly lower losses, as the groundwater toxicity may prevent it being extracted by vegetation.



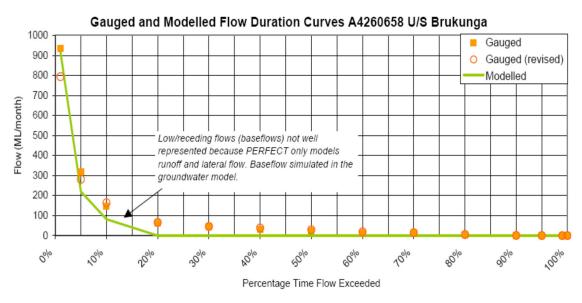



Figure 13 Modelled and gauged surface water flows

# Recharge

GHD (2009) carried out recharge modelling, using PERFECT (Littleboy et al, 1989), a one-dimensional cropping and soil moisture balance model. The model took into account:

- Land use and vegetation, based on aerial photography. Predominantly pasture, with minor patches of trees, primarily along drainage lines. Rooting depth was estimated to be 100 cm for pasture and 200 cm for trees during model calibration, and considering the soil mapping data
- Slopes derived from the state-wide DTM. The catchment was divided into three slope classes 0-5%, 5-15%, and 15-38%. Most of the catchment (>90%) falls within the 0-

- 15% slope range, with only a minor portion of the catchment falling within the steep slope range
- Soil data obtained from the Soil Hydrological Properties of Australia (SHPA) mapping (Western and McKenzie, 2004). The sub-catchment containing the site is mapped as containing two main soil types. The principal soil profile of the northern section, the majority of the catchment, is mapped as a uniform sandy loam to clayey loam (Northcote classification Uc), with a small section in the south consisting of a yellow-grey duplex soil (Northcote classification Dy, a sand to clay loam overlying clay-rich subsoils). The yellow duplex soil is not relevant to the scale of the groundwater model because it covers only a small area at the downstream end of the Dawesley Creek catchment, well downstream of Brukunga

The properties were combined to produce the recharge zones detailed in Table 1 and Figure 14.

Table 1 PERFECT Model Zones

| Model Zone | Land Use | Slope  | Average Recharge<br>(mm/y) 1950-2007<br>data | Figure 14 Colour |
|------------|----------|--------|----------------------------------------------|------------------|
| 1          | Pasture  | <=5%   | 32                                           |                  |
| 2          | Pasture  | 5-15%  | 21                                           |                  |
| 3          | Pasture  | 15-38% | 9                                            |                  |
| 4          | Trees    | <=5%   | 29                                           |                  |
| 5          | Trees    | 5-15%  | 19                                           |                  |
| 6          | Trees    | 15-38% | 8                                            |                  |

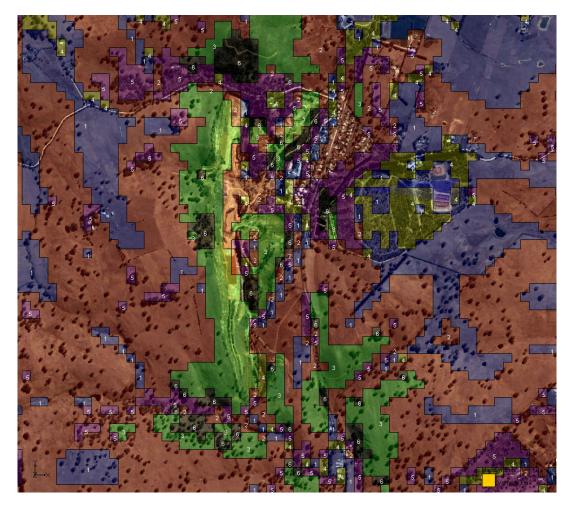



Figure 14 Recharge Model Zonation

# **Appendix E** – Surface Water Flow Data

# Surface water flow data

Historical and current flow data information for Dawesley Creek, Mt Barker Creek and Bremer River is publicly available online from the Department for Environment and Water's WaterConnect data base (DEW 2020) and was accessed between 11 and 18 October 2020 for the following five gauging stations:

- Gauging station Dawesley Creek (A4260558) located near Old Princess Highway approximately 5.7 km downstream of the CFS site, 20.7 km upstream of the confluence with Mt Barker Creek and 240 m downstream of sampling location DC07;
- Gauging station Mt Barker Creek (A4260557) located off Smythe Road, approximately 18.9 km upstream of the confluence with Dawesley Creek, and approximately 7.6 km upstream of sampling location MBC02;
- Gauging station Mt Barker Creek (A4260679) located at sampling location DC17A at 430D Callington Road, Salem, approximately 5.2 km downstream of the confluence with Dawesley Creek and 470 m upstream of the confluence with Bremer River;
- Gauging station Bremer River (A4260688) located approximately 510 m upstream of the confluence with Mt Barker Creek and 170 m downstream of sampling location BR01; and
- Gauging station Bremer River (A4260533) located near the north-eastern corner of 219 Hassam Rd, Woodchester, approximately 13.6 km downstream of the confluence with Mt Barker Creek and 8.3 km downstream of sampling location DC19,

A site information summary for the five gauging stations is provided in Table 1.

**Table 1 Gauging station site information summary** 

| Site                            | A4260558<br>Dawesley Ck     | A4260557<br>Mt Barker Ck<br>upstream | A4260679<br>Mt Barker Ck<br>downstream | A4260688<br>Bremer River<br>upstream | A4260533<br>Bremer River<br>downstream |
|---------------------------------|-----------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|
| Site code                       | DC                          | MBC up                               | MBC down                               | BR up                                | BR down                                |
| Closest<br>sampling<br>location | DC07<br>(240 m<br>upstream) | MBC02<br>(7.6 km<br>downstream)      | DC17A<br>(same<br>location)            | BR01<br>(170 m<br>upstream)          | DC19<br>(4.5 km<br>upstream)           |
| DEW site ID                     | A4260558                    | A4260557                             | A4260679                               | A4260688                             | A4260533                               |
| Operational since               | 01/06/1978                  | 24/04/1979                           | 11/06/1997                             | 15/10/1997                           | 11/05/1973                             |
| UTM Zone                        | 54                          | 54                                   | 54                                     | 54                                   | 54                                     |
| Easting                         | 313040                      | 310089                               | 319922                                 | 320374                               | 318522                                 |
| Northing                        | 6120556                     | 6115244                              | 6109878                                | 6110330                              | 6101978                                |
| Latitude                        | -35.0403                    | -35.0876                             | -35.1378                               | -35.1338                             | -35.2087                               |
| Longitude                       | 138.9503                    | 138.9168                             | 139.0234                               | 139.0285                             | 139.0063                               |

| Site           | A4260558<br>Dawesley Ck   | A4260557<br>Mt Barker Ck<br>upstream | A4260679<br>Mt Barker Ck<br>downstream   | A4260688<br>Bremer River<br>upstream     | A4260533<br>Bremer River<br>downstream   |
|----------------|---------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Elevation      | 265.968 m                 | 268.017 m                            | 65.434 m                                 | 68.204 m                                 | 38.626 m                                 |
| Catchment area | 41.4 km <sup>2</sup>      | 88.0 km <sup>2</sup>                 | 229.5 km <sup>2</sup>                    | 194.7 km <sup>2</sup>                    | 492.479 km <sup>2</sup>                  |
| Parameters     | Water level<br>Flow<br>pH | Water level<br>Flow                  | Water level<br>Flow<br>EC<br>Temperature | Water level<br>Flow<br>EC<br>Temperature | Water level<br>Flow<br>EC<br>Temperature |

All five gauging stations record hourly water level and flow data. The two Bremer River gauging stations and the Mt Barker Creek gauging station downstream of the confluence with Dawesley Creek also record water temperature and electrical conductivity (EC). Hourly and daily data is available from the WaterConnect data base for 12 months. Historical data is available as daily or monthly data.

# Flow data May to September 2020

Flow rates in Dawesley Creek, Mount Barker Creek and Bremer River reported by the DEW for days on which surface water samples were collected are summarised in Table 2. The monthly discharge from the three water courses during this investigation is summarised in Table 3. The relative contribution of the different tributaries to flow in Mt Barker Creek and Bremer River was calculated based on the monthly discharge and is summarised in Table 4 and Table 5, respectively.

 Table 2
 Flow rates in ML/d on surface water sampling dates

| Date        | A4260558<br>Dawesley Ck | A4260557<br>Mt Barker Ck<br>upstream | A4260679<br>Mt Barker Ck<br>downstream | A4260688<br>Bremer River<br>upstream | A4260533<br>Bremer River<br>downstream |
|-------------|-------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|
| 08/05/2020  | 0.974                   | 4.730                                | 10.466                                 | 0.001                                | 10.980                                 |
| 18/05/2020  | 1.077                   | 6.190                                | 14.982                                 | 0.001                                | 9.497                                  |
| 09/06/2020  | 0.771                   | 6.785                                | 16.259                                 | 0.001                                | 9.439                                  |
| 08/07/2020  | 1.863                   | 12.839                               | 26.564                                 | 0.001                                | 27.778                                 |
| 23/07/2020  | 2.382                   | 8.811                                | 16.739                                 | 0.001                                | 12.659                                 |
| 10/08/2020  | 8.282                   | 55.639                               | 181.516                                | 0.001                                | 268.835                                |
| 17/08/2020  | 3.316                   | 16.463                               | 32.201                                 | 0.001                                | 30.151                                 |
| 11/09/2020  | 2.337                   | 7.288                                | 15.574                                 | 0.004                                | 11.498                                 |
| 17/09/2020  | 2.509                   | 8.663                                | 18.188                                 | 0.001                                | 16.921                                 |
| Minimum *   | 0.555                   | 2.693                                | 9.491                                  | 0.001                                | 4.87                                   |
| Maxium *    | 45.444                  | 404.097                              | 604.383                                | 4.781                                | 465.054                                |
| Average *   | 3.6                     | 31                                   | 49                                     | 0.084                                | 41                                     |
| Median *    | 2.3                     | 12                                   | 23                                     | 0.001                                | 19                                     |
| Std. dev. * | 5.2                     | 53                                   | 74                                     | 0.42                                 | 66                                     |

#### Note:

 $<sup>^{\</sup>star}$  Calculated for daily flow rates in ML/d between 05/05/2020 and 19/10/2020.

Table 3 Total discharge in ML between May and October 2020

| Month     | A4260558<br>Dawesley Ck | A4260557<br>Mt Barker Ck<br>upstream | A4260679<br>Mt Barker Ck<br>downstream | A4260688<br>Bremer River<br>upstream | A4260533<br>Bremer River<br>downstream |
|-----------|-------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|
| 05-31 May | 37.8                    | 361                                  | 646                                    | 0.027                                | 385                                    |
| 01-30 Jun | 66.0                    | 846                                  | 1344                                   | 0.030                                | 915                                    |
| 01-31 Jul | 70.7                    | 568                                  | 950                                    | 0.031                                | 699                                    |
| 01-31 Aug | 229                     | 1,870                                | 2,810                                  | 1.3                                  | 2,555                                  |
| 01-30 Sep | 82.4                    | 609                                  | 925                                    | 0.67                                 | 737                                    |
| 01-19 Oct | 123                     | 918                                  | 1,490                                  | 12.1                                 | 1,517                                  |
| Sum *     | 609                     | 5,173                                | 8,165                                  | 14.2                                 | 6,809                                  |

<sup>\*</sup> Total discharge in ML between 05/05/2020 and 19/10/2020

Table 4 Relative contribution of tributaries to total flow\* in Mt Barker Creek between May and October 2020

| Period    | Mt Barker Creek (1)<br>A4260558 + A4260557 |                          | Mt Barker Creek (2)<br>A4260679 |                          |                      |
|-----------|--------------------------------------------|--------------------------|---------------------------------|--------------------------|----------------------|
|           | Dawesley Ck<br>A4260558                    | Mt Barker Ck<br>A4260557 | Dawesley Ck<br>A4260558         | Mt Barker Ck<br>A4260557 | DC & MBC<br>Combined |
| 05-31 May | 9%                                         | 91%                      | 6%                              | 56%                      | 62%                  |
| 01-30 Jun | 7%                                         | 93%                      | 5%                              | 63%                      | 68%                  |
| 01-31 Jul | 11%                                        | 89%                      | 7%                              | 60%                      | 67%                  |
| 01-31 Aug | 11%                                        | 89%                      | 8%                              | 67%                      | 75%                  |
| 01-30 Sep | 12%                                        | 88%                      | 9%                              | 66%                      | 75%                  |
| 01-19 Oct | 12%                                        | 88%                      | 8%                              | 62%                      | 70%                  |
| Total ^   | 11%                                        | 89%                      | 7%                              | 63%                      | 71%                  |

#### Notes:

<sup>\*</sup> Total flow in Mt Barker Creek downstream of confluence with Dawesley Creek

<sup>(1)</sup> Flow in Mt Barker Creek calculated as combined flow of gauging stations A420558 (Dawesley Creek upstream of confluence with Mt Barker Creek) and A4260557 (Mt Barker Creek upstream of confluence with Dawesley Creek)

<sup>(2)</sup> Flow in Mt Barker Creek as flow at gauging station A4260679 (Mt Barker Creek downstream of confluence with Dawesley Creek)

<sup>^</sup> Relative contribution to calculated total flow between 05/05/2020 and 19/10/2020

Table 5 Relative contribution of tributaries to total flow\* in Bremer River between May and October 2020

| Period    | Bremer River<br>A4260679 + A4260688 |                          | A42                     | Bremer River<br>A4260679 + A4260688 |                          |  |
|-----------|-------------------------------------|--------------------------|-------------------------|-------------------------------------|--------------------------|--|
|           | Mt Barker Ck<br>A4260679            | Bremer River<br>A4260688 | Dawesley Ck<br>A4260558 | Mt Barker Ck<br>A4260557            | Bremer River<br>A4260688 |  |
| 05-31 May | 100.0%                              | 0.00%                    | 5.9%                    | 56.0%                               | 0.00%                    |  |
| 01-30 Jun | 100.0%                              | 0.00%                    | 4.9%                    | 62.9%                               | 0.00%                    |  |
| 01-31 Jul | 100.0%                              | 0.00%                    | 7.4%                    | 59.8%                               | 0.00%                    |  |
| 01-31 Aug | 99.95%                              | 0.05%                    | 8.2%                    | 66.5%                               | 0.00%                    |  |
| 01-30 Sep | 99.93%                              | 0.07%                    | 8.9%                    | 65.8%                               | 0.07%                    |  |
| 01-19 Oct | 99.2 %                              | 0.8%                     | 8.2%                    | 61.1%                               | 0.8%                     |  |
| Total ^   | 99.8%                               | 0.2%                     | 7.4%                    | 63.2%                               | 0.2%                     |  |

#### Notes:

<sup>\*</sup> Total flow in Bremer River downstream of confluence with Mt Barker Creek; calculated as combined flow of gauging stations A420679 (Mt Barker Creek upstream of confluence with Bremer River) and A4260688 (Bremer River upstream of confluence with Mt Barker Creek)

<sup>^</sup> Relative contribution to calculated total flow between 05/05/2020 and 19/10/2020

## Historical flow data

The annual total discharge in megalitres (ML) at the five gauging stations since 2011 is summarised in Table 6 and presented in Figure 1 and Figure 2. The relative contribution of the different tributaries to flow in Mt Barker Creek and Bremer River was calculated based on the annual total discharge and is summarised in Table 7 and Table 8, respectively. Daily maximum, minimum and mean discharge is illustrated in Figure 3. Time weighted stream discharge duration curves and flow weighted yield curves are shown in Figure 4 and Figure 5, respectively.

Table 6 Historical annual total discharge in ML

| Year | A4260558<br>Dawesley<br>Creek | A4260557<br>Mt Barker Ck<br>upstream | A4260679<br>Mt Barker Ck<br>downstream | A4260688<br>Bremer River<br>upstream | A4260533<br>Bremer River<br>downstream |
|------|-------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|
| 1997 | 475.4                         | 2,391                                | 2,425 *                                | 1,612 *                              | 4,528                                  |
| 1998 | 644.0                         | 2,986 *                              | 2,781                                  | 1,452 *                              | 5,116                                  |
| 1999 | 369.7                         | 2,202 *                              | 2,400 *                                | 945.8 *                              | 2,811                                  |
| 2000 | 2,270                         | 8,250                                | 5,496 *                                | 6,459                                | 18,240                                 |
| 2001 | 2,232                         | 5,598                                | 7,600 *                                | 5,673                                | 12,810                                 |
| 2002 | 234.8                         | 1,830                                | 1,946                                  | 352.7                                | 1,460                                  |
| 2003 | 1,528                         | 4,589 *                              | 9,505                                  | 3,454                                | 9,769                                  |
| 2004 | 1,368                         | 3,938 *                              | 8,914                                  | 3,368                                | 10,160                                 |
| 2005 | 1,615                         | 4,967                                | 6,530                                  | 7,714                                | 12,020                                 |
| 2006 | 368.0                         | 2,629                                | 4,290                                  | 580.0 *                              | 2,888                                  |
| 2007 | 353.2                         | 3,312                                | 4,588                                  | 505.0                                | 3,774                                  |
| 2008 | 326.9                         | 2,065                                | 3,167                                  | 193.4                                | 2,074                                  |
| 2009 | 1,786                         | 1.4 *                                | 10,940                                 | 3,319                                | 10,680                                 |
| 2010 | 3,399                         | 8,888 *                              | 4,428                                  | 4,764                                | 19,470                                 |
| 2011 | 694.7                         | 4,843 *                              | 6,237                                  | 287.5                                | 6,684 *                                |
| 2012 | 2,185                         | 9,941                                | 14,960                                 | 5,075                                | 18,060 *                               |
| 2013 | 2,838                         | 8,473                                | 16,000 *                               | 6,581                                | 19,060 *                               |
| 2014 | 1,421                         | 5,675                                | 9,898                                  | 3,924                                | 20,230 *                               |
| 2015 | 333.8                         | 1,522                                | 3,894                                  | 375.8                                | 2,406 *                                |
| 2016 | 8,085                         | 16,490 *                             | 33,050                                 | 12,100                               | 43,240 *                               |
| 2017 | 4,659                         | 9,985                                | 16,140                                 | 7,333                                | 23,330 *                               |

| Year       | A4260558<br>Dawesley<br>Creek | A4260557<br>Mt Barker Ck<br>upstream | A4260679<br>Mt Barker Ck<br>downstream | A4260688<br>Bremer River<br>upstream | A4260533<br>Bremer River<br>downstream |
|------------|-------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|
| 2018       | 330.9                         | 2,836                                | 4,536                                  | 25.9                                 | 2,769 *                                |
| 2019       | 429.6                         | 3,069                                | 4,795                                  | 1.2                                  | 3,062 *                                |
| 2020       | 266.2 *                       | 2,801 *                              | 1.0 *                                  | 0.0 *                                | 4,928 *                                |
| Data range | 1978-2020                     | 1979-2020                            | 1997-2020                              | 1997-2020                            | 1973-2020                              |
| Minimum    | 234.8                         | 1.4 *                                | 1.0 *                                  | 0.0 *                                | 973.7                                  |
| Maximum    | 9,467                         | 19,180                               | 33,050                                 | 12,100                               | 71,020                                 |
| Mean ^     | 2,266                         | 6,018                                | 7,689                                  | 3,171                                | 14,860                                 |
| Median ^   | 1,786                         | 4,905                                | 5,145                                  | 2,466                                | 12,020                                 |

#### Notes:

Table 7 Relative contribution of tributaries to total annual flow\* in Mt Barker Creek

| Year | Mt Barker Creek (1)<br>A4260558 + A4260557 |                          | М                       | Mt Barker Creek (2)<br>A4260679 |                      |  |
|------|--------------------------------------------|--------------------------|-------------------------|---------------------------------|----------------------|--|
|      | Dawesley Ck<br>A4260558                    | Mt Barker Ck<br>A4260557 | Dawesley Ck<br>A4260558 | Mt Barker Ck<br>A4260557        | DC & MBC<br>Combined |  |
| 1997 | 17%                                        | 83%                      |                         |                                 |                      |  |
| 1998 | 18%                                        | 82%                      | 23%                     | 107%                            | 130%                 |  |
| 1999 |                                            |                          | 15%                     |                                 |                      |  |
| 2000 | 22%                                        | 78%                      |                         |                                 |                      |  |
| 2001 | 29%                                        | 71%                      |                         |                                 |                      |  |
| 2002 | 11%                                        | 89%                      | 12%                     | 94%                             | 106%                 |  |
| 2003 |                                            |                          | 16%                     |                                 |                      |  |
| 2004 |                                            |                          | 15%                     |                                 |                      |  |
| 2005 | 25%                                        | 75%                      | 25%                     | 76%                             | 101%                 |  |
| 2006 | 12%                                        | 88%                      | 9%                      | 61%                             | 70%                  |  |

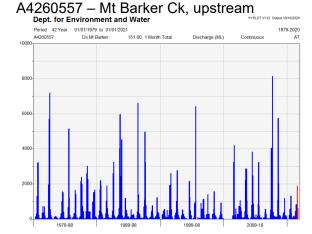
<sup>\*</sup> Incomplete data set due to days with missing records

<sup>^</sup> Mean / median calculated by WaterConnect when data was accessed (either on 11 or 18 October 2020)

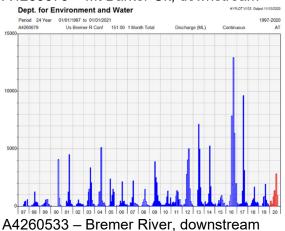
| Year      | Mt Barker Creek (1)<br>A4260558 + A4260557 |                          | Mt Barker Creek (2)<br>A4260679 |                          |                      |
|-----------|--------------------------------------------|--------------------------|---------------------------------|--------------------------|----------------------|
|           | Dawesley Ck<br>A4260558                    | Mt Barker Ck<br>A4260557 | Dawesley Ck<br>A4260558         | Mt Barker Ck<br>A4260557 | DC & MBC<br>Combined |
| 2007      | 10%                                        | 90%                      | 8%                              | -                        | -                    |
| 2008      | 14%                                        | 86%                      | 10%                             | -                        | -                    |
| 2009      | -                                          | -                        | 16%                             | -                        | -                    |
| 2010      | -                                          | -                        | 77%                             | -                        | -                    |
| 2011      | 13%                                        | 87%                      | 11%                             | 78%                      | 89%                  |
| 2012      | 18%                                        | 82%                      | 15%                             | 66%                      | 81%                  |
| 2013      | 25%                                        | 75%                      |                                 |                          |                      |
| 2014      | 20%                                        | 80%                      | 14%                             | 57%                      | 72%                  |
| 2015      | 18%                                        | 82%                      | 9%                              | 39%                      | 48%                  |
| 2016      | 33%                                        | 67%                      | 24%                             | 50%                      | 74%                  |
| 2017      | 32%                                        | 68%                      | 29%                             | 62%                      | 91%                  |
| 2018      | 10%                                        | 90%                      | 7%                              | 63%                      | 70%                  |
| 2019      | 12%                                        | 88%                      | 9%                              | 64%                      | 73%                  |
| Minimum ^ | 10%                                        | 67%                      | 7%                              | 39%                      | 48%                  |
| Maximum ^ | 33%                                        | 90%                      | 77%                             | 107%                     | 130%                 |
| Average ^ | 19%                                        | 80%                      | 18%                             | 68%                      | 83%                  |

#### Notes:

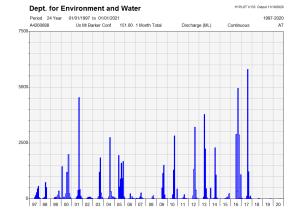
- \* Total annual flow in Mt Barker Creek downstream of confluence with Dawesley Creek
- (1) Flow in Mt Barker Creek calculated as combined flow of gauging stations A420558 (Dawesley Creek upstream of confluence with Mt Barker Creek) and A4260557 (Mt Barker Creek upstream of confluence with Dawesley Creek)
- (2) Flow in Mt Barker Creek as flow at gauging station A4260679 (Mt Barker Creek downstream of confluence with Dawesley Creek)
- ^ Relative contribution to flow between 1997 and 2019 excluding data where >60 days/year were missing


Table 8 Relative contribution of tributaries to total annual flow\* in Bremer River

| Year      | Bremer River<br>A4260679 + A4260688 |                          | Bremer River<br>A4260679 + A4260688 |                          |                          |
|-----------|-------------------------------------|--------------------------|-------------------------------------|--------------------------|--------------------------|
|           | Mt Barker Ck<br>A4260679            | Bremer River<br>A4260688 | Dawesley Ck<br>A4260558             | Mt Barker Ck<br>A4260557 | Bremer River<br>A4260688 |
| 2002      | 85%                                 | 15%                      | 10%                                 | 80%                      | 15%                      |
| 2003      | 73%                                 | 27%                      | 12%                                 |                          | 27%                      |
| 2004      | 73%                                 | 27%                      | 11%                                 |                          | 27%                      |
| 2005      | 46%                                 | 54%                      | 11%                                 | 35%                      | 54%                      |
| 2006      | 88%                                 | 12%                      | 8%                                  | 54%                      | 12%                      |
| 2007      | 90%                                 | 10%                      | 7%                                  | 65%                      | 10%                      |
| 2008      | 94%                                 | 6%                       | 10%                                 | 61%                      | 6%                       |
| 2009      | 77%                                 | 23%                      | 13%                                 |                          | 23%                      |
| 2010      | 48%                                 | 52%                      | 37%                                 |                          | 52%                      |
| 2011      | 96%                                 | 4%                       | 11%                                 | 74%                      | 4%                       |
| 2012      | 75%                                 | 25%                      | 11%                                 | 50%                      | 25%                      |
| 2013      | -                                   | -                        | -                                   | -                        | -                        |
| 2014      | 72%                                 | 28%                      | 10%                                 | 41%                      | 28%                      |
| 2015      | 91%                                 | 9%                       | 8%                                  | 36%                      | 9%                       |
| 2016      | 73%                                 | 27%                      | 18%                                 | 37%                      | 27%                      |
| 2017      | 69%                                 | 31%                      | 20%                                 | 43%                      | 31%                      |
| 2018      | 99%                                 | 0.6%                     | 7%                                  | 62%                      | 0.6%                     |
| 2019      | 100%                                | 0.03%                    | 9%                                  | 64%                      | 0.03%                    |
| Minimum ^ | 46%                                 | 0.03%                    | 7%                                  | 35%                      | 0.03%                    |
| Maximum ^ | 100%                                | 54%                      | 37%                                 | 80%                      | 54%                      |
| Average ^ | 79%                                 | 21%                      | 12%                                 | 54%                      | 21%                      |


<sup>\*</sup> Total annual flow in Bremer River downstream of confluence with Mt Barker Creek; calculated as combined flow of gauging stations A420679 (Mt Barker Creek upstream of confluence with Bremer River) and A4260688 (Bremer River upstream of confluence with Mt Barker Creek)

^ Relative contribution to flow between 1997 and 2019 excluding data where >60 days/year were missing


# A4260558 — Dawesley Ck Dept. for Environment and Water Period 43 Year 01/01/1978 to 01/01/2021 1978-2020 A4260558 Dawesley Ch/Dawesley 151 00 1 Morth Total Discharge (ML) Continuous AT 4000 4000 1000







#### A4260688 - Bremer River upstream



#### A4260533 — Bremer River, downstream Dept. for Environment and Water

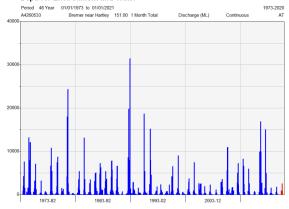



Figure 1 Historical discharge in ML – whole data set

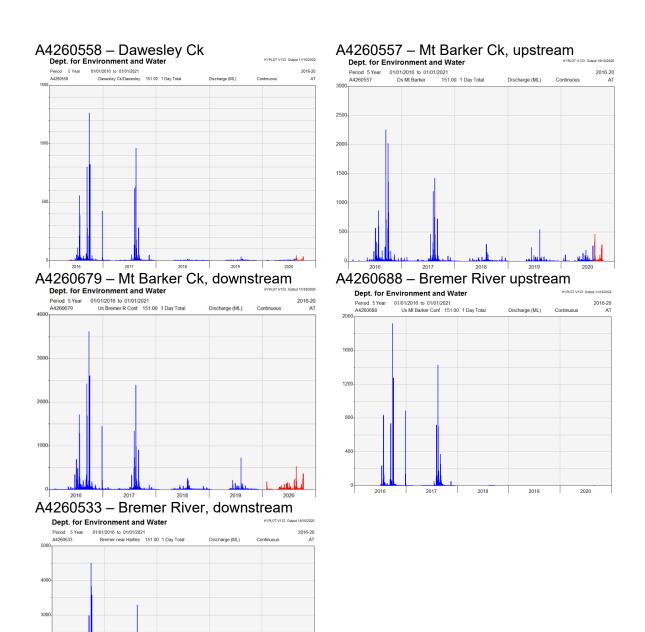



Figure 2 Recent discharge in ML - 2016 to 2020

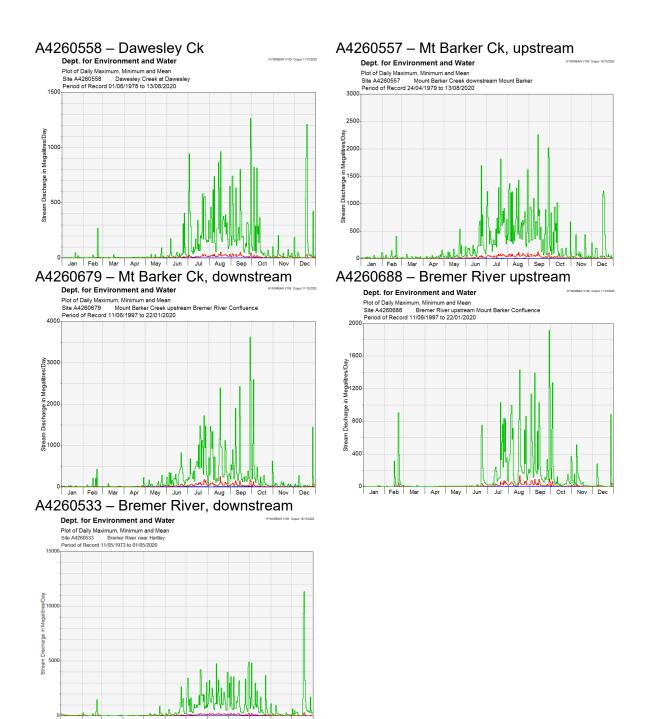



Figure 3 Daily maximum, minimum and mean discharge in ML

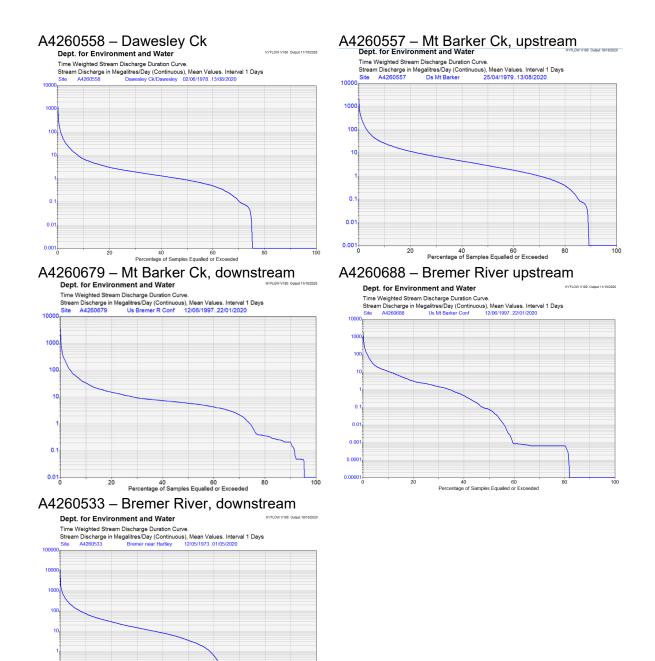



Figure 4 Time weighted stream discharge duration curves in ML/d

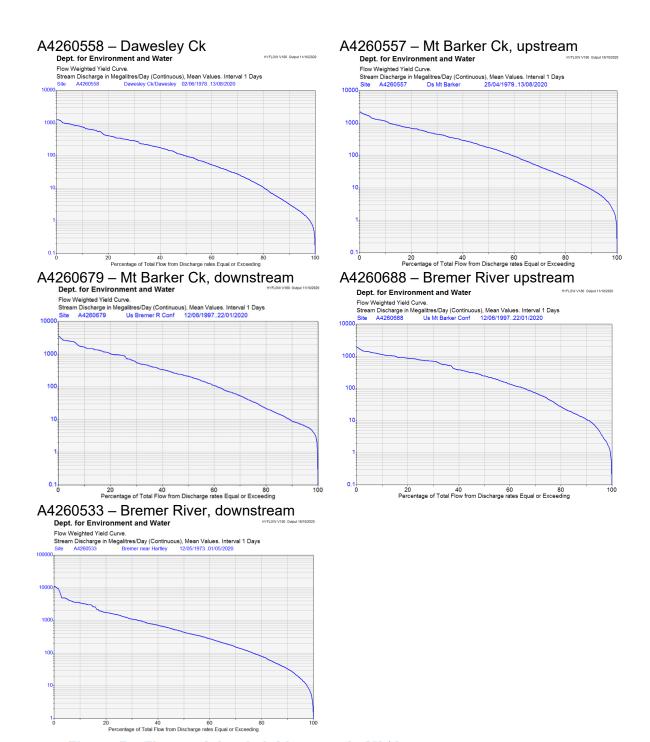



Figure 5 Flow weighted yield curves in ML/d

#### Historical water level data

Historical and recent water levels are presented in Figure 6 and Figure 7, respectively.

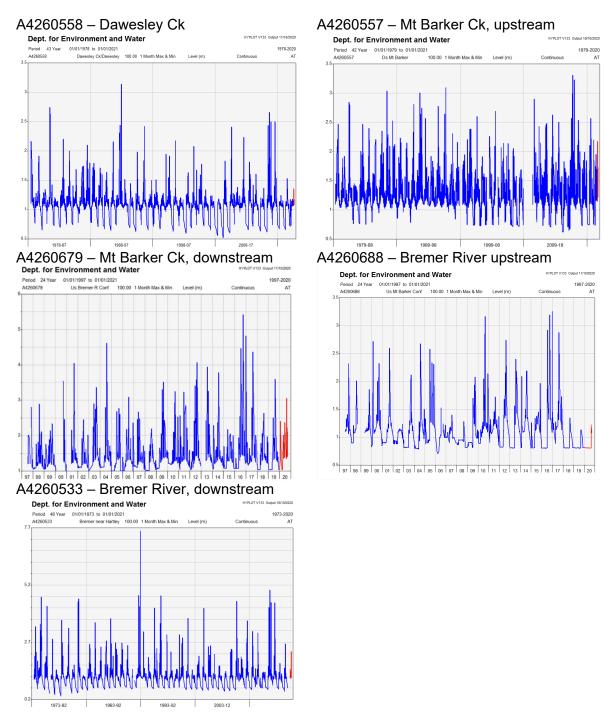



Figure 6 Historical water levels in metres

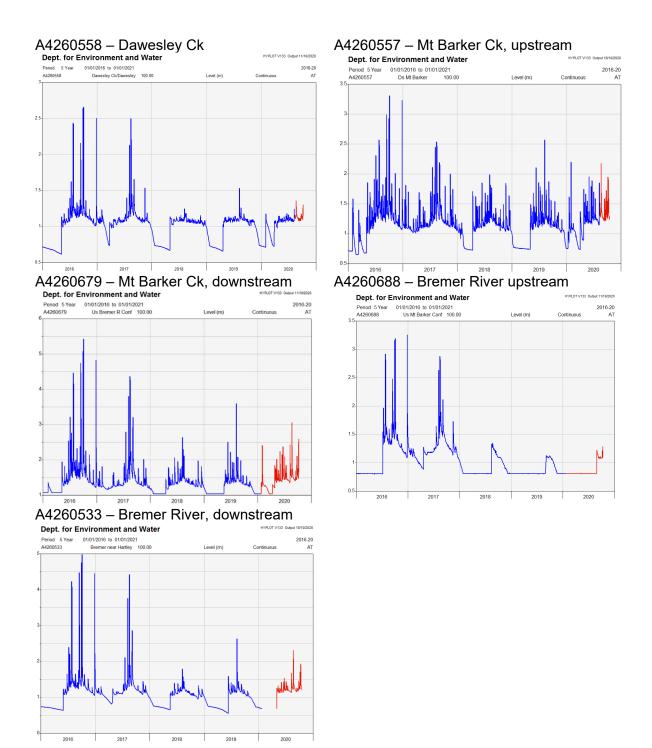



Figure 7 Recent water levels in metres – 2016 to 2020

#### Historical water quality data

Historical salinity data as electrical conductivity is presented in Figure 8. Historical water temperature data is shown in Figure 9. Historical pH data for Dawesley Creek between 1980 and 1991 is provided in Figure 10.

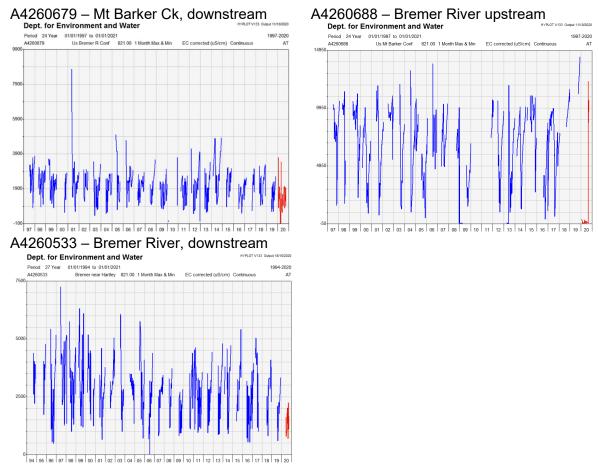
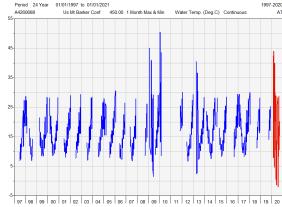




Figure 8 Historical salinity data as electrical conductivity in  $\mu$ S/cm

# A4260679 — Mt Barker Ck, downstream Dept. for Environment and Water Period 24 Year 01001/1997 to 0101/2021 1997-2020 A4260679 Us Bremer R Cord 450.00 1 Morth Max & Min Water Temp. (Deg.C) Continuous AT





#### A4260533 – Bremer River, downstream

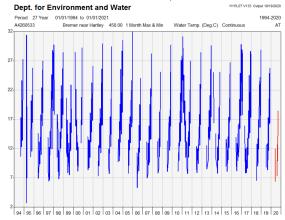



Figure 9 Historical water temperature data in °C

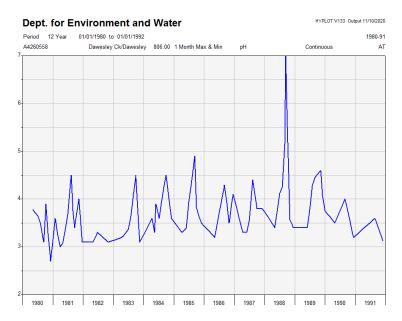



Figure 10 Historical pH data for Dawesley Creek between 1980 and 1991

## **Appendix F** – Derivation of Catchment Specific Water Quality Guideline Values

### Appendix F Derivation of Catchment Specific WQG Values

|                                                                            | PFAS in Water TRACE Short                |                                         |                                  |                                          |                                              |                          |                                      |                     |
|----------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|--------------------------|--------------------------------------|---------------------|
|                                                                            | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane sulfonic<br>acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* | PFAS (Sum of Total) |
|                                                                            | μg/L                                     | μg/L                                    | μg/L                             | μg/L                                     | μg/L                                         | μg/L                     | μg/L                                 | μg/L                |
| EQL                                                                        | 0.0002                                   | 0.0002                                  | 0.0002                           | 0.0004                                   | 0.0004                                       | 0.0002                   | 0.0002                               | 0.0002              |
| NHMRC 2019 Recreational Water PFAS Guidelines                              |                                          |                                         | 10                               |                                          |                                              | 2                        |                                      |                     |
| PFAS NEMP 2020 Health Drinking Water                                       |                                          |                                         | 0.56                             |                                          |                                              | 0.07                     |                                      |                     |
| PFAS NEMP 2020 Freshwater - 90% - highly disturbed systems                 |                                          | 2                                       | 632                              |                                          |                                              |                          |                                      |                     |
| PFAS NEMP 2020 Freshwater - 95% - slightly to moderately disturbed systems |                                          | 0.13                                    | 220                              |                                          |                                              |                          |                                      |                     |
| PFAS NEMP 2020 Freshwater - 99% - high conservation value systems          |                                          | 0.00023                                 | 19                               |                                          |                                              |                          |                                      |                     |

| <b>Location Code</b> | Date     | Sampling Location | Field ID |        |        |        |          |          |        |        |        |
|----------------------|----------|-------------------|----------|--------|--------|--------|----------|----------|--------|--------|--------|
| MBC01                | 23/07/20 | MBC01             | MBC01    | 0.0021 | 0.0025 | 0.0031 | < 0.0004 | <0.0004  | 0.0046 | 0.0055 | 0.0076 |
|                      | 11/09/20 | MBC01_A           | MBC01_1A | 0.0037 | 0.0038 | 0.0032 | < 0.0004 | <0.0004  | 0.0075 | 0.0070 | 0.0110 |
|                      |          | MBC01_B           | MBC01_1B | 0.0037 | 0.0040 | 0.0032 | <0.0004  | < 0.0004 | 0.0078 | 0.0072 | 0.0110 |
|                      |          | MBC01_C           | MBC01_1C | 0.0040 | 0.0032 | 0.0035 | <0.0004  | < 0.0004 | 0.0072 | 0.0067 | 0.0110 |
|                      | 17/09/20 | MBC01_A           | MBC01_2A | 0.0046 | 0.0041 | 0.0043 | < 0.0004 | < 0.0004 | 0.0087 | 0.0084 | 0.0130 |
|                      |          |                   | QC35     | 0.0046 | 0.0044 | 0.0041 | <0.0004  | < 0.0004 | 0.0090 | 0.0085 | 0.0130 |
|                      |          |                   | QC35A    | 0.0050 | 0.0070 | 0.0040 | <0.005#  | <0.005#  | 0.0120 | 0.0110 | 0.0230 |
|                      |          | MBC01_B           | MBC01_2B | 0.0046 | 0.0045 | 0.0042 | < 0.0004 | < 0.0004 | 0.0091 | 0.0087 | 0.0130 |
|                      |          | MBC01_C           | MBC01_2C | 0.0044 | 0.0040 | 0.0044 | <0.0004  | < 0.0004 | 0.0084 | 0.0084 | 0.0130 |
| MBC02 23/07/20       | 23/07/20 | MBC02             | MBC02    | 0.0027 | 0.0029 | 0.0034 | <0.0004  | < 0.0004 | 0.0055 | 0.0063 | 0.0090 |
|                      |          |                   | QC28     | 0.0030 | 0.0032 | 0.0033 | < 0.0004 | < 0.0004 | 0.0062 | 0.0065 | 0.0095 |
|                      |          |                   | QC28A    | 0.0040 | 0.0040 | 0.0030 | < 0.005  | < 0.005  | 0.0080 | 0.0070 | 0.0210 |
|                      | 11/09/20 | MBC02_A           | MBC02_1A | 0.0036 | 0.0045 | 0.0040 | <0.0004  | < 0.0004 | 0.0082 | 0.0085 | 0.0120 |
|                      |          |                   | QC32     | 0.0038 | 0.0047 | 0.0043 | <0.0004  | < 0.0004 | 0.0085 | 0.0090 | 0.0130 |
|                      |          |                   | QC32A    | 0.0040 | 0.0050 | 0.0040 | <0.005#  | <0.005#  | 0.0090 | 0.0090 | 0.0220 |
|                      |          | MBC02_B           | MBC02_1B | 0.0037 | 0.0045 | 0.0040 | < 0.0004 | < 0.0004 | 0.0082 | 0.0085 | 0.0120 |
|                      |          | MBC02_C           | MBC02_1C | 0.0036 | 0.0042 | 0.0038 | <0.0004  | < 0.0004 | 0.0078 | 0.0080 | 0.0120 |
|                      | 17/09/20 | MBC02_A           | MBC02_2A | 0.0038 | 0.0071 | 0.0050 | <0.0004  | < 0.0004 | 0.0110 | 0.0120 | 0.0160 |
|                      |          | MBC02_B           | MBC02_2B | 0.0035 | 0.0066 | 0.0049 | <0.0004  | <0.0004  | 0.0100 | 0.0120 | 0.0150 |
|                      |          | MBC02_C           | MBC02_2C | 0.0032 | 0.0042 | 0.0043 | <0.0004  | < 0.0004 | 0.0075 | 0.0086 | 0.0120 |

#### **Statistics**

| Number of Results                        | 20     | 20     | 20     | 20      | 20      | 20     | 20     | 20     |
|------------------------------------------|--------|--------|--------|---------|---------|--------|--------|--------|
| Number of Detects                        | 20     | 20     | 20     | 0       | 0       | 20     | 20     | 20     |
| Minimum Concentration                    | 0.0021 | 0.0025 | 0.0030 | <0.0004 | <0.0004 | 0.0046 | 0.0055 | 0.0076 |
| Minimum Detect                           | 0.0021 | 0.0025 | 0.0030 | ND      | ND      | 0.0046 | 0.0055 | 0.0076 |
| Maximum Concentration                    | 0.0050 | 0.0071 | 0.0050 | <0.005  | <0.005  | 0.0120 | 0.0120 | 0.0230 |
| Average Concentration *                  | 0.0038 | 0.0044 | 0.0039 | 0.00056 | 0.00056 | 0.0082 | 0.0083 | 0.0135 |
| Standard Deviation *                     | 0.0007 | 0.0012 | 0.0006 | 0.00086 | 0.00086 | 0.0017 | 0.0018 | 0.0042 |
| Median Concentration (50th percentile) * | 0.0038 | 0.0042 | 0.0040 | 0.00020 | 0.00020 | 0.0082 | 0.0085 | 0.0125 |
| 80th percentile *                        | 0.0044 | 0.0048 | 0.0043 | 0.0002  | 0.0002  | 0.0090 | 0.0090 | 0.0152 |
| 90th percentile *                        | 0.0046 | 0.0066 | 0.0045 | 0.0025  | 0.0025  | 0.0101 | 0.0111 | 0.0211 |

<sup>\*</sup> A Non Detect Multiplier of 0.5 has been applied.

#### Appendix F EPA email re: Classification of Dawesley Creek as Highly Disturbed

From: Custance, Hannah (EPA) < Hannah. Custance@sa.gov.au>

**Sent:** Friday, 28 August 2020 2:41 PM

To: Ruth Keogh < <a href="mailto:Ruth.Keogh@fyfe.com.au">Ruth Keogh@fyfe.com.au</a>; Dilara Valiff < <a href="mailto:Dilara.Valiff@ghd.com">Dilara.Valiff@ghd.com</a>

**Cc:** Jeffree, David (CFS) < <u>David.Jeffree@sa.gov.au</u>>; Eden, Brenton (CFS) < <u>Brenton.Eden@sa.gov.au</u>>;

Hughes, Rebecca (EPA) < Rebecca. Hughes@sa.gov.au > Subject: RE: CFS Brukunga DSI - Properties that fish/yabby

Hi Ruth & Dilara,

The EPA undertakes regular monitoring of South Australia surface water systems to assess their condition, and produces aquatic ecosystem condition reports (AECRs) every year (for further information see

https://www.epa.sa.gov.au/environmental\_info/water\_quality/water\_quality\_monitoring). Stream condition assessments have previously included sites from Nairne Creek, Mount Barker Creek and the Bremer River. These stream systems generally rate in a fair condition, which represents a moderately degraded system, due nutrient enrichment and degraded riparian habitats. The Dawesley Creek, assessed for many years as a result of the Brukunga Mine, continues to show evidence of adverse impacts from the mine based on the most recent 2015 assessment (see <a href="https://www.energymining.sa.gov.au/minerals/mining/former\_mines/brukunga\_mine\_site/water\_quality\_monitoring">https://www.energymining.sa.gov.au/minerals/mining/former\_mines/brukunga\_mine\_site/water\_quality\_monitoring</a>). Over 26 km of stream has been adversely affected by high levels of nutrients, metals and fine sediment deposition. A 90% level of protection for the highly disturbed Dawesley Creek is considered to be appropriate based on its current and expected condition over at least the next few decades. Considerations for biomagnification or bioaccumulation effects relating to fish, reptiles or birds is unlikely to be required since the stream does not provide habitat for fish, no aquatic reptiles occur in the catchment, and only terrestrial 'hawking'-type birds (eg swallows, tree martins) are likely to consume adult aquatic insects emerging from the lower reaches of Dawesley Creek.

Given the more diverse aquatic communities and better water quality and habitat structure in Mount Barker Creek and the Bremer River, a 95% level of protection for slightly-to-moderately disturbed ecosystems is considered to be appropriate. These streams support a wide range of aquatic invertebrates and include at least two threatened native fish species but accumulation pathways into other species may be limited to long-necked tortoises and a similar suite of terrestrial birds as described above.

On advice to livestock owners, the EPA's standard position is that livestock should not have free access to watercourses. Livestock access to rivers and streams can introduce nutrients, cause excessive bank erosion and increase the turbidity of the water. Landscape SA have a similar position, and further information can be found on their website

(https://landscape.sa.gov.au/hf/land/landholder-services/managing-livestock). Their website also includes a link to the following guideline (see attached PDF):

 Best practice land management guidelines for small grazing properties in the Adelaide and Mount Lofty Ranges Natural Resources Management region (2011, amended 2017)
 The guideline states that "fencing off watercourses to exclude livestock should be a priority for all landholders."

Please contact me if you have any questions on the above.

Regards,

#### **Hannah Custance**

Adviser, Site Contamination

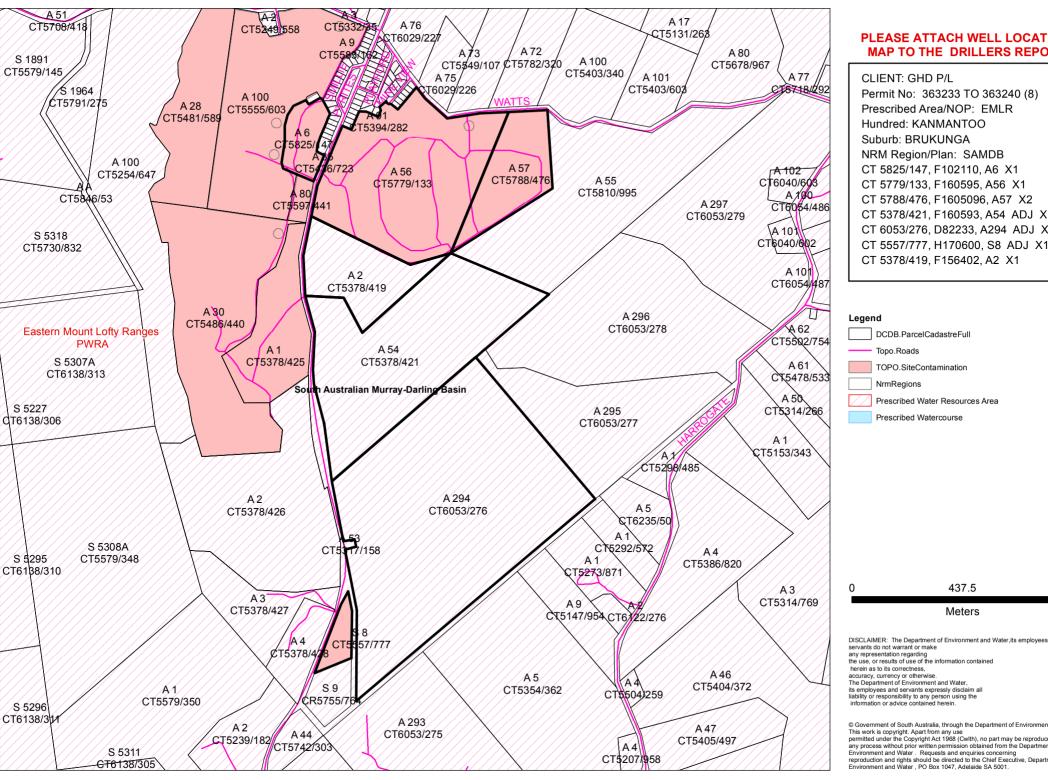
Regulation | Site Contamination **Environment Protection Authority** Phone (08) 8204 2320 Level 2, 211 Victoria Square Adelaide 5000 GPO Box 2607, Adelaide, South Australia 5001



A better environment for the health, wellbeing and prosperity of all **South Australians** 

www.epa.sa.gov.au

South Australia


This email message may contain confidential information, which also may be legally privileged. Only the intended recipient(s) may access, use, distribute or copy this email.

If this email is received in error, please inform the sender by return email and delete the original. If there are doubts about the validity of this message, please contact the sender by telephone. It is the recipient's responsibility to check the email and any attached files for viruses.



Please consider the environment before printing this e-mail

### **Appendix G** – Well Permits



#### PLEASE ATTACH WELL LOCATION MAP TO THE DRILLERS REPORT

Permit No: 363233 TO 363240 (8) Prescribed Area/NOP: FMI R

Hundred: KANMANTOO Suburb: BRUKUNGA

NRM Region/Plan: SAMDB CT 5825/147, F102110, A6 X1 CT 5779/133, F160595, A56 X1 CT 5788/476, F1605096, A57 X2

CT 5378/421, F160593, A54, ADJ, X1 CT 6053/276, D82233, A294 ADJ X1

CT 5378/419, F156402, A2 X1

DCDB ParcelCadastreFull

Prescribed Water Resources Area

Prescribed Watercourse

437.5 875 Meters

DISCLAIMER: The Department of Environment and Water, its employees and

the use, or results of use of the information contained

its employees and servants expressly disclaim all liability or responsibility to any person using the

© Government of South Australia, through the Department of Environment & Water. This work is copyright. Apart from any use permitted under the Copyright Act 1968 (Cwlth), no part may be reproduced by any process without prior written permission obtained from the Department of Environment and Water . Requests and enquiries concerning reproduction and rights should be directed to the Chief Executive, Department of

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

| Permit No:   | 363240     |
|--------------|------------|
| Expiry Date: | 25/05/2021 |

Permission is hereby granted to: GHD PTY LTD

ACN 008 488 373 PO BOX 2052 ADELAIDE SA 5001

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

#### CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5378/419 Allotment 2 in Filed Plan 156402 Hundred of Kanmantoo

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a 3. well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 5. This work may be subject to inspection by the Department's Drilling Inspectors.
- 6. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 7. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social
- 8. The authorised activity must be undertaken by a licensed driller.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### WELL PERMIT

- 9. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 10. Water samples are required from all wells drilled in respect of this permit.
- 11. Strata samples are not required.
- 12. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 13. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 14. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 15. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 16. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit as per the National Environmental Protection (assessment of Site Contamination) measure 1999.
- 17. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 18. All wells in relation to this permit must be sealed from the surface to not less than 5 metres deep.
- 19. The activity shall not significantly increase local drawdown.
- 20. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

#### NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 25/05/2020

Sonya Knight Senior Water Licensing Officer Delegate of Minister for Environment and Water

omknight

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [F] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

Dunward or region 150 or the Natural Parentyreas/Naturagement for 2001.

#### TIMBER JUBW

- Due to uctential land contain nation issues it is recommended that a hydroge diagrant assessment on camer' but targetermine the long raminorespects for groundwater quality, and quantity with regard to the site and desired use.
- This germit does not authors a the taking of water from the well for any purpose other than teeth.
- If the extracted groups east supply is required for human consumption, it is recommenses that the water be quality tosted.

TAICE NOTE that the permit holder, or a person acting or behalf of the permit holder, who contravenes or tails to comply with a condition of this permit is guilty of an offence, and such acts or crimisions may result in the variation, suspension or ravocation of the permit.

Date: 26/05/2020

Sonya Torinit

Senior Mayor Unersaing Officet

enterth how bringspaying I sof valuabled to observed

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

| Permit No:   | 363237     |
|--------------|------------|
| Expiry Date: | 25/05/2021 |

Permission is hereby granted to:

GHD PTY LTD ACN 008 488 373 PO BOX 2052 ADELAIDE SA 5001

#### To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

#### CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 5378/421 Allotment 54 in Filed Plan 160593 Hundred of Kanmantoo

- Well Construction must be in accordance with the General Specification for Well
  Construction, Modification and Abandonment in South Australia (or any subsequent or
  related policy), as provided by the relevant authority
- The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 4. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 5. This work may be subject to inspection by the Department's Drilling Inspectors.
- 6. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 7. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 8. The authorised activity must be undertaken by a licensed driller.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### **PERMIT to undertake a WATER AFFECTING ACTIVITY**

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

- 9. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 10. Water samples are required from all wells drilled in respect of this permit.
- 11. Strata samples are not required.
- 12. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 13. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 14. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 15. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 16. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit as per the National Environmental Protection (assessment of Site Contamination) measure 1999.
- 17. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 18. All wells in relation to this permit must be sealed from the surface to not less than 5 metres deep.
- 19. The activity shall not significantly increase local drawdown.
- 20. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.
- 22. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

#### NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 25/05/2020

Sonya Knight Senior Water Licensing Officer Delegate of Minister for Environment and Water

omkright

Mi Cambier Office | PO Box 1046 | Mt Gambler SA 5290 | [P] 8735 1134 [F] 8735 1105

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

The transport of the second of

#### WELL PERMIT

- 7. Due to potential tend softramnation essess it is recommended that a primyeorogical assessment or carried out to determine the range prospects for groun water underward quantity with exercise to the site and describe the
- This per mititues not guitrouse me taking of warantion in a mail for any purcosa other than testing
- If the adracted groundwater supply is raquired for human consumption in a radonimended is at the water be quality toxicit

TAKE NOTE that the permit halder, or a person auting on behalf of the permit helder, who continuence ordain in comply what a condition of this permit is quity of an offence, and furth acts or repriet to a required of the second in a second or repriet to the permit.

0.000 E010 TE

bony a Wright: Senor Weter Licensing Office: Selectors of Wickner for Evalvanment and With

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

| Permit No:   | 363238     |
|--------------|------------|
| Expiry Date: | 25/05/2021 |

Permission is hereby granted to:

GHD PTY LTD ACN 008 488 373 PO BOX 2052 ADELAIDE SA 5001

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

#### CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 6053/276
Allotment 294 in Deposited Plan 82233
Hundred of Kanmantoo

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 4. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 5. This work may be subject to inspection by the Department's Drilling Inspectors.
- 6. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 7. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 8. The authorised activity must be undertaken by a licensed driller.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

- 9. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 10. Water samples are required from all wells drilled in respect of this permit.
- 11. Strata samples are not required.
- 12. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 13. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 14. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 15. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 16. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit as per the National Environmental Protection (assessment of Site Contamination) measure 1999.
- 17. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 18. All wells in relation to this permit must be sealed from the surface to not less than 5 metres deep.
- 19. The activity shall not significantly increase local drawdown.
- 20. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.
- 22. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

#### NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 25/05/2020

Sonya Knight Senior Water Licensing Officer Delegate of Minister for Environment and Water

onthicle

Wil Gambier Office ( PO Box 1548 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1136

#### PERMIT to undertake a WATER AFFECTIMG ACTIVITY

TXR Tribing Section 1, Section 89, No. 1007 Television 1, London 89, London

#### NELL PERMIT

- Sine to patential tend operation steps as to recommended that a hydroreout servance as a second servance is a season of the determine the long tank or resided and grantify with segant to the site and destructure.
- 3 This permit does not such those the return of years from the well for any purpose of the that
  (setting)
- If the extracted groundwater supply is required for number or resumption, it is recommended that the water be qualify tested

TAILE NOTE that the permit belief, or a person soling on behalf of the permit holder, who contravenes or falls to comply with a condition of this permit is guilty of an offence and such arits or animalons may result in the Landton, susy enterod on it incestion of the permit.

Date, #6005/2028

Sonya stoletik

enlot foliation Laceraing Officer

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No: 363239

Expiry Date: 25/05/2021

Permission is hereby granted to: GHD PTY LTD

ACN 008 488 373 PO BOX 2052 ADELAIDE SA 5001

#### To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

#### CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 5557/777 Section 8 Hundred of Kanmantoo

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 4. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 5. This work may be subject to inspection by the Department's Drilling Inspectors.
- 6. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 7. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 8. The authorised activity must be undertaken by a licensed driller.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

- 9. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 10. Water samples are required from all wells drilled in respect of this permit.
- 11. Strata samples are not required.
- 12. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 13. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 14. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 15. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 16. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit as per the National Environmental Protection (assessment of Site Contamination) measure 1999.
- 17. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 18. All wells in relation to this permit must be sealed from the surface to not less than 5 metres deep.
- 19. The activity shall not significantly increase local drawdown.
- 20. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.
- 22. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

#### NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### **PERMIT to undertake a WATER AFFECTING ACTIVITY**

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 25/05/2020

Sonya Knight Senior Water Licensing Officer Delegate of Minister for Environment and Water

Omknight

Mt. Gambler Office | PO Box 1046 | Mt. Gambler SA 5290 (1P) 6735 1134 [F] 6735 1195

#### PERMIT to undertaine a WARTER AFFECTING ACTIVITY

#### 막하되면 그 그림 때

- The to paterner land container a ser issues this report chinaria is entrapeological assessment be carried for malariment the local arm arcquents in rational advanta in setting allerand desired uses.
- This permit data not a thouse use taking of while form the sect of any purpose of not used testing
- If the excretted groundwater supply is required for human consumetion, a screening reduction water be quality restent.

TAKE NOTE that the permit holder, or a per un action on behalf of the permit holder who contravenessor falls to comply with a condition of this permit is quity of an offence, and each acts or homistons may result to the symbology, whereason or manisters of incommit.

CONTRACTOR THE

Sonni Kright Semor Water Liconomy, Officer

Carlo III

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No: 363233

Expiry Date: 25/05/2021

Permission is hereby granted to:

GHD PTY LTD ACN 008 488 373 PO BOX 2052 ADELAIDE SA 5001

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

#### CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 5825/147
Allotment 6 in Filed Plan 102110
Hundred of Kanmantoo

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a
  well, or the replacement or alteration of the casing, lining or screen of a well, shall not
  adversely affect the quality of an underground water resource.
- 4. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 5. This work may be subject to inspection by the Department's Drilling Inspectors.
- 6. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 7. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 8. The authorised activity must be undertaken by a licensed driller.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

- 9. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 10. Water samples are required from all wells drilled in respect of this permit.
- 11. Strata samples are not required.
- 12. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 13. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 14. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 15. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 16. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit as per the National Environmental Protection (assessment of Site Contamination) measure 1999.
- 17. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 18. All wells in relation to this permit must be sealed from the surface to not less than 5 metres deep.
- 19. The activity shall not significantly increase local drawdown.
- 20. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

#### NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 25/05/2020

Sonya Knight
Senior Water Licensing Officer
Delegate of Minister for Environment and Water

omknight

un Cambier Office | PO Box 1046 | Mt Cambier SA 5290 | [P] 2795 1134 [F] 8795 1136

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

AND A SAME TO THE CONTRACT OF A SAME AS A SAME A SAME

#### THAN SHEW

- Live to potential and contamination issues quareon appoint that a hydrogenium of assessment to assessment the contamine the lot of terms provided to ground after sometry and the contaminations.
- Phis pennit does not authorise the taking of water from the wall for any purpose oth a free lasting.
- If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on unless of the permit holder, who concrevenes or falls to exceptly with a condition of this permit is quity of an offence, and such acts or maniplens may result to the variation, suspension or evocation of the permit

Option TE/OF/2020

Sonya Hingh. Senior Water Uncersing Off

Flora engl

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

#### PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

#### **WELL PERMIT**

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

 Permit No:
 363234

 Expiry Date:
 25/05/2021

Permission is hereby granted to:

GHD PTY LTD ACN 008 488 373 PO BOX 2052 ADELAIDE SA 5001

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

#### CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 5779/133
Allotment 56 in Filed Plan 160595
Hundred of Kanmantoo

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 4. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 5. This work may be subject to inspection by the Department's Drilling Inspectors.
- 6. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 7. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 8. The authorised activity must be undertaken by a licensed driller.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

# **PERMIT to undertake a WATER AFFECTING ACTIVITY**

pursuant to section 135 of the Natural Resources Management Act 2004

# **WELL PERMIT**

- 9. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 10. Water samples are required from all wells drilled in respect of this permit.
- 11. Strata samples are not required.
- 12. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 13. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 14. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 15. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 16. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit as per the National Environmental Protection (assessment of Site Contamination) measure 1999.
- 17. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 18. All wells in relation to this permit must be sealed from the surface to not less than 5 metres deep.
- 19. The activity shall not significantly increase local drawdown.
- 20. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

#### NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

# PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

# **WELL PERMIT**

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 25/05/2020

Sonya Knight
Senior Water Licensing Officer
Delegate of Minister for Environment and Water

Mt Gambier Öffice | PO Box 1046 | Mt Gambier SA 5290 | PJ 8736 1134 |FJ 8736 1116

# PERMIN to maderialice a WATER AFFECTING ACTIVITY

Lumaint to a limbor 15 or the inguint Reactions of the spring in 1, in 2004.

# TIMESA JUSW

- Course per entre entre transmission assess it is recommended that a hytropeological deservation of semipropeological and to determine the long term prosupors for group twater bushing and quartity unit regard to the alterna of assess as
- This perm times it is authorise the taking of water from the well for any purpose wher than testing.
- If the extracted groundwater supply is required for human consumption, it is recommended that the water be qualify tested.

TAKE NOTE that the permit holder, or a parson acting or behalf of the permit holder, who contravenes or falls to comply with a condition of this permit is quity, of an offence, and such acts or complaints may result in the variation, suspendion or revocation of the permit.

Salat: 28/05/2020

Sonys Kithy IL

somer Water ulueneing Officer

GETAVIDED IN THE ENVIRONMENT CONTROL OF THE PARTY.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

# PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

# **WELL PERMIT**

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below.

Permit No: 363235

Expiry Date: 25/05/2021

Permission is hereby granted to:

GHD PTY LTD ACN 008 488 373 PO BOX 2052 ADELAIDE SA 5001

#### To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

#### CONDITIONS:

 The activity authorised by this permit must only be undertaken on the land described below:

CT 5788/476
Allotment 57 in Filed Plan 160596
Hundred of Kanmantoo

- Well Construction must be in accordance with the General Specification for Well
  Construction, Modification and Abandonment in South Australia (or any subsequent or
  related policy), as provided by the relevant authority
- The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a
  well, or the replacement or alteration of the casing, lining or screen of a well, shall not
  adversely affect the quality of an underground water resource.
- Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 5. This work may be subject to inspection by the Department's Drilling Inspectors.
- 6. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 7. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 8. The authorised activity must be undertaken by a licensed driller.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

# PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

# **WELL PERMIT**

- 9. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 10. Water samples are required from all wells drilled in respect of this permit.
- 11. Strata samples are not required.
- 12. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 13. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 14. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 15. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 16. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit as per the National Environmental Protection (assessment of Site Contamination) measure 1999.
- 17. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 18. All wells in relation to this permit must be sealed from the surface to not less than 5 metres deep.
- 19. The activity shall not significantly increase local drawdown.
- 20. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

#### NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

# PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

# **WELL PERMIT**

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 25/05/2020

Sonya Knight
Senior Water Licensing Officer
Delegate of Minister for Environment and Water

Mi Cumbier Office | PO Box 1046 | Mt Cambier 8A 6290 | [P] 8735 1 (34 [F] 8735 1135

# PERMIT to undertake a WATER AFFECTING ACTIVITY

MOTOR IN A PROMODER MY SECURE MATERIAL PROPERTY OF THE PROPERT

# THE PER W

- Due to potential lent contain realion issues to the commented that a hydrogenic day assessment be care at out to determin a the rung term prospects for groundwater quelity and question with rugard to the site and desired use.
- This permit ages not authorise the facility of water from the wall for any purpose other than testing.
- If the extracted groundwater supply is required for human consumption, it is recommended that the water be qualify rested.

TAKE YOTE that the point holder or a person acting on behalf of the permit holder, who contravenes or falls to comply with a conclition of this permit is guilty of an orience, and such at is or eministens may result to the variation, guerrension or I evocation of the permit.

Oated 25/05/2020

angine syne8

Subgate of Minnese for Environment and Minnese

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

# PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

# **WELL PERMIT**

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

 Permit No:
 363236

 Expiry Date:
 25/05/2021

Permission is hereby granted to: GHD PTY LTD

ACN 008 488 373 PO BOX 2052 ADELAIDE SA 5001

#### To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

#### CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5788/476
Allotment 57 in Filed Plan 160596
Hundred of Kanmantoo

- Well Construction must be in accordance with the General Specification for Well
  Construction, Modification and Abandonment in South Australia (or any subsequent or
  related policy), as provided by the relevant authority
- The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 4. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 5. This work may be subject to inspection by the Department's Drilling Inspectors.
- 6. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 7. Activities shall not have an unacceptable detrimental impact on cultural, heritage or social values.
- 8. The authorised activity must be undertaken by a licensed driller.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

# PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

# **WELL PERMIT**

- 9. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 10. Water samples are required from all wells drilled in respect of this permit.
- 11. Strata samples are not required.
- 12. The licensed well driller must forward with the report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.
- 13. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 14. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 15. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 16. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit as per the National Environmental Protection (assessment of Site Contamination) measure 1999.
- 17. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 18. All wells in relation to this permit must be sealed from the surface to not less than 5 metres deep.
- 19. The activity shall not significantly increase local drawdown.
- 20. The activity shall not adversely affect the quality, quantity and accessibility of water for supply from existing wells operated by other landholders.
- 21. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and/or cementing of this well.

#### NOTES:

- 1. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 2. This permit is not transferable.
- 3. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 4. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 5. This permit is not an approval to clear native vegetation.
- 6. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

# PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004

# **WELL PERMIT**

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 25/05/2020

Sonya Knight
Senior Water Licensing Officer
Delegate of Minister for Environment and Water

onkiale

Mt Cambier Office ( PO Box 1046 | Nt Cambier SA 5290 | [P] 8735 1134 [F] 8735 1135

# PERMIT to undertake a WATER AFFECTING ACTIVITY

FURSIONAL HARBORISM CARROLL WE HARRY SWITCH SECTION OF BURNESS OF FRANCE ...

# TIMPER SERWIT

- Jue to potential for a conformation trailes it is recommended that a nythogosingles.

  assessment top trailed but to determine the long term prospects for ground vator quality with regard to the site and desired use.
- This permit does not authorise the taking of water from the well for any purpose other than testing.
- If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested

TAME NOTE that the permit notice, or a person setting on beliaff of the permit holder, who contravenes or fairs to comply with a condition of this permit is culity of an offence, and such acts or ommerces may result to the variation, suspension of the carmit.

OCCUPATION : ENTER

Sonya Kinight Senior Water Leanning

# **Appendix H** – Groundwater Well Survey Results



To: Dilara Valiff

Company: GHD

Phone: 8111 6572

From: Lincoln Jeffery

Phone: 0414 840 569 Fax: 8351 4247

Email: Lincoln@linkupconstructionsurveys.com.au

Date: 26/06/2020

# Monitoring well coordinates – Brukunga CFS

| Well or Bore | Easting    | Northing    | R.L. Top of Casing | Natural Surface |
|--------------|------------|-------------|--------------------|-----------------|
| No.          | GDA20      | GDA20       | A.H.D.             | A.H.D.          |
| CO4A         | 312286.087 | 6123984.782 | 363.180            | 362.490         |
| GW01         | 312080.993 | 6124662.965 | 349.859            | 349.934         |
| GW02         | 312744.198 | 6124667.557 | 386.661            | 386.892         |
| GW03         | 312959.226 | 6124496.012 | 380.353            | 379.566         |
| GW04         | 312784.069 | 6124214.237 | 385.275            | 384.454         |
| GW05         | 312205.219 | 6123128.405 | 307.012            | 307.044         |
| GW06         | 312419.196 | 6122350.488 | 297.669            | 296.993         |
| GW07         | 312230.204 | 6122567.985 | 303.330            | 303.386         |
| H15          | 312475.410 | 6123587.601 | 355.926            | 356.003         |
| K23          | 311383.885 | 6124376.168 | 418.192            | 418.298         |
| K26          | 310961.761 | 6124446.297 | 433.547            | 433.661         |

All Survey information was based from the <u>GDA20 Z54</u> grid system and Australian Height Datum (AHD), Triangulated from Network Survey Marks.

# **Appendix I** – Field Sheets

Sampling Record Sheet Client: CFS Project: CFS Brukunga State Training Centre Project No: 12516828

Sampler: Rob Webb Date: 6/05/2020 – 8/05/2020

#### Soil Bores

| Sample ID | Date | Time | Comment                                                                                              |
|-----------|------|------|------------------------------------------------------------------------------------------------------|
| SB01      | 7/5  |      | Hand auger to target depth 1 meter, location of borehole moved further south due to dense vegetation |
|           |      |      | Samples taken at "0-0.2", "0.2-0.4", "0.9-1.1", "1.7-1.9", "2.3-2.8", "3.0-3.2"                      |
| SB02      | 6/5  |      | Borehole inside storage shed, concrete core sample collected                                         |
|           |      |      | Samples taken at "0.1-0.3", "0.6-0.8", "0.8-0.95"                                                    |
| QC02      |      |      | Intra-lab duplicate sample of SB02_0.1-0.3                                                           |
| QC02A     |      |      | Inter-lab triplicate sample of SB02_0.1-0.3                                                          |
| SB03      | 6/5  |      | Borehole between Media building and Hot Pad B                                                        |
|           |      |      | Samples taken at "0.0-0.2", "0.4-0.6", "0.9-1.1", "1.7-1.9", "2.3-2.8", "3.0-3.2"                    |
| SB04      | 7/5  |      | Hand auger to refusal                                                                                |
|           |      |      | Sample taken at "0.0-0.2"                                                                            |
| QC05      |      |      | Intra-lab duplicate sample of SB04_0.0-0.2                                                           |
| QC05A     |      |      | Inter-lab triplicate sample of SB04_0.0-0.2                                                          |
| SB05      | 6/5  |      | Borehole on Hot Pad B, concrete core sample collected                                                |
|           |      |      | Samples taken at "0.1-0.2", "0.3-0.4", "0.8-1.0", "1.7-1.9", "3.1-3.3"                               |
| QC01      |      |      | Intra-lab duplicate sample of SB05_0.8-1.0                                                           |
| QC01A     |      |      | Inter-lab triplicate sample of SB05_0.8-1.0                                                          |
| SB06      | 6/5  |      | Borehole on Hot Pad A, concrete core sample collected                                                |
|           |      |      | Samples taken at "0.23-0.4", "0.4-0.6", "1.0-1.2", "1.9-2.1"                                         |
| SB07      | 7/5  |      | Hand auger to refusal                                                                                |
|           |      |      | Samples taken at "0.0-0.2", "0.4-0.6"                                                                |
| QA03      |      |      | Intra-lab duplicate sample of SB07_0.0-0.2                                                           |
| QC03A     |      |      | Inter-lab triplicate sample of SB07_0.0-0.2                                                          |
| SB08      | 6/5  |      | Additional borehole on Hot Pad A                                                                     |
|           |      |      | Samples taken at "0.2-0.4", "0.4-0.6"                                                                |

# Surface Water and Sediment Sampling

| Sample ID | Date | Time | GPS         | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                      |
|-----------|------|------|-------------|-----------|------|------------|-----------|------------|----------------------------------------------|
| Creek_4   | 8/5  | 1629 | (54H)       | 15.4      | 5.29 | 7570       | 3.55      | 361.2      |                                              |
|           |      |      | 311927 m E  |           |      |            |           |            |                                              |
|           |      |      | 6124574 m S |           |      |            |           |            |                                              |
| Creek_5   | 8/5  | 1623 | (54H)       | 13.3      | 4.59 | 6360       | 6.15      | 372.7      |                                              |
|           |      |      | 311918 m E  |           |      |            |           |            |                                              |
|           |      |      | 6124476 m S |           |      |            |           |            |                                              |
| Creek_6   | 8/5  | 1613 | (54H)       | 13.6      | 5.25 | 7915       | 2.55      | 394.0      |                                              |
|           |      |      | 311919 m E  |           |      |            |           |            |                                              |
|           |      |      | 6124433 m S |           |      |            |           |            |                                              |
| QC13      |      |      |             |           |      |            |           |            | Intra-lab duplicate water sample of          |
|           |      |      |             |           |      |            |           |            | Creek_6                                      |
| QC13A     |      |      |             |           |      |            |           |            | Inter-lab triplicate water sample of Creek_6 |
| QC14      |      |      |             |           |      |            |           |            | Intra-lab duplicate sediment sample of       |
|           |      |      |             |           |      |            |           |            | Creek_6                                      |
| QC14A     |      |      |             |           |      |            |           |            | Inter-lab triplicate sediment sample of      |
|           |      |      |             |           |      |            |           |            | Creek_6                                      |
| DC02      | 7/5  |      | (54H)       | 14.8      | 8.57 | 1170       | 8.57      | 13.1       | Could only acquire water samples by          |
|           |      |      | 312233 m E  |           |      |            |           |            | lowering sample bottles by bailer cord from  |
|           |      |      | 6123001 m S |           |      |            |           |            | bridge, no sediment sample                   |
| DC03      | 8/5  |      | (54H)       | 14.4      | 9.44 | 1492       | 12.82     | -0.2       |                                              |
|           |      |      | 312371 m E  |           |      |            |           |            |                                              |
|           | 0./5 |      | 6122549 m S |           |      | 1010       | 0.00      |            |                                              |
| DC04      | 8/5  |      | (54H)       | 14.0      | 9.47 | 1210       | 9.99      | -2.1       |                                              |
|           |      |      | 312251 m E  |           |      |            |           |            |                                              |
|           | 0./5 | 2224 | 6122339 m S | 10.1      |      | 1700       |           |            |                                              |
| DC05      | 8/5  | 0931 | (54H)       | 12.4      | 7.85 | 1792       | 7.49      | 4.2        |                                              |
|           |      |      | 312841 m E  |           |      |            |           |            |                                              |
| 0011      |      |      | 6121530 m S |           |      |            |           |            |                                              |
| QC11      |      |      |             |           |      |            |           |            | Intra-lab duplicate water sample of DC05     |
| QC11A     |      |      |             |           |      |            |           |            | Inter-lab triplicate water sample of DC05    |

| QC12  |     |                                    |      |      |      |      |     | Intra-lab duplicate sediment sample of DC05  |
|-------|-----|------------------------------------|------|------|------|------|-----|----------------------------------------------|
| QC12A |     |                                    |      |      |      |      |     | Inter-lab triplicate sediment sample of DC05 |
| DC07  | 8/5 | (54H)<br>312994 m E<br>6120790 m S | 12.8 | 8.65 | 1979 | 7.03 | 3.5 |                                              |

#### Sludge samples

| Sample ID | Date | Comment                                                                                                    |
|-----------|------|------------------------------------------------------------------------------------------------------------|
| SS01-SS22 | 8/5  | Sludge stockpile samples from SS01 through to SS22, located on northern section of Pyrite quarry (towards  |
|           |      | Peggy Buxton Rd)                                                                                           |
| SS23-SS30 | 8/5  | Sludge stockpile samples from SS23 through to SS30, located in the southern most section of the mine site, |
|           |      | located between the quarry wall and Dawesley Creek                                                         |

# Rinsates/Blanks

| Sample ID | Date | Time    | Comment                                                                         |
|-----------|------|---------|---------------------------------------------------------------------------------|
| RB01      | 6/5  | 8:00am  | Drillers plastic core tray                                                      |
| RB02      | 6/5  | 8:00am  | Drillers plastic push tube casing                                               |
| RB03      | 7/5  | 8:00am  | Hand auger test 1 taken before sampling started                                 |
| RB04      | 7/5  | 11:30am | Hand auger test 2 taken between SW15 and SW16, observed by auditor              |
| RB05      | 8/5  | 8:00am  | Water quality meter taken at the start of 8/5 between DC02 (7/5) and DC05 (8/5) |
| RB06      | 8/5  | 1:00pm  | Shovel                                                                          |
| TB01      | 6/5  |         | Trip blank made from rinsate water                                              |
| TB02      | 7/5  |         | Trip blank made from rinsate water                                              |
| WB01      | 6/5  |         | Water sample taken directly from the water tank on drill rig                    |

Flux test – Hot Pad A (7/5/20)

| Sample ID | Time taken | Time between | Comments                                                           |
|-----------|------------|--------------|--------------------------------------------------------------------|
|           | (minutes)  | (minutes)    |                                                                    |
| FX01      | 10         | -            | First flux test sample                                             |
| FX02      | 20         | 10           | Second flux test sample                                            |
| FX03      | 30         | 10           | Third flux test sample                                             |
| FX04      | 40         | 10           | Fourth flux test sample                                            |
| FX05      | 50         | 10           | Fifth flux test sample                                             |
| FX06      | 60         | 10           | Sixth flux test sample                                             |
| FX07      | 70         | 10           | Final flux test sample                                             |
| FXB01     | 70         |              | Blank sample taken directly from the hose at the same time as FX07 |

# Stockpile samples

| Sample ID | Date | Comment                                                                 |
|-----------|------|-------------------------------------------------------------------------|
| SW01      | 7/5  | (Pyrite quarry, drill rig borehole)                                     |
|           |      | Samples taken at "0.1-0.3", "1.9-2.0", "3.3-3.6"                        |
| QC07      |      | Intra-lab duplicate sample of SW01_3.3-3.6                              |
| QC07A     |      | Inter-lab triplicate of SW01_3.3-3.6                                    |
| SW02      | 7/5  | (Pyrite quarry, drill rig borehole)                                     |
|           |      | Samples taken at "0.1-0.3", "0.9-1.1", "1.4-1.5"                        |
| SW03      | 6/5  | (Pyrite quarry, drill rig borehole)                                     |
|           |      | Samples taken at "0.0-0.2", "0.5-0.7", "1.5-1.7", "4.8-4.9"             |
| SW04      | 6/5  | (Pyrite quarry, drill rig borehole)                                     |
|           |      | Samples taken at "0.0-0.2", "1.0-1.3", "2.0-2.1", "3.85-3.9", "4.5-4.6" |
| QC04      |      | Intra-lab duplicate of SW04_1.0-1.3                                     |
| QC04A     |      | Inter-lab duplicate of SW04_1.0-1.3                                     |
| SW05      | 6/5  | (Pyrite quarry, drill rig borehole)                                     |
|           |      | Samples taken at "0.0-0.2", "1.0-1.1", "2.0-2.2", "3.4-3.6"             |
| SW06      | 6/5  | (Pyrite quarry, drill rig borehole)                                     |
|           |      | Samples taken at "0.5-0.7", "4.1-4.2", "4.3-4.4"                        |
| SW07      | 7/5  | (Pyrite quarry, drill rig borehole)                                     |
|           |      | Samples taken at "0.2-0.3", "1.0-1.2", "2.5-2.8", "4.2-4.3"             |
| QC06      |      | Intra-lab duplicate of SW06_2.5-2.8                                     |
| QC06A     |      | Inter-lab triplicate of SW06_2.5-2.8                                    |
| SW08      | 7/5  | (Pyrite quarry, drill rig borehole)                                     |
|           |      | Samples taken at "0.5-0.6", "2.3-2.4", "4.0-4.1", "4.95-5.0"            |
| SW09      | 7/5  | (Pyrite quarry, drill rig borehole)                                     |
|           |      | Samples taken at "0.1-0.2", "1.6-1.8", "2.0-2.2", "4.0-4.2", "5.5-5.7"  |
| SW10      | 7/5  | Retention dam east of water treatment plant                             |
|           |      | Samples taken at "0.0-0.2", "0.8-0.9", "1.5-1.7", "2.7-2.8"             |
| SW11      | 7/5  | Retention dam east of water treatment plant                             |
|           |      | Samples taken at "0.0-0.1", "0.4-0.5", "1.3-1.5", "2.0-2.3", "3.0-3.2"  |
| QC08      |      | Intra-lab duplicate sample of SW11_2.0-2.3                              |
| QC08A     |      | Inter-lab triplicate sample of SW11_2.0-2.3                             |

| SW12-SW15 | 7/5 | Stockpile grab sample, area surrounding retention dam east of water treatment plant, SW15 sample collected |
|-----------|-----|------------------------------------------------------------------------------------------------------------|
|           |     | using hand auger and observed by auditor                                                                   |
| SW16-SW20 | 7/5 | Stockpile grab sample, drying ponds south of retention dam and south-east of water treatment plant         |

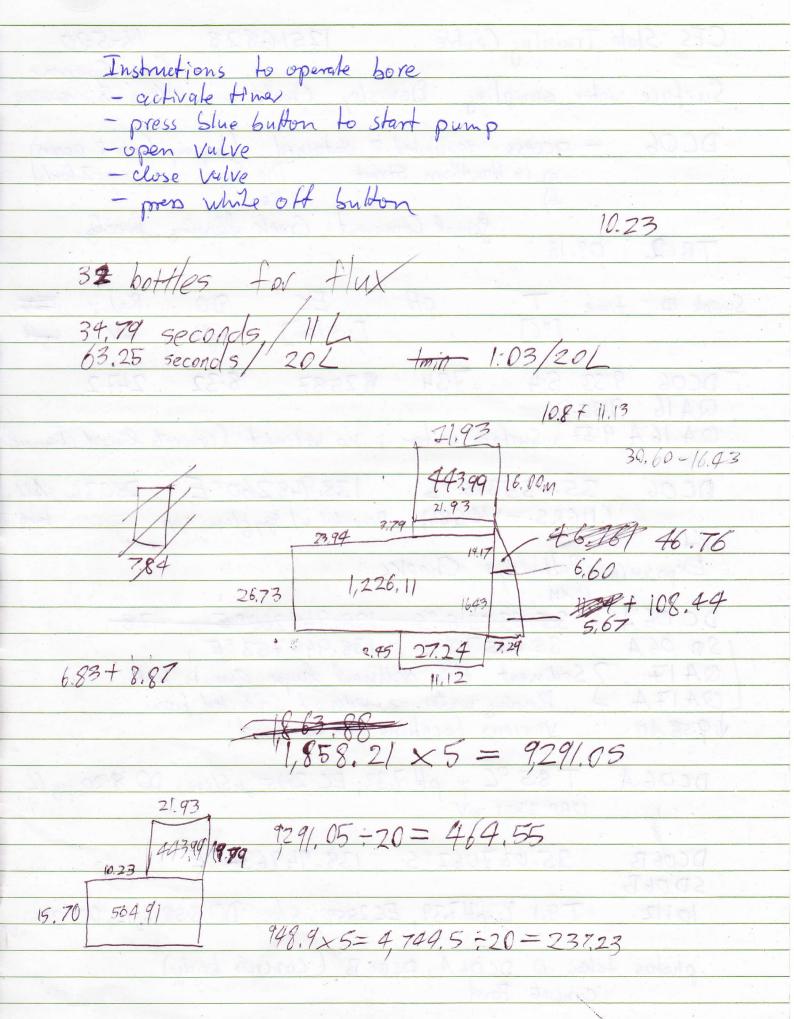
Sampling Record Sheet Client: CFS Project: CFS Brukunga State Training Centre Project No: 12516828

Sampler: Sean Sparrow Date: 18/05/2020

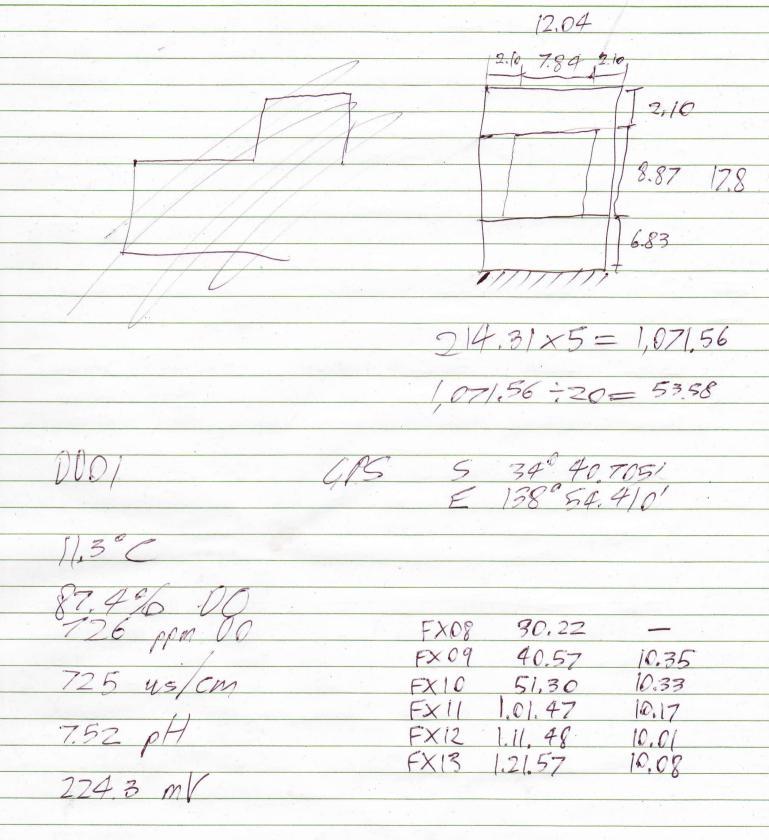
| Sample ID | Time | GPS (UTM)           | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                               |
|-----------|------|---------------------|-----------|------|------------|-----------|------------|---------------------------------------------------------------------------------------|
| TB02      | 0918 |                     |           |      |            |           |            |                                                                                       |
| DC06      | 0933 | (54H)<br>312842 m E | 8.4       | 7.34 | 2587       | 8.32      | 247.2      | Creek flowing freely, access requested & obtained to access road reserve (16 Hawthorn |
|           |      | 6121116 m S         |           |      |            |           |            | Street – property has potential exposure                                              |
|           |      | 01211101113         |           |      |            |           |            | pathway from chickens whose pen is close to                                           |
|           |      |                     |           |      |            |           |            | Dawesley Creek), surface water.                                                       |
|           |      |                     |           |      |            |           |            | No sediment sample collected (concrete lined channel)                                 |
| QA16      |      |                     |           |      |            |           |            | Intra-lab duplicate sample of DC06 (water only)                                       |
| QA16A     |      |                     |           |      |            |           |            | Inter-lab triplicate sample of DC06 (water only)                                      |
| DC06A     | 0955 | (54H)               | 8.5       | 7.33 | 2995       | 8.20      | 230.1      | Thin sediment layer due to fast flowing water,                                        |
|           |      | 312888 m E          |           |      |            |           |            | therefore sediment collected from various                                             |
|           |      | 6121065 m S         |           |      |            |           |            | points around ford (concrete lined), keep on                                          |
|           |      |                     |           |      |            |           |            | hold for informed consent (additional point not                                       |
|           |      |                     |           |      |            |           |            | identified in SAQP)                                                                   |
| QA17      |      |                     |           |      |            |           |            | Intra-lab duplicate of sediment from DC06A,                                           |
|           |      |                     |           |      |            |           |            | keep on hold for informed consent                                                     |
| QA17A     |      |                     |           |      |            |           |            | Inter-lab triplicate of sediment from DC06A,                                          |
|           |      |                     |           |      |            |           |            | keep on hold for informed consent                                                     |
| DC06B     | 1012 | (54H)               | 9.1       | 7.39 | 2559       | 8.58      | 226.3      | Creek free flowing, concrete bridge through                                           |
|           |      | 312972 m E          |           |      |            |           |            | creek bed with diversion pipes in structure, keep                                     |
|           |      | 6120925 m S         |           |      |            |           |            | on hold for informed consent (additional point                                        |
|           |      |                     |           |      |            |           |            | not identified in SAQP)                                                               |
| DD01      | 1550 | (54H)               | 11.3      | 7.52 | 725        | 7.26      | 224.3      | Diversion drain, sampled from grate in middle of                                      |
|           |      | 311966 m E          |           |      |            |           |            | State Training Centre compound between                                                |
|           |      | 6124540 m S         |           |      |            |           |            | Media Training building and Hot Pad B                                                 |
| QA19      |      |                     |           |      |            |           |            | Intra-lab duplicate sample of DD01                                                    |
| QA19A     |      |                     |           |      |            |           |            | Inter-lab triplicate sample of DD01                                                   |

| 16 Hawthorn   | Will sample this in future round (8&9 June), property owner's instructions on operating bore: |  |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|
| Street (bore) |                                                                                               |  |  |  |  |  |
|               | - Activate timer                                                                              |  |  |  |  |  |
|               | - Press blue button to start pump                                                             |  |  |  |  |  |
|               | - Open valve                                                                                  |  |  |  |  |  |
|               | - Close valve                                                                                 |  |  |  |  |  |
|               | - Press white off button                                                                      |  |  |  |  |  |
| RB02          | Rinsate blank taken from WQM before sampling the Diversion Drain (DD01)                       |  |  |  |  |  |

#### Flux test


| Sample ID | Time taken | Time between | Comments                                                                |
|-----------|------------|--------------|-------------------------------------------------------------------------|
|           | (minutes)  | (minutes)    |                                                                         |
| FX08      | 30.22      | -            | First flux test sample taken as water in drain reached collection point |
| FX09      | 40.57      | 10.35        | Second flux test sample                                                 |
| FX10      | 51.30      | 10.33        | Third flux test sample                                                  |
| FX11      | 61.47      | 10.17        | Fourth flux test sample                                                 |
| FX12      | 71.48      | 10.01        | Fifth flux test sample                                                  |
| FX13      | 81.57      | 10.08        | Final flux test sample                                                  |
| QA18      | 81.57      |              | Intra-lab duplicate sample of FX13                                      |
| QA18A     | 81.57      |              | Inter-lab triplicate sample of FX13                                     |
| FXB2      | 81.57      |              | Blank sample collected directly from hose                               |

# Sampling Record Sheet 100% Recycled Paper






| CFS State Training Centre                                                                                   | 12516828 18-5-20                 |
|-------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                                             | Sean Spanner                     |
| Surface Vator sampling Dawosley                                                                             | Creek Vera Biermann              |
|                                                                                                             |                                  |
| DCO6 - access requested & ob                                                                                | tained ( bjump fence & acces)    |
| a) 16 Hawthorn Street                                                                                       | The Brae" 2 fords                |
| (b)                                                                                                         | Ken                              |
| DCO6 - access requested & ob a) 16 Hawthorn Street b) Several Commont TBO2 09:18                            | : Creek flowing freely           |
| TBO2 09:18                                                                                                  |                                  |
|                                                                                                             |                                  |
| Sample ID time T pH                                                                                         | EC DO Redox =                    |
| Sample ID time T pH [°C] [MS                                                                                | Icm] ng/2 mV mg/2                |
|                                                                                                             |                                  |
| DC06 9:33 8.4 734 825                                                                                       | 87 8-32 247.2                    |
| QA16 9:35 7                                                                                                 |                                  |
| QA 16 A 9:37 ) Surface water; no                                                                            | sediment (congret lined channel) |
|                                                                                                             |                                  |
| DC06 35.035318°S 138                                                                                        | 8,948260°E 280,3 m Alb.          |
| (MGRS - WGS84) Recorde Pot.  Exposure Pothway: Chooks  DC 06 A 35.035318°5, 138.  150 06 A 35.035788°5 138. | el w/ Spy class app tuels        |
| Pod.                                                                                                        | 778                              |
| Exposure Pothway, Chooks                                                                                    | 309                              |
| NOAM                                                                                                        |                                  |
| DC 06 A 35.035318°5, 138.                                                                                   | 948260°E, 28                     |
| ISD 06A 35.035788°5, 138,                                                                                   | 948753°E,                        |
| QAIT Z Sediment this sediment                                                                               | luyer due to fast                |
| LQA17A ) flowing water -> sedin                                                                             |                                  |
| V9:58 AM Various Locations ato                                                                              |                                  |
| 27 /2 - 5 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /                                                              |                                  |
| DCO6A T 8.5°C; pH 7.33, E                                                                                   | C 2995 MS/cm, DD 8:20 mg/L       |
| URP 230,1 mV                                                                                                |                                  |
|                                                                                                             |                                  |
| DC06B 35.037062°5, 138                                                                                      | 3.949636°E                       |
| SD06B                                                                                                       |                                  |
| 10:12 T9.1 G pH739, EC 255                                                                                  | 9 µS/cm, DO 8:58 mg/2, ORP 226.3 |
|                                                                                                             |                                  |
| photos taken @ DCO6A, DCO6B                                                                                 | (Concreto bridge)                |
| Concrete Pord                                                                                               | 0                                |







Kon Soursy




Figure: Map of proposed surface water sampling location DC06 in road reserve (public land), Dawesley SA.

OWNER MINOS JOSEPH CASTELL 04 02 143 516 MILOS JOSEPHCASTELL @ 6MAIL. com

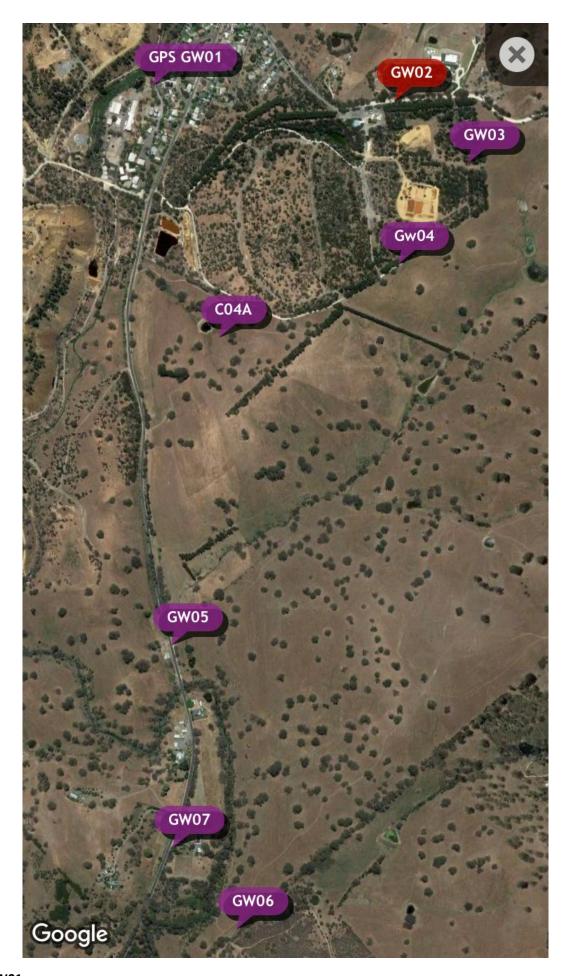
#### Field Notes

**JOB ID:** 12516828

**Date:** 19/05/2020

Weather: Overcast. Dry

Wind: < 25 kmph NW


Ground conditions: Dry

**Activities:** Service clearance for 8 groundwater monitoring wells.

#### **GHD Staff / Subcontractors:**

- Joel Chance (GHD)
- Matthew Willsmore (Cable Search)
- David Jeffree (CFS) GW01
- Ray Jackson GW06

**NOTES:** 



# GW01

Coordinates:

Lat: 35°00′11.31″S

Lon: 138°56'26.26"E



GW02

Coordinates:

Lat: 35°00'12.11"S

Lon: 138°56′52.89″E



#### GW03

Coordinates:

Lat: 35°00'17.48"S

Lon: 138°57'01.05"E



#### **GW04**

Coordinates:

Lat: 35°00'26.75"S



#### GW05

Coordinates:

Lat: 35°01'01.62"S

Lon: 138°56'30.08"E



#### **GW06**

Coordinates:

Lat: 35°01'26.94"S

Lon: 138°56'38.09"E



#### GW07

Coordinates:

Lat: 35°01'19.82"S

Lon: 138°56'30.88"E



C04A

Coordinates:

Lat: 35°00′33.81″S Lon: 138°56′34.32″E



|                     |                              |                                        |                                    |                                                                                                   |                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                       |              |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $G_{1}$                                                                                                                                     |
|---------------------|------------------------------|----------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------|--------------|----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Driller: Drill Meth | By: Joe                      | 5                                      | 2020<br>Chance                     | · ·                                                                                               | Surface C<br>Water Stri | ompletion:<br>ke: | Got of State |          |                                                       | Sc<br>Gravel | onite (  | Depth<br>Depth             | 11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $m - 12.5m \cdot (12.5n)$<br>2.5m - 15.5n (3n)<br>5n - 15.5n (4n)<br>5n - 11.5n (2n)<br>n - 10.5n (10.5n)<br>an                             |
| DEPTH               | lay III andy Clay layey Sand | and book and layey Gravel filty Gravel | ill the - Write in Comments t grey | k grey mm gesy nm gesy ale Brown ele Brown elestrewish Brown elestrowish Brown k Yellowish Channa | Mo                      | isture intent Au  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CLAY     | SAND Size Sortin  Well sorted  Moderatiey well sorted | ig Text      | odour IN | /Isual - Write in Comments | PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COMMENTS                                                                                                                                    |
| O                   | 0 0 0 0 0                    |                                        | ×                                  | *                                                                                                 | 2 0 5 2                 | < >               | <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×        | ×X                                                    | ×            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fill. Clayey Sand. trace                                                                                                                    |
| 0.3                 | <b>&gt;</b>                  |                                        | ×                                  | ×                                                                                                 |                         | ×                 | ××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×        | ×                                                     |              |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | schist: weathered:                                                                                                                          |
| 1.2                 |                              |                                        | ×                                  | ×                                                                                                 |                         | ×                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X        | ×                                                     |              |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hard Frieble  Schist  Hard.  Pland (1500 1500 1500 1500 1500 1500 1500 150                                                                  |
| 1.9                 |                              |                                        | ×                                  | ×                                                                                                 | ×                       | ×                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X        | ×                                                     |              |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Schist Parite (trace I fragrents)                                                                                                           |
| 3.4                 |                              | Airi                                   | ××                                 |                                                                                                   | ×                       | ×                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ×                                                     |              |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Schist / Parite (trace I fragments) Hard. Silver nica. Schist (light gray   Silver) Schist (light gray   Silver) Parite (trace   fragments) |
| 13.5                | 1                            |                                        | ××                                 |                                                                                                   | X                       |                   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | ×                                                     |              |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wet. w/5@13.5 n                                                                                                                             |
| 1                   | 2.4                          |                                        |                                    |                                                                                                   |                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                       |              |          |                            | The same of the sa |                                                                                                                                             |
| 15.5                |                              |                                        | ××                                 |                                                                                                   | ×                       |                   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>X</b> | ×                                                     | 5            |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "                                                                                                                                           |
|                     |                              |                                        |                                    |                                                                                                   |                         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                       |              |          |                            | and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |
| Dei                 | 11 12                        | IIII<br>Lia                            | : [                                | )H4                                                                                               | -00                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                       |              |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pega: 2 0 2                                                                                                                                 |

Page: 1 9 2

# key notes:

- . WS observed @ 13.5m.
- . GW under pressure water level final (2.7m)
- · Screen installed In above WS to target water bearing zone.

# Sampling notes

to open in order to target water bearing zone.

| Diagram.                      | ·             |
|-------------------------------|---------------|
| 1cm = 1m                      |               |
| ξ                             | Final @ 2.7 m |
| · Sand peck-11.5n-15.5n 1     | Final C 2     |
| · Bentonite - 10.50 - 11.50 N |               |

Screened interval - 12.5 -- 15.5 n.

Water Strike

(0 13.5n'

|                                        |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          |          |     | GW62 -                                                                                         |     |
|----------------------------------------|-------------------------------------|-------------|--------------------------------|-----------------------|-------------------------------|---------------------|--------------|---------|--------------------------|-----------|--------------|-----------|-----------------|-------------------|----------|----------|-----|------------------------------------------------------------------------------------------------|-----|
|                                        | _                                   |             |                                |                       |                               |                     |              |         | -                        |           |              |           |                 |                   |          |          |     | GWOZ                                                                                           |     |
| Date:                                  | 7-5-                                | 2020        | )                              |                       | Diamete<br>Casing:<br>Surface | er: 10              | 4            | ~~      | ( 1                      | od        |              |           |                 |                   |          |          |     |                                                                                                |     |
| Logged By:                             | Joel                                | Chanc       | e.                             |                       | Casing:                       | 50                  | 0~           | ~       |                          |           |              |           |                 | В                 | lank de  | pth      |     |                                                                                                |     |
| Oriller:                               | LOS.                                |             |                                |                       | Surface                       | Complet             | ion: (       | Ta      | 2+19                     |           |              |           | -               |                   | een De   |          |     |                                                                                                |     |
| orill Method: All hammer water strike: |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 | 200               | ack De   |          |     |                                                                                                |     |
| TD:                                    |                                     |             |                                |                       | Walter L                      | evel Fina           | al:          |         | 7 - 1                    | 20/       | /            |           |                 | Bento             | nite De  |          |     |                                                                                                |     |
| 25168                                  | 328                                 | Client:     | -                              | Roul                  | kunac                         |                     | Ma           | 1       | 100                      | 1-1-      | 16           | SW        |                 |                   | Gr       |          |     |                                                                                                |     |
| Job No:                                |                                     | Client:     | );                             | ), ,                  |                               |                     | Project      | Name:   | 17.5                     | -         |              |           |                 |                   | Concr    | ete      |     |                                                                                                |     |
|                                        | Geolog                              | у           | С                              | olour                 |                               | Moisture<br>content |              | Hardnes | s                        | Plasticit |              |           | SAND<br>Sorting | Textu             | re IMPA  | ст       |     |                                                                                                |     |
|                                        |                                     | ents        |                                |                       | nts                           |                     |              |         |                          |           |              |           | g               |                   |          | ments    |     |                                                                                                |     |
|                                        |                                     | - Loo       |                                | 900                   | n n                           |                     |              |         |                          |           |              |           | sorte           |                   |          | Com      |     |                                                                                                |     |
|                                        | 9                                   | lte in (    |                                | 3rown<br>Sh On        | nwn<br>n in                   |                     |              |         |                          |           |              |           | y well          |                   |          | /rite in |     |                                                                                                |     |
|                                        | y Clay<br>sy Sar                    | Grave       | rey<br>rey<br>rey<br>Brown     | ish br<br>wish i      | ed<br>ed<br>- writ            |                     | az           | 1       | _ e                      | E         | 9 9          | E         | sorte<br>eratle | , ag              | r design | e        |     |                                                                                                |     |
| DEPTH O                                | Silt<br>Sand<br>Claye<br>Silty Sand | Silty Grave | Md g<br>Dk gr<br>Brn g<br>Pale | Grey<br>Yello<br>Dk Y | Redo<br>Mottl<br>other        | Mois<br>Low<br>Dry  | V-so<br>Soft | Stiff   | Hard<br>Friat            | Med Low   | Cos          | Fine Med  | Mod<br>Pool     | Loo               | 90<br>00 | Visu     | PID | COMMENTS                                                                                       |     |
| -1                                     |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          |          |     | Fill Clasery Sand Par brown<br>trace oraquic matter. Gravel 5-1<br>Schist Par brown weathered. |     |
|                                        |                                     |             |                                |                       | X                             | X                   | X            |         |                          | X         |              | X         | 1               |                   |          |          |     | trace occasio matter. Gravel 5-1                                                               | 000 |
|                                        |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 | П                 |          |          |     | 3 dist Pal. brown weathered.                                                                   |     |
| 3.05                                   |                                     |             | ×                              |                       |                               | 1                   |              |         | ××                       |           | A            |           |                 | П                 |          |          |     | SCHOOL                                                                                         |     |
| ,                                      | ++++                                |             | +++                            | ++                    | ++++                          |                     |              | +       | +++                      | +         | +            | +         | +               | $\dagger \dagger$ | +        | $\top$   |     | Schist . Yellowish brans . weathered                                                           | L - |
| 75                                     |                                     |             |                                | ×                     |                               | <sub>×</sub>        |              |         | XX                       |           | $\times$     |           |                 |                   |          |          |     |                                                                                                |     |
| -                                      | ++++                                |             | +++                            | $\Box$                |                               |                     | HH           |         |                          | +         |              | $\forall$ | +               | H                 |          | +        |     | h                                                                                              |     |
| 12                                     |                                     |             |                                | X                     |                               | ×                   |              |         | XX                       |           | x            |           |                 |                   |          |          |     | les prister en la t                                                                            |     |
| 1                                      | ++++                                |             | +++                            | -                     | +++                           | H                   |              | +       | +                        | +H        |              | +         | +               | +                 | ++       | +        |     | brown grey Dale brown                                                                          |     |
| 14                                     |                                     |             |                                |                       |                               | $    \times  $      | $  \cdot  $  |         |                          |           | $\checkmark$ |           |                 |                   |          |          |     |                                                                                                |     |
| 14                                     |                                     |             |                                |                       |                               |                     | Ш            |         | X                        |           | 1            | 4         | +               | 1                 | +        | +        |     | because green                                                                                  |     |
| 8.5                                    |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          |          |     | " 0 0                                                                                          |     |
| 8.7                                    |                                     |             |                                |                       |                               | X                   |              |         | XX                       |           | 7            |           |                 |                   |          |          |     | Pale brown                                                                                     |     |
|                                        |                                     |             | +++                            |                       |                               |                     |              |         |                          |           |              |           |                 | П                 |          |          |     |                                                                                                |     |
|                                        |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          |          |     |                                                                                                |     |
|                                        | ++++                                |             | +++                            | HH                    | +++                           |                     | H            |         | +++                      | +         | +            | +         | ++              | +                 | +        | +        |     |                                                                                                |     |
|                                        |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          |          |     |                                                                                                |     |
|                                        |                                     |             |                                |                       |                               |                     | Ш            | $\perp$ | $\perp \perp \downarrow$ |           | $\perp$      | $\perp$   | $\perp$         | 4                 |          | $\perp$  |     |                                                                                                |     |
|                                        |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          |          |     |                                                                                                |     |
|                                        |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          |          |     |                                                                                                |     |
|                                        |                                     |             | +                              |                       |                               |                     |              |         |                          |           |              | $\top$    |                 |                   |          |          |     |                                                                                                |     |
| -                                      |                                     |             |                                |                       |                               | - FE                |              |         | and have                 |           |              |           |                 |                   |          |          |     |                                                                                                |     |
|                                        | ++++                                | +           | +++                            | ++                    |                               |                     | +++          | - 42    | - Care                   | 95        | +            | +         | -               | +                 | +        | +        |     |                                                                                                |     |
|                                        |                                     |             |                                |                       |                               |                     |              | 1       |                          |           |              |           |                 |                   |          |          |     |                                                                                                |     |
|                                        |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          | L        |     |                                                                                                |     |
|                                        |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          |          |     | Paga: Of                                                                                       |     |
|                                        |                                     |             |                                |                       |                               |                     |              |         |                          |           |              |           |                 |                   |          |          |     | Fr. Ga.                                                                                        |     |

Diameter: 104 - (vod) Logged By: Joe Chance .

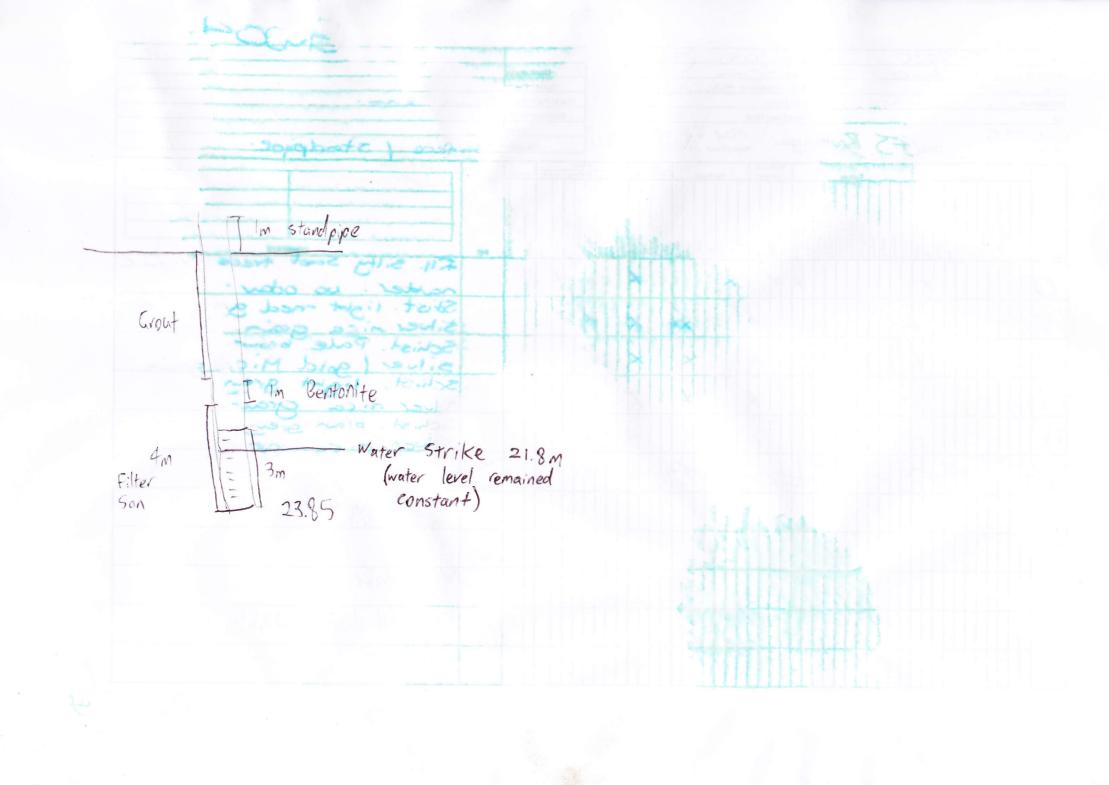
Driller: UDS Blank depth Om - 18.8m. Casing: 55
Surface Completion: 5+ Screen Depth 18.8 ~ - 21.8 ~ Water Strike: 19.5~ Drill Method: Atc have Walter Level Final: 17 · 2 10: 21.8 m 12516828 Client (F5 Brukunga May 20 well (GW) Grout On - 16.8m.

Concrete Surface - Standpipe: Plasticity Size Sorting Texture IMPACT Fill. Clayey Sond . trace organic Fill. Sand. Quartzite. Silt Store. Schist. re-worked natural. Schist. weathered. Quartzite silver nice grain. Schist. Pale brown. Silver nica grain. low noistue content moist wet w/5

Page: of

Gw03

- Standpipe. Piagram 1 cm = 1 m. Water level final @ 17-2n Screened interval water strike


@ 19.5~ 18.87 -21.8

|                    | 1                                                    |                        |                                                |                     |                                  |                                      |                           |           |                       |              |      |                |         |           |                     |                                         |          |                    |                          |     |                                                                                                                                                 |
|--------------------|------------------------------------------------------|------------------------|------------------------------------------------|---------------------|----------------------------------|--------------------------------------|---------------------------|-----------|-----------------------|--------------|------|----------------|---------|-----------|---------------------|-----------------------------------------|----------|--------------------|--------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:              | - 5,-                                                | 20                     | 20                                             |                     |                                  | [                                    | Diamete                   | er: 1     | 04                    | ~            | (T   | 200            | I.      |           |                     |                                         |          |                    |                          |     |                                                                                                                                                 |
| Logged By:         | loe/                                                 | Cho                    | ma                                             |                     |                                  |                                      | Casing:                   | 50        | 1000                  | -            |      |                |         |           |                     |                                         | Е        | Blank (            | depth                    |     |                                                                                                                                                 |
| Driller:           | 105 ·                                                |                        |                                                |                     |                                  | 5                                    | Surface                   | Comple    | etion:                | Sto          | محا  | P              | pe      |           |                     |                                         |          |                    | Depth                    |     |                                                                                                                                                 |
| Drill Method:      | tich                                                 | an                     | ne                                             | 1.                  |                                  |                                      | Vater S                   |           |                       |              |      | •              | _       |           |                     |                                         |          |                    | 200                      |     | ad 2m.                                                                                                                                          |
| TD:                |                                                      |                        |                                                |                     |                                  | V                                    | Valter L                  | evel Fi   | nal:                  |              | 7 -  |                | 7/      |           |                     | _                                       | Bento    |                    | Depth                    |     |                                                                                                                                                 |
| 1251682<br>Job No: | -8                                                   | Client                 | t:(+                                           | 3                   | Bri                              | , ku                                 | ngo                       | -         | Project <sup>6</sup>  | Name:        | in   | 5-10           | LU      | (6        | 7W                  |                                         |          |                    | Grout<br>icrete          |     | viface / Standpipe.                                                                                                                             |
|                    |                                                      | ,                      | $\overline{}$                                  |                     |                                  |                                      |                           | Moisture  |                       |              |      | C              | LAY     |           | S                   | AND                                     |          | $\neg$             |                          |     |                                                                                                                                                 |
|                    | Geology                                              | <del>,</del>           |                                                |                     | Colour                           | $\overline{}$                        | +                         | content   | +                     | Hardnes      | s    | Plas           | sticity | Siz       | ze S                | orting                                  | Textu    | ire IM             | PACT                     |     |                                                                                                                                                 |
| Clay Sind v Clav   | Sandy Clay Clayey Sand Sitty Sand Sand Clayev Gravel | Silty Gravel<br>Gravel | Other - Write in Comments<br>Ltgrey<br>Md arev | Dk grey<br>Brn grey | Greylsh brown<br>Yellowish Brown | Dk Yellowish Orange<br>Reddish Brown | other - write in comments | Moist     | Dry<br>V-soft<br>Soft | Firm<br>Suff | Hard | High<br>Medium | Low     | Coarse    | Fine<br>Well sorted | Moderatiey well sorted<br>Poorly Sorted | Loose    | Co-Hesive<br>Odour | Visual - Write in Commen | PID | COMMENTS                                                                                                                                        |
| 0                  |                                                      | ×                      |                                                |                     |                                  |                                      | ×                         | ×         | ×                     |              |      |                | ×       |           |                     | ×                                       | K        |                    |                          |     | neiter. No oday.                                                                                                                                |
| ). 15              |                                                      |                        | x/x/×                                          |                     |                                  |                                      |                           | ,         | 4                     |              | ×    |                | ×       |           | ×                   |                                         |          |                    |                          |     | FII. Silty Sand trace organic<br>narter. No order.<br>Stist. light -ned gray. Fragnests<br>Silver mica grain. weathered.<br>Schist. Pale brown. |
|                    | ++++                                                 | +++                    |                                                |                     |                                  | ++                                   | +                         | H         | +                     |              |      | T              | T       | $\forall$ | $\dagger \dagger$   | T                                       | T        | $\top$             |                          |     | Solist Pale brown.                                                                                                                              |
| 2.3                |                                                      |                        | ×                                              |                     |                                  |                                      |                           | 1         | <                     |              | ×    |                | ×       |           | ×                   |                                         |          |                    |                          |     | silver ( gold Mica grain                                                                                                                        |
| 2.7                |                                                      |                        | ××                                             |                     |                                  |                                      |                           | 1         | X                     |              | X    |                | X       |           | ×                   |                                         |          |                    |                          |     | Schist light grey.  Schist bran grey.  Silver nice grain.                                                                                       |
| 7.6                |                                                      |                        | λ                                              | ×                   |                                  |                                      |                           | 1         | ×                     |              | ×    |                | >       |           | ×                   |                                         |          |                    |                          |     | Schist brown grey.                                                                                                                              |
| 18.5               | 7                                                    | 7                      | X                                              | ×                   | 7                                |                                      | 1                         | X         | 7                     |              | X    | f              | ×       |           | ×                   | 1                                       |          | _                  |                          |     |                                                                                                                                                 |
|                    |                                                      |                        |                                                |                     |                                  |                                      |                           |           |                       |              |      |                |         |           |                     |                                         |          |                    |                          |     |                                                                                                                                                 |
|                    |                                                      |                        |                                                |                     |                                  |                                      |                           |           |                       |              |      |                |         |           |                     |                                         |          |                    |                          |     |                                                                                                                                                 |
| F                  |                                                      |                        |                                                | $\perp \perp$       |                                  |                                      | +                         | $\square$ | +                     |              | +    | ₩              | +       | $\vdash$  | ++                  | +-                                      | $\vdash$ | -                  |                          |     |                                                                                                                                                 |
| 1                  |                                                      |                        |                                                |                     |                                  |                                      |                           |           |                       |              |      |                |         |           |                     |                                         |          |                    |                          |     |                                                                                                                                                 |
|                    |                                                      |                        |                                                |                     |                                  |                                      |                           |           |                       |              |      |                |         |           |                     |                                         |          |                    |                          |     |                                                                                                                                                 |
| 1 1                |                                                      |                        |                                                |                     |                                  |                                      |                           |           |                       |              |      |                |         |           |                     | $\prod$                                 |          |                    |                          |     |                                                                                                                                                 |
|                    |                                                      |                        |                                                |                     |                                  |                                      |                           |           |                       |              |      |                |         |           |                     |                                         |          |                    |                          |     |                                                                                                                                                 |
| , +++              | +++                                                  | +                      | ++                                             | +++                 | +                                | H                                    | ++                        | H         | +                     |              | +    | +              | +       | +         | +                   | +                                       | H        | +                  |                          |     |                                                                                                                                                 |
|                    |                                                      |                        |                                                |                     |                                  |                                      |                           |           |                       |              |      |                |         |           |                     |                                         |          |                    |                          |     |                                                                                                                                                 |
|                    |                                                      |                        |                                                |                     |                                  |                                      |                           |           |                       |              |      |                |         |           |                     |                                         |          |                    |                          |     |                                                                                                                                                 |

Pagu: of

| Date: 21-5-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (742)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date: 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Diameter: 10.4 ~ (Rod ) Casing: 50.~               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Logged By: Joe Chance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Casing: 5                                          | Blank depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Driller:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surface Completion:                                | Screen Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Strike:                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ad 2 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Walter Level Final:                                | Bentonite Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12516828 CX P. J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | May 20 well                                        | Grout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Job No: Client: TO STORO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onga May 20 well (GL)                              | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | expace / 5 tendpipe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Geology Colour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JAND SAND                                          | ng Texture IMPACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clay Sand Ind Gravel Avel With it Comment With the Brown A Brown Brow Brown Brow Brown Brow Brown Brow Brown Brow Brown Brow Brown Brow Brown Brown Brow Brown Brown Brown Brown Brown Brown Brown Bro | of West Common No                                  | rted file in Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Additional of the graph of the  | Worked Worked Week Week Week Week Week Week Week W | Poorly So<br>Co-Hesty<br>Odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X X X                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FILE SILLS SOMMENTS OF GOVERN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nather , no oday.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| )· 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shist light ned grey fragner<br>Sher nice grain washered<br>Schist. Pale brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver mice gran weathered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver and Mich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Schist. light gray.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver rice crain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver nice grain.<br>Schist. bran grey:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| v E D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver mice gain;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 18:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - I'm a land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sediment remained consistent with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water-strike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Final well depth 23,85m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SWL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Pagn: of



Date: 29-5-2020 Logged By: Use Chance. Diameter: 04 mm ( rod Blank depth O ~ - 5 ~ Casing: 50 Surface Completion: GatiC Drill Method: A; hame Screen Depth 5 ~ ~ & ~ Gravel Pack Depth 4n - 8n (Sond 2m Water Strike: 6.0 m Walter Level Final: 5.4... Bentonite Depth Client (+5 Brukunga Project Name: install (GL) Concrete Surface - gatic. 12516828 CLAY SAND
Plasticity Size Sorting Texture IMPACT Fill Closey Sand. Read bace, gravel, allowing material schist. weathered. Hard | friable. 0.8 Sond. Milvied material. low-moist noistie content Schist. weathered. Moist. Silver mice grain. Schist, Pole brown low moisture context. light grey | silver Schist . wet w/s. 6 Schist. Silver rice grain Hard, Dry. 8

Page: 10+ 1

Gwo5.

Gatic

Screent interval 5.0-8.00

Diameter: 04m (rod) Date: 7/9 5,- 2020 Blank depth Om - 5.5m Casing: 5C...
Surface Completion: 5+0-object Logged By: Joe Chance. Screen Depth 5.5~ - 10~ Gravel Pack Depth 51 - 101 (Sad - 2nn) Water Strike: 5.00 Drill Method: As A Walter Level Final: 6.3 ---Bentonite Depth 4- -10.00 Client: CFS Brukunga May 20 well (GW) 12516828 Concrete Surface Standpipe Job No: Natural top Soil. trace organic netter. Sand. Sonal. Allowich naterial. Sand stare. White yellow. Weathered | friable Sand Stare. white | wellow. Hard. Moist. Perched agrifer. Sand Stare. orange. Schist. light | ned grey. Moist WS? Fractuc?

Page: of

Gwo6.

Key notes.

- . Potential fracture encountered @ bn Schist moist.
- · W/5 @ 8n.
- · Screen interval extended to 5.5 ~ to capture water from potential fracture @ 6.0 m.

Scienced internal.

5.5n - 10.0n

WIS - 8.0n.

Standpipe.

| 'u                                           |                   |                                                                         | _                                          |                                                  |                                                  |              | GWO (                                              |
|----------------------------------------------|-------------------|-------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|----------------------------------------------------|
| Date: 29- 5                                  | - 2020            | Diameter: (                                                             | 14mm (rod)                                 | $\mathbf{\hat{z}}$                               |                                                  |              |                                                    |
| Logged By: Jae                               | Chance.           | Casing: 5                                                               | Cochic letion: Gatic                       | _                                                | Blank depth                                      | 10~          | - 20 m<br>- 23 m (3 m screen)                      |
| Drilter: WDS                                 |                   |                                                                         |                                            | _                                                | Screen Depti                                     | ZO           | - 23 m (3 m screen)                                |
|                                              | hanner            | Water Strike:                                                           | 21m<br>inal: 15.8m.                        | <del>-</del>                                     | Gravel Pack Depth                                | 190          | - 23 n (Sand Zmn)                                  |
| TD: 23.0                                     | <u> </u>          | Walter Level F                                                          | inal: 15 · 8 <u>~ ·</u>                    | <del>-</del> / .                                 | Bentonite Depti                                  | 180          | n - 19 m                                           |
| 2516828                                      | (-<               | Rukuasa                                                                 | May 20 Well<br>Project Name: insta         | 11 (GL)                                          | Grou                                             | ON           | - 18~                                              |
| Job No:                                      | Client:           | 2,010,19                                                                | Project Name: 1/376                        | 4 (44)                                           | Concrete                                         | e <u> </u>   | face - gatic                                       |
|                                              |                   | Colour conten                                                           |                                            | Y Size S                                         | SAND<br>Sorting Texture IMPACT                   |              |                                                    |
| Gaole                                        | ogy               | Colder                                                                  | Haldiless   Classic                        |                                                  |                                                  | 1            |                                                    |
|                                              | mmer              | go<br>iment                                                             |                                            |                                                  | pula la l       |              |                                                    |
|                                              | _                 | N N N N N N N N N N N N N N N N N N N                                   |                                            |                                                  |                                                  |              |                                                    |
| Sand<br>Duey                                 | Sravel<br>Write   | brow<br>browsh<br>bwish<br>Browsh<br>write i                            |                                            | 1 2                                              | Sorter                                           |              |                                                    |
| ndy C<br>yay Sar<br>Nd Sar                   | yayy Greavel      | eyich<br>illowia<br>t Yello<br>t Yello<br>t Yello<br>stelad<br>ot<br>et | soft III III III III III III III III III I | one<br>Darse<br>edium<br>ne                      | odera<br>2008<br>0-Hes<br>dour                   | PID          | COMMENTS                                           |
| DEPTH S S S S S S                            | 0 8 6 E 0 2 X 6 E |                                                                         |                                            | 3 z ō 호 🛈 🤰                                      |                                                  | 710          | Fill. Clayey Sond. Road bere.                      |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              | Fill. Claged of let                                |
| $O \sqcup \sqcup \sqcup$                     |                   |                                                                         |                                            |                                                  |                                                  |              | Trace organic natter. Grave                        |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              | Trace organic natter. Gravel<br>Schist. Weathered. |
| 1-2                                          |                   | $\bowtie$ $  \   \   \   \   \   \  $ $\bowtie$                         |                                            | X III                                            |                                                  |              |                                                    |
| <u> </u>                                     |                   |                                                                         |                                            | <del>-[- - - -</del>                             | <del>                                     </del> | <del> </del> | Silver mica grain.                                 |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
| 1.5                                          |                   | M                                                                       | X                                          |                                                  |                                                  |              | Dry.                                               |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              | Schist. Silver vice grain                          |
| 5.8                                          |                   |                                                                         |                                            | MIII                                             |                                                  |              | list and I sibre!                                  |
|                                              |                   |                                                                         |                                            |                                                  | <del>                                     </del> | -            | light grey 1 Silver.<br>Schist: Pale brown.        |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
| 6:211111                                     |                   | M                                                                       |                                            | 11111                                            |                                                  | İ            | silver vica grain.<br>Schist. light grey / silver. |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              | Schist. light grey   Silver.                       |
| 6.5                                          | xk                |                                                                         |                                            | ×                                                |                                                  |              | silver miss                                        |
| 0/11/1                                       |                   |                                                                         |                                            |                                                  | <del>                                     </del> |              | silver mica grain                                  |
|                                              |                   |                                                                         |                                            | U                                                |                                                  |              | · ·                                                |
| 21111111                                     |                   |                                                                         |                                            |                                                  |                                                  |              | wet wis.                                           |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
| <b>                                     </b> |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
| <b>▽</b>                                     |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
| 177                                          |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
|                                              |                   |                                                                         |                                            | <del>                                     </del> | <del>                                     </del> |              |                                                    |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
|                                              |                   |                                                                         |                                            |                                                  |                                                  |              |                                                    |
|                                              | 1 1 1 1 1 1 1 1 1 |                                                                         |                                            | 1 1 1 1 1                                        |                                                  | 1            |                                                    |

Drill Rig! DH400

Page: 1911

| key notes                                        |         |                   | GW07          |
|--------------------------------------------------|---------|-------------------|---------------|
| Gw under pressure<br>Screen instaued in<br>zone. | e _ abo | water level fina  | L 15.8n.      |
| Sampling notes                                   |         |                   |               |
| Deplay HIS and to                                | og tw   | ice @ 21-23 n to  | open in order |
| to target water                                  |         |                   |               |
| Diagran                                          | 1       | gatic             |               |
| Icn = Im.                                        |         |                   |               |
|                                                  |         |                   |               |
| ,                                                |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
| *                                                |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
| j-                                               |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         | water level final | 15.8~         |
|                                                  |         | 3,1,123           |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
|                                                  |         |                   |               |
| Screen - 20-23n                                  | - 4     |                   |               |
| JC(EE), - 20 - 23 A                              |         |                   |               |
|                                                  |         | WS 21m.           |               |
|                                                  |         |                   | · ·           |

| Date: Logge Driller Drill M TD: 1252 Job N | 168 | +.                 | 0                      | 5-7    | 2 | Client | 20                        | Dece     | <u> </u>           | P | 7/1                              | ) k                 | Dia<br>Cas<br>Sur<br>Wa<br>Wa | sing: rface ater S | er: Strike | Sampletin: III | on:    | 5-5- | 4              | 40 CO IS | wi<br>Sta | )<br>eli | e ( ( ( | · | ω) | G                      | rave        | Scree<br>el Pac<br>entonit | n De<br>k De<br>e De | epth<br>epth<br>epth | 11, | 2 2 2 | (044.<br>-11n<br>-14n<br>-14n (Sad-Zm).<br>-10n<br>-9n<br>Sace-Standpipe.        |
|--------------------------------------------|-----|--------------------|------------------------|--------|---|--------|---------------------------|----------|--------------------|---|----------------------------------|---------------------|-------------------------------|--------------------|------------|----------------|--------|------|----------------|----------|-----------|----------|---------|---|----|------------------------|-------------|----------------------------|----------------------|----------------------|-----|-------|----------------------------------------------------------------------------------|
| рертн                                      | A   | siit<br>Sandy Clay | Slayey Sand Silty Sand | eology |   | Sravel | Other - Write in Comments | Vid grey | Ok grey<br>Sm grey |   | Greyish brown<br>rellowish Brown | Ok Yellowish Orange | Vottled                       | $\top$             | Moist      | ure            | V-soft |      | dness<br>Stiff |          | T         | CLAY     | Т       |   | S  | Moderatley well sorted | Loose Loose | exture Co-Hesive           |                      | Т                    | PII |       |                                                                                  |
| 0.01                                       | )   |                    |                        |        |   |        | X                         |          |                    |   |                                  |                     |                               | ×                  | ×          |                | >      |      |                |          |           | ×        | ,       |   |    |                        |             |                            |                      |                      |     |       | Natural topsoil. Schist (hord frable), trace organic natter                      |
| 8.5                                        | 5   |                    |                        |        |   | 3      | ×                         |          | ×                  | × |                                  |                     |                               | ×                  | >          | <              | >      | <    |                | ×<br>×>  |           |          | *<br>*  |   |    |                        |             |                            |                      |                      |     |       | Silver mice grain. Sondo Alluvial material. low noistue context Perched aguifer. |
| 9.2                                        | )   |                    |                        |        |   |        | ×                         |          |                    |   | ×                                |                     |                               | +                  |            | ×              |        |      |                | >        |           | /        | ×       |   |    |                        |             |                            |                      |                      |     |       | Perched aguifer.  Quartzite: Yellowish   brown.  Frable:                         |
|                                            |     |                    |                        |        |   |        |                           |          |                    |   |                                  |                     |                               | 7                  |            |                |        |      |                |          |           |          |         |   |    |                        |             |                            |                      |                      |     |       | wet w/s.                                                                         |
| 4                                          | ,   |                    |                        |        |   |        |                           |          |                    |   |                                  |                     |                               |                    |            |                |        |      |                |          |           |          | -       |   |    |                        |             |                            |                      |                      |     |       |                                                                                  |
|                                            |     |                    |                        |        |   |        |                           |          |                    |   |                                  |                     |                               |                    |            |                |        |      |                |          |           |          | +       |   |    |                        | +           |                            |                      |                      |     |       |                                                                                  |
|                                            |     |                    |                        |        |   |        |                           |          |                    |   |                                  |                     |                               |                    |            |                |        |      |                |          |           |          |         |   |    |                        | 22          |                            |                      |                      |     |       |                                                                                  |

Page: Of

| key notes         |     | CC4/4                     | _ |
|-------------------|-----|---------------------------|---|
| WS observed @ 1   | 1.5 |                           |   |
| Gw under pressure | _   | water love 1 Signal 5.4.  |   |
| installed (       | ·5  | above wis to target water |   |
| bearing Zone.     |     |                           |   |
|                   |     |                           |   |
| Sampling notes    |     |                           |   |
|                   |     |                           |   |
| open in and       | 40  | 9 tuice @ 11.5 - 14m to   |   |
| Zone.             | 0   | terget water bearing      |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   | П   | - Stadpipe.               |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     | water level final 5.4m.   |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
|                   |     |                           |   |
| Screen 11-14-     |     |                           |   |
|                   |     | w/5 11.5m                 | 1 |
|                   |     |                           | 1 |
|                   |     |                           |   |

Weather: overeast Wind: NOkm/h Ground Condition: Dry (small amounts of frost in surrounding area) GW02 found with 4m of water, bailed down to 0.5m and left to test for potential recharge small amount of recharge (150 mm), installed 6m screen on 18.5m well as unclear where fracture is located Gatic DC08 5pm 9/6/20 avout photos taken I In Bentonite 35.050730°5 Tm Filter Shallow Free Howing DCO8, QAOIA water QAOIA only DC08 WQM taken 12/06/2020 Temp 2.7°C · ne HQM pH 7.64 DO(ppm) 17.95 WQM to be sampled EC(spc) 1411 ex-sity 12/6/20 before Redox 170.4mV handing over to Envirolab

GHD

## Groundwater Gauging Sheet

| Client:               |                                         |                   |                           | WL Meter Type: Dip / Fox / Int.Fce / Gge |
|-----------------------|-----------------------------------------|-------------------|---------------------------|------------------------------------------|
| Project:              |                                         |                   |                           | Date:                                    |
| Job No.:              |                                         |                   |                           | Time:                                    |
| Location:             |                                         |                   |                           | Sampler:                                 |
|                       |                                         |                   |                           |                                          |
| Location /<br>Bore ID | Stick up (m)                            | SWL<br>(mbTOC)    | Thickness of<br>NAPL (mm) | Comment                                  |
| GWOI                  |                                         | 象1.147            | -                         | Bore depth: 15.462.                      |
|                       |                                         |                   |                           | Catic 2/2 bolts Lell ap seco             |
|                       | Tage 1                                  | 1957 / //27       |                           | Garie 1/2 bolls bell ap sees             |
|                       |                                         | 18-04-0           |                           | box dept 10.248                          |
| Guol                  |                                         | 6.862             |                           | Standpipe well cop secre.                |
| KANZS                 | -                                       | 19.734            | -                         | Gatic Casing - 150ms. No well cap        |
| GW02                  |                                         | 14.348            | _                         | Ratic 2/2 bolts well cap scare           |
| 40                    |                                         |                   |                           | Bore depth 18,036                        |
| GW05                  |                                         | 1 00-             |                           |                                          |
| UWUD                  |                                         | 4:232             |                           | Pore depth 7,930                         |
|                       |                                         |                   |                           | Gatic 2/2 bolts. well cap secure         |
| H15                   | -                                       | 12,069            |                           | Gatic screw on, secure                   |
|                       | A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                   |                           | Bore depth 28.897                        |
| rat                   |                                         | 4,270             |                           |                                          |
| C04a                  |                                         | 1,2/1             |                           | Stand pipe                               |
|                       |                                         | a (0.0            |                           | Pore depth 14.970                        |
| GW03                  |                                         | 9.480             |                           | Stand pipe<br>Bore depth 22,428          |
|                       |                                         |                   | 7                         | Bore depth 22,428                        |
| GW04                  | 1- 1-                                   | 17.992            |                           | Stand Pipe                               |
| -(                    |                                         | 144               | 1                         | 0 0 1 1 20 001                           |
| ×1 (0-2               |                                         | 11 10/            |                           | Bore depth 25:004                        |
| GW07                  | 1-1                                     | 11.136            |                           | Gatic 2/2 bolts, eap secure              |
|                       |                                         |                   |                           | Well depth 23,111                        |
| Howthow               |                                         |                   |                           | anable to measure, approx depth          |
| k r                   |                                         | The second second |                           | from cosca dia de la 200                 |
|                       | 7 12                                    |                   |                           | from surrounding area is 25m             |
| KAAGE                 |                                         | Hat               |                           | no supporting Water Connect information  |
| KAN26                 |                                         | 11.8              |                           | Gatic, 150 mm, No well cap.              |
|                       |                                         |                   | ( NO                      | Well-Depth in excess of 3/m              |
|                       |                                         |                   | 1                         | (length of IP)                           |
|                       |                                         |                   | A. P. See                 | my of II)                                |
|                       |                                         | · //              |                           |                                          |
|                       |                                         |                   | 7 6                       |                                          |
| - 4-4                 |                                         |                   |                           |                                          |
|                       |                                         |                   |                           |                                          |





# GHD Hydrasleeve Sampling Record

| Sampler       |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | resident and tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | initials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM init                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | 10                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gwoi          | 1                                                                                                                                                      | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ndwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |                                                                                                                                                        | Depth to top of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | om.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| QA20 +        | QAZO A .                                                                                                                                               | Well depth (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 462.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nhole paramet | ers (collect post                                                                                                                                      | sampling – ensur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rs have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stabilised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| pН            | Temp (C)                                                                                                                                               | EC (uS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Redox (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.49          | 14.4                                                                                                                                                   | 8926 (spc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Con           | nments (odour,                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sections.     | d load                                                                                                                                                 | ~, lou -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | turbiol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Shee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gwa           | 06                                                                                                                                                     | Depth to Grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ndwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15 - 6        | -20                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D) A          | *                                                                                                                                                      | Well depth (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| nhole paramet | ers (collect post                                                                                                                                      | sampling – ensure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ers have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stabilised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| рН            | Temp (C)                                                                                                                                               | EC (uS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Redox (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.06          | 16.1                                                                                                                                                   | 5,778 (spc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.80 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Coi           | nments (odour,                                                                                                                                         | colour, turbidity,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sheen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Clear IV      | pale bra                                                                                                                                               | load, no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 nedi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 SL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | urbicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| KAUZ          | 3                                                                                                                                                      | Depth to Grou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ndwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 15-6-         | 20                                                                                                                                                     | Depth to top of (mBTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f sampler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nhole paramet | ers (collect post                                                                                                                                      | sampling – ensur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e paramete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ers have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stabilised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| pН            | Temp (C)                                                                                                                                               | EC (uS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Redox (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10.22         | 16.4                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cor           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| clear. 1      | -                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | nhole parameter  pH  6.49  Con  Clear I vo  Sections  Con  Clear I vo  Sections  Con  Clear I vo  No Sections  MADZ  IS-6-  Thole parameter  pH  10.22 | PH Temp (C)  6.49   4.4  Comments (odour,  Clear   pare brance  Sectioned load  Thole parameters (collect post  PH Temp (C)  Comments (odour,  Clear   pare brance  Clear   pare | mBTOC) Depth to top of (mBTOC)  QA20 + QAZOA Well depth (m  Tamp (C)  EC (uS/cm)  6.49  H.4  Sq26 (RC)  Comments (odour, colour, turbidity, colour, colour, turbidity, colour, colour, turbidity, colour, | Depth to top of sampler (mBTOC)  Well depth (mBTOC)  Redox (mBTOC)  Comments (odour, colour, turbidity, sheen)  Clear   parter broad   p | Depth to top of sampler (mBTOC)  A20 + QAZO A Well depth (mBTOC)  Well depth (mBTOC)  BEC (uS/cm) Redox (mV)  6.49   14.4   8926 (SR) 38.2  Comments (odour, colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity sheen)  Clear   parter brown   conduct to the colour, turbidity sheen)  Depth to Groundwater (mBTOC)  Well depth (mBTOC)  Well depth (mBTOC)  Well depth (mBTOC)  Tabole parameters (collect post sampling – ensure parameters have  PH Temp (C) EC (uS/cm) Redox (mV)  Social reaction of the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen)  Clear   parter brown   conduct to the colour, turbidity, sheen |



# Hydrasleeve Sampling Record

| Project number:    | Sampler         |                               |                          |          | Sample initials | r :aadm   | roject no          |
|--------------------|-----------------|-------------------------------|--------------------------|----------|-----------------|-----------|--------------------|
| Client:            | PM initi        |                               |                          |          | PM init         | ials      | lients             |
| Site location:     |                 |                               |                          |          |                 | 18        | ite locacio        |
| Well ID            | GW02            | epth to Grounds               | Depth to Groun (mBTOC)   | dwater   | 14.             | 348       | 7 (11 110)         |
| Date               | 15/6/20         | epth to top of sur,<br>nBTOC) | Depth to top of (mBTOC)  | sampler  | 18.0            |           | eis                |
| QC sample          | NA O            | ell depth (mBTO               |                          |          |                 |           | Immus Di           |
| In situ dov        | vnhole paramete | ers (collect post sa          | ampling – ensure         | parameto | ers have s      | stabilise | (d)                |
| Time (3\pm) OC     | pH (Vm) xobe    | Temp (C)                      | EC (uS/cm)               | Redox (  | (mV)            | DO (m     | g/L) omi           |
|                    |                 | 14.8                          | 20641 (spc)              |          | 9               | 1.4:      | 2                  |
|                    | 1               |                               | olour, turbidity, sh     |          |                 |           |                    |
| LNAPL Check<br>Y □ | Clear / f       | Pale Brown                    | n, low tu                | rbidit   | y, no           |           |                    |
| N□                 | sediment        | load, no                      | n, low tu                | odou     | r               |           | П                  |
| Well ID            | (10/07918       | epth to Groundw               | Depth to Groun (mBTOC)   | dwater   | 4.23            | 30        | (II IIoV           |
| Date               | 4W05            | nBTOC) **                     | (mBTOC)  Depth to top of | samnler  | 7,20            | 12        |                    |
|                    | 15/6/2          |                               | Depth to top of (mBTOC)  |          | av              |           | 3114               |
| QC sample          |                 |                               | Well depth (mB           |          | 7.92            | -         | Igmas X            |
| In situ dov        | wnhole paramete | ers (collect post sa          | impling – ensure         | paramete | ers have s      | tabilise  | d)                 |
| Time (Jam) Oc      | pH (718) zobo   | Temp (C)                      |                          |          | mV) H           | DO (m     | g/L) smi           |
| O CALL             | 11.09           | 15.2                          | 144 (spc)                |          | 8.8             | 3.59      | 1                  |
|                    | Con             | nments (odour, co             | olour, turbidity,sh      | ieen)    |                 |           |                    |
| LNAPL Check        | Grey, medi      | ium turbidity                 | , medium so              | edimen   | + load          | No s      | heen/oo            |
| NO                 |                 | from well di                  |                          |          |                 |           |                    |
| Well ID            | HI5 TOTAL       | epth to Grounds               | Depth to Groun (mBTOC)   | dwater   |                 |           | Vell ID            |
| Date               | 16/6/20         |                               | Depth to top of          | sampler  |                 | 14        | -33                |
| QC sample          | 00              |                               | Well depth (mB           | TOC)     | 2               | - 9       | lgmaz D(           |
| In situ dov        | vnhole paramete | ers (collect post sa          | mpling – ensure          | paramete | rs have s       | tabilise  | d)                 |
| Time (Agan) 00     | pH (Vm) xobe    | Temp (C)                      | EC (uS/cm)               | Redox (  | mV) H           | DO (mg    | g/ <b>L</b> ) 4711 |
|                    | 12.67           | 5.5                           | 1684                     |          | tip .           | 3,4       | -2                 |
|                    | Con             | nments (odour, co             | lour, turbidity,sh       |          |                 |           | * (* 10 de )       |
| LNAPL Check<br>Y □ | Clear/Grey-     | brown,                        | 812                      | = 160    | 1,4             |           | NABPY<br>(12)      |
| N                  | low tuckidi     | tu no codi                    | mont load                | no ch.   | 1.1             |           | 15                 |



# Hydrasleeve Sampling Record

| Project number:    | Sampler<br>Linitals |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =                            | · · · · · · · · · · · · · · · · · · · | Sample   | r reda    | un bojec    |
|--------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|----------|-----------|-------------|
| Client:            | dioi IAT pro-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                       | PM ini   | tials     | lient:      |
| Site location:     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                            |                                       |          | -17       | ite jocatic |
| Well ID            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D 41 4 G                     | 1 4                                   |          |           |             |
|                    | C04a                | cpes to creusars<br>aCOTSu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Depth to Ground (mBTOC)      |                                       | 4,2      | 70        | ell ID      |
| Date               | 16/6/20             | epth to top of sar<br>nBTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Depth to top of s<br>(mBTOC) | sampler                               |          |           |             |
| QC sample          |                     | ) T <b>Vim)</b> utqob llo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | TOC)                                  | 14.      | 970       | C sample    |
| In situ dov        | wnhole paramete     | rs (collect post sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mpling – ensure              | paramete                              | ers have | stabilis  | ed)         |
| Time (Agm) OC      | pH (/m) robe        | Temp (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC (uS/cm)                   | Redox (                               | mV) Ho   | DO (m     | g/L) and    |
| 1 24 1             | 11.54               | the state of the s | 2476(5pc)                    |                                       |          | 2.4       | 5           |
| d .                | Con                 | ments (odour, co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lour, turbidity,sh           | een)                                  |          |           |             |
| LNAPL Check<br>Y □ | Yellow- Br          | own, med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ium turbid                   | ity,                                  | low      | sedin     | nent        |
| N□                 | load (clay)         | , no odour/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sheen                        | 4                                     | H 1882   |           | D           |
| Well ID            | GW 03               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to Ground (mBTOC)      | dwater                                |          |           | (1119)      |
| Date               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to top of s<br>(mBTOC) | sampler                               | i I      |           | are         |
| QC sample          | 00                  | oll depth (mBTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well depth (mB'              | TOC)                                  |          |           | tC sample   |
| In situ dov        | wnhole paramete     | rs (collect post sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mpling – ensure j            | paramete                              | ers have | stabilise | ed)         |
| Time (Algan)       | pH (Vm) zobe        | Temp (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC (uS/cm)                   | Redox (                               | mV) Ho   | DO (m     | g/L)        |
| - 450              | 9.85                | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7104(spc)                    | 40.                                   | 8        | 5.0       | 5           |
|                    | Con                 | ments (odour, co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lour, turbidity,sh           | een)                                  | 7        |           |             |
| LNAPL Check Y   N  | clear/po            | le brown, sheen/odoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | low turbid                   | ity                                   | 10 5     | redin     | neat        |
| Well ID            | GWO 4 STATE         | lepth to Groundw<br>nBTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Depth to Ground (mBTOC)      | dwater                                |          |           | Vein in     |
| Date               | 16/6/20             | epth to top of spi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth to top of s<br>(mBTOC) | ampler                                |          |           | late        |
| QC sample          | _ (00               | vell depth (mBTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Well depth (mB'              | TOC)                                  |          | 9         | C sample    |
| In situ dov        | wnhole paramete     | rs (collect post sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mpling – ensure p            | paramete                              | rs have  | stabilise | d) I        |
| Time (Algan) OC    | pH (Vm) zobs        | Temp (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EC (uS/cm)                   | Redox (                               | mV) Ng   | DO (m     | g/L) and    |
|                    | 11.26               | 15,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6887                         | -136                                  | ./       | 3.        | P3          |
|                    | Con                 | nments (adour, co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lous, turbidity,sh           | een)                                  |          |           |             |
| LNAPL Check Y   N  | Clar/bi             | own, low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to media                     | ins to                                | ubid     | ity,      | NAPL C      |

| Client:                                                                     |                                                 |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | initials<br>PM in |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|-----------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                             |                                                 | npling Record                                             | sieeve San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hydra                                                                                                     | A IVA HAR         | itiais                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| Site location:                                                              | rolemani?                                       |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                   | rando co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
|                                                                             | Heimai                                          |                                                           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           |                   | and the second s |             |
| Well ID                                                                     | 9W07                                            |                                                           | Depth to Groun (mBTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e) ne       |
| Date                                                                        | 16/6/20                                         | )                                                         | Depth to top of (mBTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                   | 3,000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00)         |
| QC sample                                                                   | - 40                                            |                                                           | Well depth (mF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BTOC)                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| In situ dov                                                                 | wnhole param                                    | eters (collect post sa                                    | mpling – ensure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | paramete                                                                                                  | ers have          | stabilised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| Гіте                                                                        | рН                                              | Temp (C)                                                  | EC (uS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Redox (                                                                                                   | (mV)              | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )           |
| Chazilinte                                                                  | 11.46                                           | 16.7                                                      | 1262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -19                                                                                                       | 2.5               | 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )           |
|                                                                             |                                                 | omments (odour, co                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| LNAPL Check                                                                 | To pale                                         | grey, low<br>nent load, n                                 | to medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 tur                                                                                                     | bidit             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| N D                                                                         | no sedin                                        | nent land in                                              | a adout s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hoan                                                                                                      | )                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                             | , 40/11.                                        |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| W/-H VD                                                                     |                                                 | V location                                                | tested on Depth to Groun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19/6/2                                                                                                    | 0- 50             | ee field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10+         |
| Well ID                                                                     | Hawthor                                         | n l                                                       | (mBTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | idwater                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                             | 1                                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sampler                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Date                                                                        | 16/6/20                                         | )                                                         | Depth to top of (mBTOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                             | 16/6/20<br>QA 21                                | OA21A                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 2-2               | 5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| QC sample                                                                   |                                                 | QA2IA<br>eters (collect post sa                           | (mBTOC) Well depth (mF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BTOC)                                                                                                     | ars have          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥1 []       |
| QC sample In situ dov                                                       | wnhole param                                    | eters (collect post sa                                    | (mBTOC) Well depth (mE umpling – ensure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BTOC)                                                                                                     | ers have          | stabilised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31 11       |
| QC sample In situ dov                                                       |                                                 | STALING SERVICE OF HISTORY                                | (mBTOC) Well depth (mEmpling – ensure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter Redox (                                                                                         | ers have          | stabilised) DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (41 fl<br>) |
| QC sample In situ dov                                                       | wnhole param                                    | eters (collect post sa                                    | (mBTOC) Well depth (mEmpling – ensure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter Redox (                                                                                         | ers have          | stabilised) DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )           |
| QC sample In situ dov                                                       | pH H58                                          | Temp (C)                                                  | (mBTOC) Well depth (mEmpling – ensure EC (uS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | parameter Redox (                                                                                         | ers have          | stabilised) DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (41 f)<br>) |
| QC sample In situ dov  Time  LNAPL Check                                    | pH H58                                          | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mEnterpling – ensure EC (uS/cm)  5399(Spc) blour, turbidity,s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | parameter Redox (                                                                                         | (mV)              | stabilised) DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| QC sample  In situ dov  Time  LNAPL Check                                   | pH H58                                          | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mEnterprise of the control of t | parameter Redox (                                                                                         | (mV)              | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| QC sample  In situ dov  Time  LNAPL Check                                   | pH H58                                          | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mEnterprise of the control of t | parameter Redox (                                                                                         | (mV)              | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| QC sample  In situ dov  Time  LNAPL Check  Y□  N□                           | pH H58                                          | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mEnterprise of the content of t | Parameter Redox (                                                                                         | (mV)              | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01          |
| Date  QC sample  In situ dov  Time  LNAPL Check  Y   N   Well ID  Date      | pH H58                                          | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mE  umpling – ensure  EC (uS/cm)  5399(spc)  olour, turbidity,s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | parameter Redox (                                                                                         | (mV)              | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3           |
| In situ dov  Time  LNAPL Check  Y   N   Well ID  Date                       | pH H58                                          | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mEumpling – ensure EC (uS/cm)  5399(Spc) blour, turbidity,s  Depth to Groun (mBTOC) Depth to top of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | parameter Redox (                                                                                         | (mV)              | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01          |
| QC sample  In situ dov  Γime  LNAPL Check  Y□  N□  Well ID  Date  QC sample | pH<br>++58<br>C                                 | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mEnterprise of the content of t | Redox (  H7,  heen)  adwater  sampler  BTOC)                                                              | (mV)              | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01          |
| In situ dov  Time  LNAPL Check Y□ N□  Well ID  Date  QC sample  In situ dov | pH H58 C KAN 26 19/6/20 whole parameters        | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mE umpling – ensure EC (uS/cm)  5399(Spc)  lour, turbidity,s  Depth to Groun (mBTOC) Depth to top of (mBTOC) Well depth (mE umpling – ensure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | parameter Redox (                                                                                         | (mV)              | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 01        |
| In situ dov  Time  LNAPL Check Y□ N□  Well ID  Date  QC sample  In situ dov | pH<br>++58<br>C                                 | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mE umpling – ensure EC (uS/cm)  5399(Spc)  lour, turbidity,s  Depth to Groun (mBTOC) Depth to top of (mBTOC) Well depth (mE umpling – ensure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Redox (  H7,  heen)  adwater  sampler  BTOC)                                                              | (mV)              | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 00        |
| In situ dov Time  LNAPL Check Y□ N□  Well ID  Date  QC sample               | pH H-58 C KAN 26 19/6/2C whole parameter pH 8.8 | Temp (C)  Hand Comments (odour, comments (collect post sa | (mBTOC) Well depth (mEnterprise of the content of t | parameter Redox (  H7.  heen)  additional redox (  Redox (  H7.  heen)  Additional redox (  Redox (  -195 | ers have          | DO (mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 00        |
| In situ dov Time  LNAPL Check Y□ N□  Well ID  Date  QC sample  In situ dov  | pH H-58  C KAN 26 19/6/2C whole parame          | Temp (C)  13.5  omments (odour, co                        | (mBTOC) Well depth (mEnterprise of the control of t | parameter Redox (                                                                                         | ers have          | e stabilised)  DO (mg/L  8.37  e stabilised)  DO (mg/L  6.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | API         |



# Hydrasleeve Sampling Record

|                    |                 |                                                        |                         |           |                 | 117         | decatio        |
|--------------------|-----------------|--------------------------------------------------------|-------------------------|-----------|-----------------|-------------|----------------|
| Project number:    |                 |                                                        |                         |           | Samp<br>initial |             |                |
| Client:            |                 | pth to Groundwater                                     | De                      |           | PM in           | itials      | CH II          |
| Site location:     | 70              | pth to top of sample                                   | De                      |           |                 | - 1         | 3              |
| Well ID            | T               | (OOTSm) disability                                     | Don'th to Cooper        |           |                 |             | domez          |
| (bosilide          | Hawthor         | n   * sample                                           | Depth to Groun (mBTOC)  | ameiers ( | mg slor         | lawob at    | la n1          |
| Date (Alam) Oc     | 19/6/21         | n   * sample   O o o o o o o o o o o o o o o o o o o o | Depth to top of (mBTOC) | sampler   | -               |             |                |
| QC sample          |                 |                                                        | Well depth (mF          | BTOC)     |                 |             |                |
| In situ dov        | vnhole paran    | neters (collect post s                                 | sampling – ensure       | paramete  | ers have        | e stabilise | ed)            |
| Time               | pН              | Temp (C)                                               | EC (uS/cm)              | Redox (   | mV)             | DO (m       | g/L)           |
|                    | 9.4             | 16.80€                                                 | 4.68 (spc)              | -178      | ,2              | 6.80        | )              |
|                    | (               | Comments (odour, c                                     | colour, turbidity,s     | heen)     |                 |             |                |
| LNAPL Check<br>Y □ |                 | pth to Greenthinse                                     |                         |           |                 |             |                |
| N 🗆                |                 | BTOC)                                                  |                         |           |                 |             |                |
|                    | 19              | pth to top of sample                                   | De De                   |           |                 |             | 9              |
| Well ID            | /               | OGTAMINATION HO                                        |                         | dwater    |                 |             | demez          |
| (hazilida          | Hawthor         | n/ * sample 2                                          | (mBTOC)                 |           | ing sfor        |             |                |
| Date (All years Of | Hawthor 19/6/20 | (uS/cm) RedS                                           | Depth to top of (mBTOC) |           | *               | la l        | 91             |
| QC sample          | 1/              |                                                        | Well depth (mF          | BTOC)     |                 |             |                |
| In situ dov        | vnhole paran    | neters (collect post s                                 | sampling – ensure       | paramete  | ers hav         | e stabilise | ed)            |
| Time               | рH              | Temp (C)                                               | EC (uS/cm)              | Redox (   | mV)             | DO (m       | g/L)           |
|                    | 9,69            | 174                                                    | 5552(spc                | ) -2      | 64              | 4.9         | 1              |
|                    |                 | Comments (odour, o                                     | 000211                  | /         | 0, /            | 7.1.        | 7              |
| LNAPL Check        |                 | pib to Groundwater                                     | 90                      |           |                 |             | ai i           |
| Υ□                 |                 |                                                        |                         |           |                 |             |                |
| N□                 |                 | pile to top of sample<br>BTOC)                         |                         |           |                 |             |                |
| Well ID            | Hawth           | orn / * sample                                         | Depth to Groun          | ndwater   | ran olor        | derwah ur   | dames<br>Es of |
| Date (Aligna) Oc   | 19/6/20         | (nS/cm) Red                                            | Depth to top of (mBTOC) | sampler   |                 | lq          | 91             |
| QC sample          | QA21,           | Q42/A                                                  | Well depth (ml          | BTOC)     | 22              | 5m          |                |
| In situ dov        | vnhole paran    | neters (collect post s                                 | sampling – ensure       | paramete  | ers hav         | e stabilise | ed)            |
| Time               | pН              | Temp (C)                                               | EC (uS/cm)              | Redox (   | mV)             | DO (m       | g/L)           |
|                    | 9.67            | 17.4                                                   | 5560 (spc)              | -19       | 2.8             | 5.7         | 2              |
|                    |                 | Comments (odour, o                                     |                         |           |                 |             |                |
| LNAPL Check Y   N  | dear, lo        | w turbidity,                                           | low sedimen             | t load    | , 10            | odour       | shee           |



Job 17: 12516828 Date: 15-6-20 weather: overcost. SW <10 hmph. 12°C. Grand condition ! Wet GHD Steff 5001 Chance Sean Sparon Rinsate: RBC5 (collected from ip) @ 10:15 AM after garging Gup1. Tripblank: collected @ GWOI (on the fix training grand) 203 Peggy Buxton Rd - spent 4.5 hrs (11.00-15.30) Searching for wells, only located 1 of 4 (KAN23) - team of two, one with metal detector Date: 16-6-20 weather: doudy, w < 10 kmph 8°C ground conditions. Wet Sampled: GW03, GW04, H15, CO4a

19/6/20 Sean Sparrow Weather 11°C partly doudy Ground: dry 100% Recycled Paper



| Hawthorn 1 WQM-1 16:8°C 6.80ppm DO                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------|
| Hawthorn 1 WDM-1 16:8°C 6.80 pm 00 5564 SPC 4.68 µs/cm unable to measure 9.41 pH +78.2 mV                             |
| well depth ration                                                                                                     |
| well depth, region usually has wells WQM-2 17.4°C 4.94 ppn 00                                                         |
| usually has wells WQM-2 17.4°C 4.94 ppm 00<br>down to 2 25m 5552 SPC 4.74 pcs/cm<br>9.69pH - 216.4 mV                 |
| Rinsate sample                                                                                                        |
| Rinsate sample taken off of WRM-3 17.4°C 5.72 ppm 00                                                                  |
| taken off of WRM-3 17.4°C 5.72 ppm 00  WRM clear, low turb, 5560 SPC 4.75 MS/cm  low sediment load, 9.67 pt -192.8 mV |
| WQM clear, low turb, 5560 SPC 4.75 US/CM low sediment load, 9.67 pH -192,8 mV                                         |
| Samples: Hawthorn 1, QA21, QA21A, TB06, RB06                                                                          |
| surpress manning, and, and, not                                                                                       |
| RB taken from WQM                                                                                                     |
| 203 leggy Buxton                                                                                                      |
| KAN27 & KAN28 unable to be located                                                                                    |
|                                                                                                                       |
| KAN 26 found under 5-10mm of top soil - Sample: KAN 26 - WRM 15.9°C 6-54 ppm 00                                       |
| - Sample: KAN26                                                                                                       |
| 11/11/5/11/11                                                                                                         |
| 8.81 pH -195.9 mV                                                                                                     |
| - 5W/ 11.811 m                                                                                                        |
| - Well Depth-in excess of 3/m (length of IP)                                                                          |
| - Well Depth - in excess of 3/m (length of IP) - Comments: Clear, low turbidity, low sediment load, no odour/sheen    |
| 10 odour/sheen                                                                                                        |
|                                                                                                                       |

Sampling Record Sheet Client: CFS Project: CFS Brukunga State Training Centre Project No: 12516828

Sampler: Sean Sparrow Date: 9/06/2020

| Sample ID | Time | GPS (UTM)                          | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                                                                                                                                                                                                                                |
|-----------|------|------------------------------------|-----------|------|------------|-----------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TB03      | 1700 |                                    |           |      |            |           |            |                                                                                                                                                                                                                                                                                        |
| DC08      | 1700 | (54H)<br>313095 m E<br>6119496 m S | 2.7       | 7.64 | 1411       | 17.95     | 170.4      | Creek shallow and flowing freely, access requested & obtained to access road reserve (95 Smyth Rd, Dawesley). Sediment sample collected. Due to impromptu visit to property, did not have WQM on hand and had to test the samples ex-situ before handing them to the lab (12/06/2020). |
| QA20      |      |                                    |           |      |            |           |            | Intra-lab duplicate sample of DC08 (sediment and water)                                                                                                                                                                                                                                |
| QA20A     |      |                                    |           |      |            |           |            | Inter-lab triplicate sample of DC08 (water only)                                                                                                                                                                                                                                       |

Date: 15/06/2020 - 16/06/2020

| Sample ID | Time         | GPS (UTM)                          | Temp (°C) | рН    | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                                                          |
|-----------|--------------|------------------------------------|-----------|-------|------------|-----------|------------|------------------------------------------------------------------------------------------------------------------|
| TB04      |              |                                    |           |       |            |           |            |                                                                                                                  |
| RB04      |              |                                    |           |       |            |           |            |                                                                                                                  |
| GW01      | 1000<br>15/6 | (54H)<br>312081 m E<br>6124663 m S | 14.4      | 6.49  | 8926       | 2.45      | 38.2       | Northern boundary of CFS State Training Centre (on-site).                                                        |
| QA20      |              |                                    |           |       |            |           |            | Intra-lab duplicate sample of GW01                                                                               |
| QA20A     |              |                                    |           |       |            |           |            | Inter-lab triplicate sample of GW01                                                                              |
| GW06      | 1100<br>15/6 | (54H)<br>312419 m E<br>6122351 m S | 16.1      | 8.06  | 5778       | 1.80      | 28.6       | Road easement between properties, permission requested and received to access location through private property. |
| KAN23     | 1200<br>15/6 | (54H)<br>311384 m E<br>6124376 m S | 16.4      | 10.22 | 3494       | 1.46      | -219.9     | Private property, Informed Consent and permission to access site received, samples include PFAS, pH, TDS and     |

|      |              |                                    |      |       |       |      |        | Metals. Site includes four groundwater monitoring wells installed with gatics, which are all suspected to be covered by top soil, KAN26 found on 19/06/2020, remaining two wells (KAN27 & KAN28) were not able to be located by GHD staff or surveyor that was contracted to survey wells. |
|------|--------------|------------------------------------|------|-------|-------|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GW02 | 1600<br>15/6 | (54H)<br>312744 m E<br>6124668 m S | 14.8 | 11.66 | 20641 | 1.42 | -72.9  | Roadside neighbouring DEM Brukunga WTP.                                                                                                                                                                                                                                                    |
| GW05 | 1700<br>15/6 | (54H)<br>312205 m E<br>6123128 m S | 15.2 | 11.09 | 744   | 3.59 | -38.8  | Roadside of Pyrites Rd, north of Dawesley Creek bridge.                                                                                                                                                                                                                                    |
| H15  | 0900<br>16/6 | (54H)<br>312475 m E<br>6123588 m S | 15.5 | 12.67 | 812   | 3.42 | -169.4 | Private property, Informed Consent and permission to access site received, samples include PFAS, pH, TDS and Metals.                                                                                                                                                                       |
| C04a | 1200<br>16/6 | (54H)<br>312286 m E<br>6123985 m S | 17.1 | 11.54 | 2476  | 2.45 | -170.1 | Private property, Informed Consent and permission to access site received, samples include PFAS, pH, TDS and Metals.                                                                                                                                                                       |
| GW03 | 1300<br>16/6 | (54H)<br>312959 m E<br>6124496 m S | 16.1 | 9.85  | 7104  | 5.05 | 40.8   | DEM Brukunga WTP land, east of sludge drying ponds.                                                                                                                                                                                                                                        |
| GW04 | 1400<br>16/6 | (54H)<br>312784 m E<br>6124214 m S | 15.9 | 11.26 | 6887  | 3.83 | -135.1 | DEM Brukunga WTP land, south of sludge drying ponds.                                                                                                                                                                                                                                       |
| GW07 | 1500<br>16/6 | (54H)<br>312230 m E<br>6122568 m S | 16.7 | 11.46 | 1262  | 4.80 | -192.5 | Roadside of Pyrites Rd, south of Dawesley Creek bridge.                                                                                                                                                                                                                                    |

#### Date: 19/06/2020

| Sample ID | Time | GPS (UTM)                          | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                                                              |
|-----------|------|------------------------------------|-----------|------|------------|-----------|------------|----------------------------------------------------------------------------------------------------------------------|
| RB05      |      |                                    |           |      |            |           |            |                                                                                                                      |
| TB05      |      |                                    |           |      |            |           |            |                                                                                                                      |
| Hawthorn1 | 0800 | (54H)<br>312850 m E<br>6121034 m S | 16.8      | 9.41 | 5564       | 6.80      | -178.2     | Grab sample from bore well, took 3 consecutive WQM readings to ensure                                                |
|           |      |                                    | 17.4      | 9.69 | 5552       | 4.94      | -216.4     | water column had stabilised before taking                                                                            |
|           |      |                                    | 17.4      | 9.67 | 5560       | 5.72      | -192.8     | samples. Private property, samples included PFAS, pH, TDS and Metals.                                                |
| QA21      |      |                                    |           |      |            |           |            | Intra-lab duplicate sample of Hawthorn1                                                                              |
| QA21A     |      |                                    |           |      |            |           |            | Inter-lab triplicate sample of Hawthorn1                                                                             |
| KAN26     | 1500 | (54H)<br>310962 m E<br>6124446 m S | 15.9      | 8.81 | 1202       | 6.54      | -195.9     | Private property, Informed Consent and permission to access site received, samples include PFAS, pH, TDS and Metals. |

Sampling Record Sheet Client: CFS Project: CFS Brukunga State Training Centre Project No: 12516828

Sampler: Sean Sparrow Date: 8/07/2020

| Sample ID | Time | GPS (UTM)   | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                   |
|-----------|------|-------------|-----------|------|------------|-----------|------------|-------------------------------------------|
| TB07      |      |             |           |      |            |           |            |                                           |
| RB07      |      |             |           |      |            |           |            | Rinsate sample taken from WQM             |
|           |      |             |           |      |            |           |            | between DC14 and DC15                     |
| DC09      | 0857 | (54H)       | 8.3       | 7.28 | 2456       | 9.78      | 119.1      | Creek flowing freely, access requested &  |
|           |      | 315233 m E  |           |      |            |           |            | obtained to access road reserve (483      |
|           |      | 6116776 m S |           |      |            |           |            | Ironstone Range Rd, Petwood). Sediment    |
|           |      |             |           |      |            |           |            | sample collected.                         |
| QA25      |      |             |           |      |            |           |            | Intra-lab duplicate of DC09               |
| QA25A     |      |             |           |      |            |           |            | Inter-lab duplicate of DC09               |
| DC10      | 0935 | (54H)       | 8.2       | 7.46 | 2404       | 9.99      | 124.9      | Creek flowing freely, access requested &  |
|           |      | 315127 m E  |           |      |            |           |            | obtained to access road reserve (483      |
|           |      | 6116269 m S |           |      |            |           |            | Ironstone Range Rd, Petwood). Sediment    |
|           |      |             |           |      |            |           |            | sample collected.                         |
| DC11      | 1012 | (54H)       | 9.3       | 7.61 | 2411       | 10        | 145.1      | Creek flowing freely, access requested &  |
|           |      | 314936 m E  |           |      |            |           |            | obtained to access road reserve (483      |
|           |      | 6115772 m S |           |      |            |           |            | Ironstone Range Rd, Petwood). Sediment    |
|           |      |             |           |      |            |           |            | sample collected.                         |
| DC13      | 1130 | (54H)       | 10.6      | 7.74 | 1960       | 6.67      | 119.5      | Creek flowing freely, access requested &  |
|           |      | 316439 m E  |           |      |            |           |            | obtained to access road reserve (573 Back |
|           |      | 6114554 m S |           |      |            |           |            | Callington Rd, Petwood). Sediment sample  |
|           |      |             |           |      |            |           |            | collected.                                |
| DC14      | 1720 | (54H)       | 10.2      | 8.31 | 1982       | 9.31      | 198.7      | Creek flowing freely, sediment sample     |
|           |      | 316496 m E  |           |      |            |           |            | collected.                                |
|           |      | 6113997 m S |           |      |            |           |            |                                           |
| DC15      | 1640 | (54H)       | 10.6      | 8.23 | 1658       | 10.91     | 179.6      | Creek flowing freely, sediment sample     |
|           |      | 316722 m E  |           |      |            |           |            | collected.                                |
|           |      | 6112626 m S |           |      |            |           |            |                                           |

| Sample ID | GPS            | Comment                                                                                                        |
|-----------|----------------|----------------------------------------------------------------------------------------------------------------|
| WW01      | (54H)          | Sample collected from tailings dam seepage that was pooling beneath the far eastern wall.                      |
|           | 312196 m E     |                                                                                                                |
|           | 6124226 m S    |                                                                                                                |
| WW02      | (54H)          | Sample collected from tailings dam seepage that was collecting beneath the far eastern wall and being          |
|           | 312180 m E     | transferred to the collection pond via the 'V-notch'.                                                          |
|           | 6124254 m S    |                                                                                                                |
| QA26      |                | Intra-lab duplicate of WW02                                                                                    |
| QA26A     |                | Inter-lab duplicate of WW02                                                                                    |
| WW03      | (54H)          | Sample collected from seepage from southern rock stockpile via via small one-way dead end track.               |
|           | 311780 m E     |                                                                                                                |
|           | 6123746 m S    |                                                                                                                |
| WW04      | (54H)          | Sample collected from seepage along roadside near top of South Hill Rd (on mine site).                         |
|           | 311683.28 m E  |                                                                                                                |
|           | 6123852.36 m S |                                                                                                                |
| WW05      | (54H)          | Sample collected from northern pit accessible via West Hill Rd (on mine site), most northern edge of pit area. |
|           | 311645 m E     |                                                                                                                |
|           | 6124748 m S    |                                                                                                                |
| WW06      | (54H)          | Sample collected from northern pit accessible via West Hill Rd (on mine site), near WW05 eastern facing rather |
|           | 311638 m E     | than south facing.                                                                                             |
|           | 6124732 m S    |                                                                                                                |
| WW07      | (54H)          | Sample collected from southern pit accessible via West Hill Rd (on mine site), western corner nearest to the   |
|           | 311591 m E     | sledge stockpile deposition zone.                                                                              |
|           | 6124242 m S    |                                                                                                                |

|     |  | 92 |     |    | ı |
|-----|--|----|-----|----|---|
| 336 |  |    |     |    | 4 |
|     |  | 00 |     |    | 3 |
| h   |  |    | EH. | di | É |

# Surface Valor and Sediment Purging and Sampling Record

| ,        | 1      | 10 | 100 | V |
|----------|--------|----|-----|---|
| Bore ID: |        |    | 09  | 1 |
| JUIO ID  | Bann n |    |     |   |

| Job Information            | Sampling Information                                      | Bore Information            |
|----------------------------|-----------------------------------------------------------|-----------------------------|
| Client:                    |                                                           | SWL(mbTOC): m Logic Check:  |
|                            | Sample Method: Gras Samples                               | Screen: From: m Stick Up: m |
| Proj. No.: PFAS Assessment | WQ Meter Type: 75/ Pro                                    | NAPL Check: Bore Diam.: mm  |
| Sampler:                   | Flow Cell: Y / N Pump Depth:m                             | Ref.datum: Well Cap Secure? |
| Date: 08-07-20             | WLevel Meter Type: Dip / Fox / Int.Fce / Gge              | Bore Depth: m               |
| Round                      | Field Filtered? Y / N (filter vessel, disposable filter/s | yringe)                     |

| Time   | Volume                 | Temp | рН               | Elec,Cond  | Dis.Oxygen | Ox-Red Pt. | SWL      |                  | Comment:                                                               |
|--------|------------------------|------|------------------|------------|------------|------------|----------|------------------|------------------------------------------------------------------------|
| ()     | (L)                    | (°C) | (pH units)       | July 1 way | (M.6.14.)  | (± mV)     | (m TOC)  | ()               | Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? |
|        | (3 consecutive lings): | -    | +/- 0.05 pH      | +/- 3%     | +/- 10%    | +/- 10 mV  | stable   |                  |                                                                        |
| 8.57   | DC09                   | 8,3  | 7.28             | 2456       | 9.78       | 119.1      | photos V | Q425, QA25A      | DC 09 Lat 35.074951°S 2 Spy S                                          |
| 9 -35  | DCIO                   | 8.2  | 7.46             | 2404       | 9,99       | 124.9      |          | 2×250,2 wale     | buttles Long 138, 4733 75 E JAPP                                       |
|        | DC10                   | S    | 350 04           | 145,9"     | E 1380     | 58' ZO.O"  | photos v | 1x large sedimen | utjur (other side of fence where car is part                           |
| 10, 12 | DCII                   | 9.3  | 7.61             | 2411       | 10.00      | 145.1      |          | 2x250nl valer    | Photos takon                                                           |
|        | DCII                   | Lat  | 35. <b>0</b> 838 | 62°S       | Long 138.  | 970016°E   | phohosy  | Ix jar sediment  | access to creek by jumping the tence                                   |
| 11.30  | DC13                   | 10.6 | 7.74             | 1960       | 6.67       | 119.5      | ,        |                  | 7 0 0                                                                  |
| ·      | 0013                   | Lat  | 35°05'42         | 4" Long    | 1380 5910. |            | photos:  | 2×250mLw         |                                                                        |
| 16,40  | 0015                   | 10.6 | 8.23             | 1658       | 10.91      | 179,6      | ·        | 1× jar sedim     | S 35° 04° 29.5" ? ehex 20 GPS                                          |
|        | 0015                   | Lat  | 35 00 09         | 1" Long    | 11000      |            | photos   | 2×250mL          | E 138° 58' 24,6" ) BARITIA                                             |
| 17.20  | 0014                   | 10.2 | 8-3/             | 1982       | 9.31       | 198.7      | 1        | 1× jar           |                                                                        |
|        | DC14                   | Lat  | 35 06            | 00,5"      | Long 138   | 59 12,211  | photos   | 2×250m/          | Surface water & sediment sample                                        |
|        |                        |      |                  |            |            |            | /        | 1 × jar          |                                                                        |
|        |                        |      | TO .             |            |            |            |          |                  | 5.1                                                                    |
|        |                        |      |                  |            |            |            |          |                  |                                                                        |
|        |                        |      |                  |            |            |            |          |                  |                                                                        |

#### Field QA Checks:

Air bubbles in vials? Y / N Any violent reactions? Y / N Decontamination as per GHD procedure? Y / N Was sampling equipment pre-cleaned? Y / N COC updated? Y / N

| Parameters    | втех | ТРН | РАН | СНС    | РСВ | ОСР | OPP | Tot. Metal | Biol. |              |  |
|---------------|------|-----|-----|--------|-----|-----|-----|------------|-------|--------------|--|
| Preservatives |      |     |     | 10 1 4 |     |     |     |            |       | 111111111111 |  |

|         |                         | CONTRACTOR CONTRACTOR CONTRACTOR | AND DESCRIPTION OF THE PERSON | THE RESERVE OF THE PARTY OF THE |           | THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME | NAME OF TAXABLE PARTY. |
|---------|-------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| omment: | <b>Duplicate sample</b> | s collected                      | , bottles used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | access,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | condition | of headworks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ete                    |

QA25, QA25A Surface water & Sediment (3 plastic fars)

DC09 Large plastic bottles

Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 \*Double for gravel pack

relabeled to WW --

5501 - Seepage Lat 35°00.25.8"
Long 138°56'30.8"

SSOZ - Lat 35°00 24.9" (QA26, QA26A) Long 138°56'30.2" (QA26, QA26A)

5503 - Lat 35°00'41.1" Long 138°56'14.0"

5504 - Lat 35°00'37.1" Long 138° 56'001"

Long 138° 56' 09.6" 5505 - Lat 35° 00'08.5" - Long 138° 56'09.5"

5806 - Lat 35° 00'09.0" Long 138° 56'09.2"

5507 - Lat 35°00'09.1" Long 138°56'09.3"

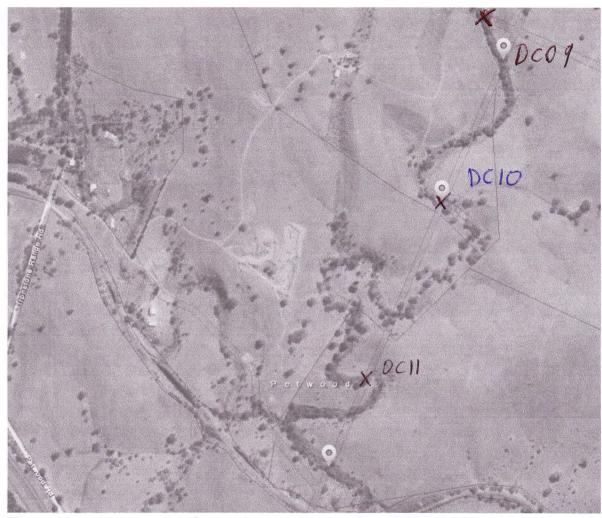



Figure: Map of proposed surface water sampling locations DC09, DC10 and DC11 in road reserve (public land), Petwood SA.

| Location ID                         | Location                                                                  | Soil Description                                                     |
|-------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|
| SS01, SS08, SS09                    | Surface sample on northern bench                                          | Sandy Silt, no plasticity, orange brown, fine to medium grained sand |
| SS02                                | Spoil from groundwater bore                                               | Sandy Silt, no plasticity, orange brown, fine to medium grained sand |
| SS03-SS07, SS09-SS17,<br>SS21, SS22 | Stockpiles on northern bench                                              | Silty Sand, fine to medium grained sand, orange brown, no plasticity |
| SS18-SS20                           | Material beneath black<br>lining of waste rock<br>piles in northern bench | Sandy Silt, no plasticity, orange brown, fine to medium grained sand |
| SS23-SS30                           | Stockpiles in southern area of mine site                                  | Sandy Silt, no plasticity, orange brown, fine to medium grained sand |
| SS10-SS15                           | Emergency Sludge overall area                                             | Sandy Silt, no plasticity, orange brown, fine to medium grained sand |
| SS15-SS20                           | Sludge drying ponds                                                       | Sandy Silt, no plasticity, orange brown, fine to medium grained sand |



### Purging and Sampling Record

Surface water & Sediment

Mount Barker Creek Bore ID: Pawegley Creek

| Job Information                        |             |           |             |               | Sampling Information |                                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bore Information                                                       |  |  |  |  |
|----------------------------------------|-------------|-----------|-------------|---------------|----------------------|---------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|
| 2444                                   |             |           |             | od:bo         | ,                    |                                       | SWL(mbTOC):                 | : m Logic Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                        |  |  |  |  |
| Project: PFAS investigation Sample Met |             |           |             |               | b sampl              |                                       | Screen: From: m Stick Up: m |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |  |  |  |  |
| Proj. No.: .                           | 251682      | 28        |             | WQ Meter T    | ype:                 | 1 PRO                                 |                             | NAPL Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bore Diam.: mm                                                         |  |  |  |  |
| Sampler:                               | SS / Vi     | 3         |             | Flow Cell:    | Y/N                  | Pump Depth:                           | m                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : Well Cap Secure?                                                     |  |  |  |  |
| Date:                                  | 23-07       | 2-20      |             | WLevel Mete   |                      | Dip / Fox / Int.F                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |  |  |  |  |
| Round                                  |             |           |             | Field Filtere |                      | r vessel, dispo                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |  |  |  |  |
| Time                                   | Volume      | Temp      | рН          | Elec.Cond     |                      | Ox-Red Pt.                            | SWL                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comment:                                                               |  |  |  |  |
| ()                                     | (L)         | (°C)      | (pH units)  | (MS/cm)       | (mg.12)              | (± mV)                                | (m TOC)                     | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? |  |  |  |  |
| Stable when (3 reading                 |             | -         | +/- 0.05 pH | +/- 3%        | +/- 10%              | +/- 10 mV                             | stable                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |  |  |  |  |
| 8.55                                   | MBC02       | 9,2       | 7.88        | 1735          | 12,15 (106%)         | 189.9                                 | QA28,                       | QA28A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rocky Creekbed little to no sediment; org. film on rocks               |  |  |  |  |
|                                        | Coordinates | GPS       | 54 H 03     | 12906         | 61 12917             | Spraless: 35.                         | 109 193°S                   | 138.947032E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Access via rock hopping; elevation 186,2m                              |  |  |  |  |
|                                        | DC16        | 9.3       | 7.41        | 2202          | 8.91                 | 231,2                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bamples: MBC02, QAZB, QAZBA, MBC025, QAZBS, QAZBA                      |  |  |  |  |
| 10.30                                  | GPS         | 54/-      | 31707       | 3             | 6112095              | fonce                                 | Cunnin                      | a eastwest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |  |  |  |  |
|                                        |             | creeky    | NSlow/      | ree movir     | a clear              | brown                                 | sedime                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | met with EPA pre e                                                     |  |  |  |  |
| 11:50 1                                | DC17        | 10.0      | 7,54        | 2166          | 6,97 (63,5           | 237.2                                 | 1720                        | DC175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Do reading not stabilising slowly: Ck clear, slow moving               |  |  |  |  |
|                                        | GPS         | 54H       | 317241      | 6111604       | Spyglass             | 35,12,18050                           |                             | The state of the s | brown sediment, vater plants, reed, vide open channo                   |  |  |  |  |
| 12:20 M                                | 4BCO1       | 11.6      | 8,04        | 1966          | 10.89 (99.5)         | - The Section 1 (1) 1 (1) 1 (1) 1 (1) |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BCOIS silty sandy sediment, clear water up low-medium                  |  |  |  |  |
|                                        | GPS 541     | 1031      | 7303        | 6111067       | Spyglass             | 35.126680                             | \$ 138,9949                 | PE gomelin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fin 3m vide open channel, free flowing furbity                         |  |  |  |  |
| 13.30                                  | NCOI        | 12.4      | 8.45        | 1342          | 10.55                | 224.2                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clear, abundant brown sediment                                         |  |  |  |  |
|                                        | 0PS SAH     | 3144      | 13          | 6115969       |                      |                                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shallow slow moving wide                                               |  |  |  |  |
| 14.00                                  | NC02        | 11.)      | 8-03        | 1187          | 10.36                | 229.3                                 | The same                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clear, rocky bed aravelly brown sediment                               |  |  |  |  |
|                                        | GPS 54H     | 31393     | 8           | 6116433       |                      |                                       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pipe appeals to come from stormwater                                   |  |  |  |  |
| 14:50                                  | BROI        | 16.2      | 9.21        | 2975          | 12.88                | 219.8                                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |  |  |  |  |
|                                        | 485         | 320512    |             | 6110487       |                      | *                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Staymant, no flow, gravelly pale sand, algae                           |  |  |  |  |
|                                        | Field       | d QA Ched | ks:         |               |                      |                                       |                             | Paragraph Security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                        |  |  |  |  |
| Air bubbles in                         |             |           |             | s? Y / N      |                      | neters BTEX                           | грн РАН                     | CHC PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OCP OPP Tot. Metal Biol.                                               |  |  |  |  |
| Decontamina<br>Was samplin             |             |           |             |               | Preserv              | atives                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                        |  |  |  |  |
| COC updated                            |             |           |             |               |                      | 100                                   |                             | 7 and South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        |  |  |  |  |

Comment: Duplicate samples collected, bottles used, access, condition of headworks etc

TB07 & RB07 collected between MBC02 & DC16, RB07 taken from WRM Vol (L/m of casing) 2.0 7.9 17.7 \*Double for gravel pack

Purge Volumes



## **Purging and Sampling Record**

| Time<br>() | Volume<br>(L)             | Temp<br>(°C) | pH<br>(pH units) | Elec.Cond<br>() | Dis.Oxygen<br>() | Ox-Red Pt.<br>(± mV) | SWL<br>(m) | () | Comment: Colour, turbidity, sediment load, sheen, odour, flow rate purged dry?                                   |
|------------|---------------------------|--------------|------------------|-----------------|------------------|----------------------|------------|----|------------------------------------------------------------------------------------------------------------------|
|            | (3 consecutive<br>dings): |              | +/- 0.05 pH      | +/- 3%          | +/- 10%          | +/- 10 mV            | stable     |    |                                                                                                                  |
| 15.30      | DC19                      | 10.7         | 7.73             | 1407            | 9.03             | 215.2                |            |    | QC27, QC27A, QC27S, QC27AS                                                                                       |
|            | GPS 54H                   | 319 936      | 6106588          |                 |                  |                      |            |    | Clear, appeared to go under/around                                                                               |
|            |                           |              |                  |                 |                  |                      |            |    | Culvert                                                                                                          |
| 16.10      | DC18                      | 11.1         | 7.82             | 1917            | 6.88             | 222.7                |            |    | wide, deep channel < 10m, slow<br>moving, brown sediment, med turb                                               |
|            | GPS 54H                   | 320396       | 610975           |                 |                  |                      |            |    | moving, brown sediment, med turb                                                                                 |
|            |                           |              |                  |                 |                  |                      |            |    |                                                                                                                  |
| 16.45      | BR02                      | 11.5         | 8,06             | 6820            | 5.47             | 236.4                | - ·        |    | (water only) shotcrete edges,                                                                                    |
|            | 4PS 54H                   |              | 320978           |                 | 6111247          |                      |            |    | (water only) shotcrete edges,<br>boulders line bed, abundant reeds                                               |
|            |                           |              |                  |                 |                  |                      |            |    | but stagnant, slow movement                                                                                      |
|            |                           |              |                  |                 |                  |                      |            |    | •                                                                                                                |
| 17.20      | DC-UPO2                   | 10.7         | 7.96             | 1340            | 9.98             | 182.2                | *******    |    | fast free-flowing, clear, brown                                                                                  |
|            | GPS 54H                   |              | 312181           | ************    | 6/268/8          |                      |            |    | sediment, area was burnt during                                                                                  |
|            |                           |              |                  |                 |                  |                      |            |    | fast free-flowing, clear, brown sediment, area was burnt during Cuddlee Creek bushfire                           |
|            |                           |              |                  |                 |                  |                      |            |    | ,                                                                                                                |
| 17.40      | DC-UPOI                   | 10.3         |                  |                 | 8.78             | 188.1                |            |    | slow moving, clear, black sediment,                                                                              |
|            | GPS 54H                   |              | 312387           |                 | 6/26369          |                      |            |    | slow moving, clear, black sediment,<br>strong methane odour, area was<br>hurnt during Cuddlee Creek<br>bush fire |
|            |                           |              |                  |                 |                  |                      |            |    | hurn't during Cuddlee Creek                                                                                      |
| <u> </u>   |                           |              |                  |                 |                  |                      |            |    | bush fire                                                                                                        |
|            |                           |              |                  |                 |                  |                      |            |    |                                                                                                                  |
|            |                           |              |                  |                 |                  |                      |            |    |                                                                                                                  |
|            |                           |              |                  |                 |                  |                      |            |    |                                                                                                                  |
|            |                           |              |                  |                 |                  |                      |            |    |                                                                                                                  |

Sampling Record Sheet Client: CFS Project: CFS Brukunga State Training Centre Project No: 12516828

Sampler: Sean Sparrow Date: 23/07/2020

| Sample ID | Time | GPS (UTM)   | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                    |
|-----------|------|-------------|-----------|------|------------|-----------|------------|--------------------------------------------|
| TB07      |      |             |           |      |            |           |            |                                            |
| RB07      |      |             |           |      |            |           |            | Rinsate sample taken from WQM              |
|           |      |             |           |      |            |           |            | between MBC02 and DC16                     |
| DC16/     | 1030 | (54H)       | 9.3       | 7.41 | 2202       | 8.91      | 231.2      | Shallow, slow but freely moving, clear,    |
| DC16S     |      | 317073 m E  |           |      |            |           |            | brown sediment                             |
|           |      | 6112095 m S |           |      |            |           |            |                                            |
| DC17 /    | 1150 | (54H)       | 10.0      | 7.54 | 2166       | 6.97      | 237.2      | Clear, slow moving, dark brown sediment,   |
| DC17S     |      | 317241 m E  |           |      |            |           |            | abundant water plants in centre beneath    |
|           |      | 6111604 m S |           |      |            |           |            | surface, abundant reeds on banks, wide     |
|           |      |             |           |      |            |           |            | open channel                               |
| DC18 /    | 1610 | (54H)       | 11.1      | 7.82 | 1917       | 6.88      | 222.7      | Wide, deep channel, <10 m, slow moving,    |
| DC18S     |      | 317073 m E  |           |      |            |           |            | brown sediment, medium turbidity           |
|           |      | 6112095 m S |           |      |            |           |            |                                            |
| DC19 /    | 1530 | (54H)       | 10.7      | 7.73 | 1407       | 9.03      | 215.2      | Clear, appeared to go under / around       |
| DC19S     |      | 319936 m E  |           |      |            |           |            | culvert (erosion / non-constructed         |
|           |      | 6106588 m S |           |      |            |           |            | pathway)                                   |
| QC27      |      |             |           |      |            |           |            | Intra-lab duplicate of DC19S               |
| QC27A     |      |             |           |      |            |           |            | Inter-lab duplicate of DC19S               |
| QC27S     |      |             |           |      |            |           |            | Intra-lab duplicate of DC19S               |
| QC27AS    |      |             |           |      |            |           |            | Inter-lab duplicate of DC19S               |
| DC-UP01/  | 1720 | (54H)       | 10.7      | 7.96 | 1340       | 9.98      | 182.2      | Fast free-slowing, clear, brown sediment,  |
| DC-UP01S  |      | 312181 m E  |           |      |            |           |            | area was burnt during the Cudlee Creek     |
|           |      | 6126818 m S |           |      |            |           |            | bushfire                                   |
| DC-UP02 / | 1740 | (54H)       | 10.3      | 7.96 | 8.78       | 1301      | 188.1      | Slow moving, clear, black sediment, strong |
| DC-UP02S  |      | 317073 m E  |           |      |            |           |            | methane odour, area was burnt during       |
|           |      | 6112095 m S |           |      |            |           |            | the Cudlee Creek bushfire                  |

| MBC01 /<br>MBC01S | 1220 | (54H)<br>317303 m E<br>6111067 m S | 11.6 | 8.04 | 1966 | 10.89 | 233.9 | Silty sandy sediment, clear water with medium turbidity, 3 m wide open channel, free flowing                                            |
|-------------------|------|------------------------------------|------|------|------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| MBC02 /<br>MBC02S | 0855 | (54H)<br>312906 m E<br>6112917 m S | 9.2  | 7.88 | 1735 | 12.15 | 189.9 | Rocky creek bed little to no sediment, organic film on rocks                                                                            |
| QC28              |      |                                    |      |      |      |       |       | Intra-lab duplicate of MBC02                                                                                                            |
| QC28A             |      |                                    |      |      |      |       |       | Inter-lab duplicate of MBC02                                                                                                            |
| QC28S             |      |                                    |      |      |      |       |       | Intra-lab duplicate of MBC02S                                                                                                           |
| QC28AS            |      |                                    |      |      |      |       |       | Inter-lab duplicate of MBC02S                                                                                                           |
| NC01 /<br>NC01S   | 1330 | (54H)<br>314413 m E<br>6115969 m S | 12.4 | 8.45 | 1342 | 10.55 | 224.2 | Clear, abundant brown sediment, shallow slow moving                                                                                     |
| NC02 /<br>NC02S   | 1400 | (54H)<br>313938 m E<br>6116433 m S | 11.1 | 8.03 | 1187 | 10.36 | 229.3 | Clear, rocky bed, gravelly brown sediment, pipe appears to be potentially stormwater (may be constructed creek diversion under culvert) |
| BR01/<br>BR01S    | 1450 | (54H)<br>320512 m E<br>6110487 m S | 16.2 | 9.21 | 2975 | 12.88 | 219.8 | Stagnant with obvious signs of algae, no flow, gravelly pale sand, water is discoloured pale yellow                                     |
| BR02              | 1645 | (54H)<br>320978 m E<br>6111247 m S | 11.5 | 8.06 | 6820 | 5.47  | 236.4 | Shotcrete edges, boulders line creek bed, abundant reeds but stagnant water with large amount of algae, slow movement (water only)      |

| PARCEL IDENTIFIER | TITLE      | PROPERTY | PROPERTY ST NAME | PROPERTY<br>ST TYPE | PROPERTY SUBURB   | Complete<br>Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Left<br>Survey |             |
|-------------------|------------|----------|------------------|---------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| F252765AL701      | CT6195/402 | LOT701   | BREMER RANGE     | RD                  | ST IVES           | DETO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.13/10:      | 10 200      |
| D66427AL21        | CT5936/419 | LOT21    | SAMUELS          | RD AR RAME          | CALLINGTON        | 62.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.2 (2.8)     | as the s    |
| D66427AL21        | CT5936/419 | LOT21    | SAMUELS          | RD40TD/HEE          | CALLINGTON        | 8c ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /              |             |
| D75224AL57        | CT6008/594 | 106      | FARLEY           | RD I M HAL          | RED CREEK         | 9810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VAS            | INH         |
| D75224AL57        | CT6008/594 | 106      | FARLEY           | RD MIM SLAT         | RED CREEK         | 2510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6114.6       | again is    |
| F160689AL50       | CT5663/235 | LOT50    | ECLAIR MINE      | RD OTTO             | ST IVES A05 NO NO | 3810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7A1.5          | 45 DS7 44   |
| F160689AL50       | CT5663/235 | LOT50    | ECLAIR MINE      | RD MIM SIAL         | ST IVES           | 5213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70215          | 41 04301    |
| D66427AL22        | CT5936/420 | LOT22    | SAMUELS          | RD MM SIA           | CALLINGTON        | SETO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70935          | 47 04304    |
| D66427AL22        | CT5936/420 | LOT22    | SAMUELS          | RD AM STA           | CALLINGTON        | resin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14,007         | 48 D4306    |
| H170600SE62       | CR5745/685 | LOT62    | BREMER RANGE     | RD I FIA            | ST IVES           | CEES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V              | no vesiden  |
| H170600SE63       | CR5745/686 | LOT62    | BREMER RANGE     | RD - ZMALI          | ST IVES           | Gato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 141.55         | 56 1375923  |
| F252765AL702      | CT6195/402 | LOT702   | BREMER RANGE     | RDH 2MALL           | ST IVES           | 9879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$41.55        | 1 51 07522  |
| D57447AL3         | CT5860/146 | 430C     | CALLINGTON       | RD                  | SALEM PATROL PRE  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7              | Att.        |
| F178299AL100      | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           | CRSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V              | no residen  |
| F178299AL94       | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           | 10810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14156          | need to em  |
| F178299AL96       | CT5347/363 | LOT34    | BREMER RANGE     | RD MAL I            | ST IVES           | 0070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1AL56          | co-owner    |
| F178299AL109      | CT5347/363 | LOT34    | BREMER RANGE     | RD 2                | ST IVES NOT LOVE  | Term .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.395          | - co-owner  |
| F178299AL106      | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           | TIATO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,0871         | 10 ST D1123 |
| F178299AL108      | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           | Teno.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 508 E01        | V 58 H1704  |
| F178299AL104      | CT5347/363 | LOT34    | BREMER RANGE     | RD AM SIA           | ST IVES           | Ec. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61907          | 59 D4308    |
| F178299AL97       | CT5347/363 | LOT34    | BREMER RANGE     | RD IN SIAL          | ST IVES           | 15210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51905          | 1 66 D4304  |
| F178299AL95       | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           | NEXO CREAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 068800         | 81 H1706    |
| F178299AL107      | CT5347/363 | LOT34    | BREMER RANGE     | RD MIM STALL        | ST IVES           | CKS7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 165200         | 5 F1206     |
| F178299AL105      | CT5347/363 | LOT34    | BREMER RANGE     | RD/OTAMILI          | ST IVES           | тата                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DOLLAS         | 18400 EN 1  |
| F178299AL103      | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.01         |             |
| F178299AL93       | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1           |
| F178299AL98       | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |
| F178299AL102      | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1           |
| F178299AL99       | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |
| F178299AL101      | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             |
| F178299AL92       | CT5347/363 | LOT34    | BREMER RANGE     | RD                  | ST IVES           | Annual delication of the second contraction  |                | 7           |
| F161070AL35       | CT5347/362 | LOT34    | BREMER RANGE     | RD                  | ST IVES           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 7           |
| F161070QP36       | CT5347/362 | LOT34    | BREMER RANGE     | RD                  | ST IVES           | Managin Scholler and present a described with the property of the state of the stat |                | 1           |
| F161070QP37       | CT5347/362 | LOT34    | BREMER RANGE     | RD                  | ST IVES           | Activistic and accompany of the second state o |                | 7           |
| F161070AL34       | CT5347/362 | LOT34    | BREMER RANGE     | RD                  | ST IVES           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /              | 1           |
| D66427AL21        | CT5936/419 | LOT21    | SAMUELS          | RD                  | CALLINGTON        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | NH          |
| 7 D66427AL21      | CT5936/419 | LOT21    | SAMUELS          | RD                  | CALLINGTON        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1              | 7           |

| 8 D111170AL120 | CT6168/953 | 430D   | CALLINGTON    | RD   | SALEM      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T         | (informed consent |
|----------------|------------|--------|---------------|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|
| 9 D111170AL121 | CT6168/954 | 430D   | CALLINGTON    | RD   | SALEM      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | TAT .             |
| F212200AL179   | CT5695/306 | LOT178 | BREMER RANGE  | RD   | ST IVES    | Markettellar tempina kalali filosopus patalangung angan pangan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.16     | Quarry            |
| 1 F212200AL178 | CT5695/306 | LOT178 | BREMER RANGE  | RD   | ST IVES    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                   |
| 2 D57447AL4    | CT5860/147 | 430B   | CALLINGTON    | RD   | SALEM      | 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/        | Alie C.           |
| 3 F160689AL50  | CT5663/235 | LOT50  | ECLAIR MINE   | RD   | ST IVES    | - In the second  | 1/        | ne rosidence      |
| 4 F160689AL50  | CT5663/235 | LOT50  | ECLAIR MINE   | RD   | ST IVES    | 106.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | N11250 J          |
| 5 D57447AL5    | CT5860/148 | 430A   | CALLINGTON    | RD / | SALEM      | San Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V         | NH                |
| 5 D43067QP15   | CT5288/87  | LOT14  | ECLAIR MINE   | RD   | ST IVES    | C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0@1A1     | 0.00174.1         |
| 7 D43067QP15   | CT5288/87  | LOT14  | ECLAIR MINE   | RD   | ST IVES    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 152.17    | TENADO N          |
| 8 D43067QP14   | CT5288/87  | LOT14  | ECLAIR MINE   | RD   | ST IVES    | FINE ELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SSLIA     | 1 25.640          |
| 9 D43067QP14   | CT5288/87  | LOT14  | ECLAIR MINE   | RD   | ST IVES    | 40/10 TO 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNEGZ     | 10 H1706          |
| D75224AL55     | CT6008/592 | 170    | WILLIAMS HILL | RD   | RED CREEK  | ave Ivazio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/        | NH no residence   |
| 1 D75224AL55   | CT6008/592 | 170    | WILLIAMS HILL | RD   | RED CREEK  | A CONTRACTOR OF THE PARTY OF TH | TUNJAG    | - The resident    |
| 2 F16278AL209  | CR5924/969 | LOT209 | BREMER RANGE  | RD   | ST IVES    | 4198 8210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AL.:      | 7-F73d(8)         |
| 3 H170600SE64  | CR5745/687 | LOT64  | BREMER RANGE  | RD   | ST IVES    | 123 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UUJJAE    | 14 817839         |
| 4 D75224AL56   | CT6008/593 | LOT56  | WILLIAMS HILL | RD   | SALEM      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRIAR     | 15 817829         |
| 5 D75224AL56   | CT6008/593 | LOT56  | WILLIAMS HILL | RD   | SALEM      | Mariella Company Compa | . deliac  | 16 F1782          |
| 5 D112337QP70  | CT6176/63  | LOT70  | SAMUELS       | RD   | CALLINGTON |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAR     | 17 £1 282 5       |
| 7 D112337QP71  | CT6176/63  | LOT70  | SAMUELS       | RD   | CALLINGTON | CIBSTILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ndi lae   | 18 F1792B         |
| H170600SE503   | CT5714/468 | LOT503 | SAMUELS       | RD   | CALLINGTON | ECIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SOLUAR    | EST.19. 01        |
| D43067QP15     | CT5288/87  | LOT15  | ECLAIR MINE   | RD   | ST IVES    | ECT )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140 C.124 | 20 F1 66 F        |
| D43067QP15     | CT5288/87  | LOT15  | ECLAIR MINE   | RD   | ST IVES    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VEJAR     | 21 F1782          |
| H170600SE60    | CR5745/683 | LOT60  | ECLAIR MINE   | RD   | ST IVES    | CESS WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SEJAR     | 22:31:32          |
| H170600SE61    | CR5745/684 | LOT60  | ECLAIR MINE   | RD   | ST IVES    | 11 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE JAR   | 23.11.78.4        |
| D94872AL100    | CT6152/250 | 470    | CALLINGTON    | RD   | SALEM      | CVV   CC   V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T DILLAND | 24 3 128.49       |
| D94872AL101    | CT6152/251 | LOT101 | CALLINGTON    | RD   | SALEM      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 25 11762          |

| 鄸  |    | 09    |    | 9    | ų |
|----|----|-------|----|------|---|
| P. | 7  | - 51  | 3  | 10.  | 3 |
| U  |    | . 11. | 1  | 17   | J |
| 3  | e) | ωÜ    | ıŝ | jyb) | á |

### **Purging and Sampling Record**

Mount Barker Creek

Bore ID:

| ENDARROUNDE STATE OF THE STATE |                                                           |                   |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------|------------------|
| Job Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sampling Information                                      | Bore Informa      | ation            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | SWL(mbTOC): m     | Logic Check:     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Method: Grab                                       | Screen: From:to m | Stick Up: m      |
| Proj. No.: 12516828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WQ Meter Type: YS / Professional                          | NAPL Check:       | Bore Diam.: mm   |
| Sampler: Sean Sparrow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flow Cell: Y/N Pump Depth:m                               | Ref.datum:        | Well Cap Secure? |
| Date: 10-08-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WLevel Meter Type: Dip / Fox / Int.Fce / Gge              | Bore Depth: m     |                  |
| Round                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Field Filtered? Y / N (filter vessel, disposable filter/s | yringe)           |                  |
| Time Volume Temp pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flec Cond Dis Oxygen Ox-Red Pt SWL                        | Comment:          |                  |

| Time  | Volume<br>(L)          | Temp<br>(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pH<br>(pH units) | Elec.Cond  | Dis.Oxygen | Ox-Red Pt.<br>(± mV) | SWL<br>(m TOC) | ()          | Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? |
|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|------------|----------------------|----------------|-------------|---------------------------------------------------------------------------------|
|       | (3 consecutive dings): | SALUENCE DE L'ANDERS DE L'ANDE | +/- 0.05 pH      | +/- 3%     | +/- 10%    | +/- 10 mV            | stable         | ilo il      |                                                                                 |
| 10:24 |                        | 8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,04             | 1297       | 8,78 (76%) | -159.8               |                |             | DC17, QC29 QC29A > Wales                                                        |
| -     | Spyglass!              | 35,13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8830°5,          | 139,0235   | 43°E; 0    | 285613; 6            | 157305         |             | DC17 5 QC295, QC29AS -> Sediment                                                |
|       | ~ 10m wi               | de ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n chann          | el, free f | lowing, m  | oring vel gu         | ichly, to      | mhor flow   | clear to pale brown, low turbidity                                              |
|       | reeds                  | along                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | bank             | M+ B       | when Ch    | @°430'D              | Calling        | ton Rel, Sa | Hem (Conservation Property)                                                     |
|       |                        | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |            |            |                      | 0              | ,           | V 0)                                                                            |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            |                      |                |             |                                                                                 |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            |                      |                |             |                                                                                 |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            |                      |                |             |                                                                                 |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            |                      |                |             |                                                                                 |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            |                      |                |             |                                                                                 |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            | - N                  |                |             |                                                                                 |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            | 4,                   |                |             |                                                                                 |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            |                      |                |             |                                                                                 |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            |                      |                |             |                                                                                 |
|       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |            |                      |                |             |                                                                                 |

#### Field QA Checks:

Air bubbles in vials? Y / N Any violent reactions? Y / N Decontamination as per GHD procedure? Y / N Was sampling equipment pre-cleaned? Y / N COC updated? Y / N

| Parameters    | BTEX | TPH | PAH | CHC | PCB | OCP | OPP | Tot. Metal | Biol. | , L |  |  |
|---------------|------|-----|-----|-----|-----|-----|-----|------------|-------|-----|--|--|
| Preservatives |      |     |     |     |     | 1   |     |            |       |     |  |  |

Comment: Duplicate samples collected, bottles used, access, condition of headworks etc

Purge Volumes
Casing Int. Dia (mm) 50 100 150
Vol (L/m of casing) 2.0 7.9 17.7
\*Double for gravel pack

Sampler: Sean Sparrow Date: 10/08/2020

| Sample ID         | Time | GPS (UTM)                          | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                          |
|-------------------|------|------------------------------------|-----------|------|------------|-----------|------------|----------------------------------------------------------------------------------|
| TB08              |      |                                    |           |      |            |           |            |                                                                                  |
| RB08              |      |                                    |           |      |            |           |            | Rinsate sample taken from WQM after sampling DC17A                               |
| DC17A /<br>DC17AS | 1024 | (54H)<br>319938 m E<br>6109773 m S | 8.9       | 8.04 | 1297       | 8.78      | -159.8     | Clear to pale brown, low turbidity, wide and deep channel, slow but free flowing |
| QC29              |      |                                    |           |      |            |           |            | Intra-lab duplicate of DC17A                                                     |
| QC29A             |      |                                    |           |      |            |           |            | Inter-lab duplicate of DC17A                                                     |
| QC29S             |      |                                    |           |      |            |           |            | Intra-lab duplicate of DC17AS                                                    |
| QC29AS            |      |                                    |           |      |            |           |            | Inter-lab duplicate of DC17AS                                                    |



### **Purging and Sampling Record**

Bore ID: 6627-5944

| Job Information    | Sampling                      | Information                    | Bore Information                |                  |  |  |  |  |  |
|--------------------|-------------------------------|--------------------------------|---------------------------------|------------------|--|--|--|--|--|
| Client:            | Purge Method: Pumpe           | ed bore                        | SWL(mbTOC): m                   | Logic Check:     |  |  |  |  |  |
| Project: .125/6828 | Sample Method:                |                                | Screen: From:to m               | Stick Up: m      |  |  |  |  |  |
|                    | WQ Meter Type:                |                                | NAPL Check:                     | Bore Diam.: mm   |  |  |  |  |  |
| Sampler: .5.5      | Flow Cell: Y / N              | Pump Depth:m                   | Ref.datum:                      | Well Cap Secure? |  |  |  |  |  |
| Date: 17/8         | WLevel Meter Type:            | Dip / Fox / Int.Fce / Gge      | Bore Depth: 28.35 water connect |                  |  |  |  |  |  |
| Round              | Field Filtered? Y / N (filter | er vessel, disposable filter/s | yringe)                         | •                |  |  |  |  |  |

| Time () | Volume<br>(L)          | Temp<br>(°C) | pH<br>(pH units) | Elec.Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dis.Oxygen () | Ox-Red Pt.<br>(± mV) | SWL<br>(m TOC) | () | Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? |
|---------|------------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|----------------|----|---------------------------------------------------------------------------------|
|         | (3 consecutive lings): | -            | +/- 0.05 pH      | DESCRIPTION OF THE PARTY OF THE | +/- 10%       | +/- 10 mV            | stable         |    |                                                                                 |
| 9.17    |                        | 15.4         | 7.01             | 4611 (992)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.13          | 114.0                |                |    | Clear, strong methane odour                                                     |
| 9.20    |                        | 17.5         | 6.55             | 4529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.24          | 6.7                  |                |    | Clear, medium methane odour                                                     |
| 9.23    |                        | 17.9         | 6.47             | 4535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.09          | -11.4                |                |    | Clear, slight methane odour                                                     |
| 9.26    |                        | 18.4         | 6.49             | 4546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.00          | -16./                |                |    | Clear, no odour                                                                 |
| 9.29    | v                      | 18.0         | 6.44             | 4545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.09          | -18.1                |                |    | Clear, no odour                                                                 |
| 9.33    |                        | 18.1         | 6.47             | 4549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,24          | -21.4                |                |    | Clear, no odour                                                                 |
|         | Samples                |              | 6627-594         | 4, 0030,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QC30A         |                      |                |    |                                                                                 |
|         | taken                  |              |                  | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                      |                |    |                                                                                 |
|         |                        |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                      |                |    | EPS 312289                                                                      |
| -       |                        |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                      |                | -  | 54H 6122864                                                                     |
|         | -                      |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                      |                | -  |                                                                                 |

#### Field QA Checks:

Air bubbles in vials? Y / N Any violent reactions? Y / N Decontamination as per GHD procedure? Y / N Was sampling equipment pre-cleaned? Y / N COC updated? Y / N

| Parameters    | BTEX | TPH | РАН | CHC | PCB | OCP | OPP | Tot. Mctel | Biol. | ) i  |  |  |
|---------------|------|-----|-----|-----|-----|-----|-----|------------|-------|------|--|--|
| Preservatives |      |     | 7   | -3  |     | - 4 |     |            |       | .0 0 |  |  |



### Purging and Sampling Record Surface Water Sampling

| Bore | ID: |  |  |  |
|------|-----|--|--|--|
|------|-----|--|--|--|

|            |                                                   |          |                             |             |                  |                  |         | 418         | ampirer 9                                                              |
|------------|---------------------------------------------------|----------|-----------------------------|-------------|------------------|------------------|---------|-------------|------------------------------------------------------------------------|
|            | Job Inform                                        | nation   |                             |             | Sampling I       | nformation       |         |             | Bore Information                                                       |
| Client:    |                                                   |          |                             | Purge Metho | od:              |                  |         | SWL(mbTOC   | ;): m Logic Check:                                                     |
| Project:   | 12516                                             | 828      |                             | Sample Met  | hod:             |                  |         | Scree       | n: From: m Stick Up: m                                                 |
| Proj. No.: |                                                   |          |                             | WQ Meter Ty | ype:             |                  |         | NAPL Check: | Bore Diam.: mm                                                         |
| Sampler:   | Sean S                                            | 001100   | V                           | Flow Cell:  | Y/N              | Pump Depth       | :m      |             | n: Well Cap Secure?                                                    |
|            | 17-8-                                             |          |                             | WLevel Mete |                  | Dip / Fox / Int. |         |             | h: m                                                                   |
| Round      |                                                   |          |                             |             | d? Y / N (filte  |                  |         |             |                                                                        |
| Time       | Volume                                            | Temp     | рН                          | Elec.Cond   | Dis.Oxygen       | Ox-Red Pt.       | SWL     |             | Comment:                                                               |
| ()         | (L)                                               | (°C)     | (pH units)                  | (SPC)       | ()               | (± mV)           | (m TOC) | ()          | Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? |
|            | (3 consecutive dings):                            |          | +/- 0.05 pH                 | +/- 3%      | +/- 10%          | +/- 10 mV        | stable  |             |                                                                        |
| DCOZA      |                                                   | 10.2     | 7.63                        | 2843        | 8.97             | 35.5             |         |             | Clear, free flowing, narrow/rocky                                      |
| DCOZAS     | 5                                                 | GPS      | 54H                         | 312375      |                  | 6122802          | ,       |             | Clear from flowing narrow/rocky                                        |
|            |                                                   |          |                             |             |                  | 0/2 0002         |         |             | bed bed                                                                |
|            |                                                   |          |                             |             |                  |                  |         |             | NEO                                                                    |
|            |                                                   |          |                             |             |                  |                  |         |             |                                                                        |
|            |                                                   |          |                             |             |                  |                  | *       |             |                                                                        |
|            |                                                   |          |                             |             |                  |                  |         |             |                                                                        |
|            |                                                   |          |                             |             |                  |                  |         |             |                                                                        |
|            |                                                   |          |                             |             |                  |                  |         |             |                                                                        |
|            |                                                   |          |                             |             |                  |                  | .64     |             |                                                                        |
| *          |                                                   |          |                             |             |                  |                  |         |             |                                                                        |
|            |                                                   |          |                             |             |                  |                  |         |             |                                                                        |
|            |                                                   |          |                             |             |                  |                  |         | 7           |                                                                        |
|            |                                                   |          | ,                           |             |                  | ,                |         |             |                                                                        |
|            |                                                   |          |                             |             |                  | E A              | +       |             |                                                                        |
|            |                                                   |          |                             |             | 7                |                  | -       |             |                                                                        |
|            |                                                   |          |                             |             |                  |                  |         |             |                                                                        |
| Decontamin | in vials? Y / N<br>ation as per G<br>ng equipment | HD proce | ent reaction<br>dure? Y / N | s?Y/N       | Paran<br>Preserv | neters           | ТРН РАН | CHC PCB     | OCP OPP Tot. Mctal Biol.                                               |

Comment: Duplicate samples collected, bottles used, access, condition of headworks etc

Purge Volumes
Casing Int. Dia (mm) 50 100 150
Vol (L/m of casing) 2.0 7.9 17.7
\*Double for gravel pack

Sampler: Sean Sparrow Date: 17/08/2020

| Sample ID         | Time      | GPS (UTM)                          | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                    |
|-------------------|-----------|------------------------------------|-----------|------|------------|-----------|------------|----------------------------------------------------------------------------|
| TB09              |           |                                    | -         |      |            |           |            |                                                                            |
| RB09              |           |                                    |           |      |            |           |            | Rinsate sample taken from WQM between 6627-5944 and DC02A                  |
| 6627-5944         | 0917      | (54H)<br>312289 m E                | 15.4      | 7.01 | 4611       | 4.13      | 114.0      | Grab sample from bore well, took 6 consecutive WQM readings to ensure      |
|                   | 0920      | 6122864 m S                        | 17.5      | 6.55 | 4529       | 1.24      | 6.7        | water column had stabilised before taking                                  |
|                   | 0923      |                                    | 17.9      | 6.47 | 4535       | 1.09      | -11.4      | samples. 294 Pyrites Road, Brukunga,<br>Informed Consent received and      |
|                   | 0926      |                                    | 18.1      | 6.49 | 4546       | 3.00      | -16.1      | accompanied by property owner.                                             |
|                   | 0929      |                                    | 18.0      | 6.44 | 4545       | 1.09      | -18.1      |                                                                            |
|                   | 0933      | -                                  | 18.1      | 6.47 | 4549       | 2.24      | -21.4      |                                                                            |
| QC30              |           |                                    |           |      |            |           |            | Intra-lab duplicate sample of 6627-5944                                    |
| QC30A             |           |                                    |           |      |            |           |            | Inter-lab triplicate sample of 6627-5944                                   |
| DC02A /<br>DC02AS | C30A 0950 | (54H)<br>312375 m E<br>6122802 m S | 10.2      | 7.63 | 2843       | 8.97      | 35.5       | Private property, Informed Consent and permission to access site received. |
| QC30S             |           |                                    |           |      |            |           |            | Intra-lab duplicate sample of DC02AS                                       |
| QC30AS            |           |                                    |           |      |            |           |            | Inter-lab triplicate sample of DC02AS                                      |



### Surface water Puraing and Sampling Record

| Para | . 1 | 3   |   |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |   |  |  |  |  |
|------|-----|-----|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|--|--|--|--|
| 0    | OLE | 3 1 | u |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ٠ |  |  |  |  |

|             |                           | r urgi      | ng and      | Jumpii        | ing ixeco        | IG                |                |              | Dore ID                                                                |
|-------------|---------------------------|-------------|-------------|---------------|------------------|-------------------|----------------|--------------|------------------------------------------------------------------------|
| ·           | Job Inforn                | nation      |             |               | Sampling I       | nformation        |                |              | Bore Information                                                       |
|             | 120100-1                  |             |             | Purge Meth    | od:              |                   |                | SWL(mbTOC)   | ): m Logic Check:                                                      |
| Project:    | 125/6829                  | ă           |             | Sample Met    | hod:             |                   |                | Screen       | n: From: m Stick Up: m                                                 |
|             |                           |             |             | WQ Meter T    | уре:             |                   |                | NAPL Check:  | Bore Diam.: mm                                                         |
| Sampler:    | 55                        |             |             | Flow Cell:    | Y/N              | Pump Depth:       | m              | Ref.datum    | n: Well Cap Secure?                                                    |
| Date:       | 11/9                      |             |             | WLevel Met    |                  | Dip / Fox / Int.F |                |              | n: m                                                                   |
| Round       |                           |             |             | Field Filtere | d? Y / N (filter | r vessel, dispo   | sable filter/s | yringe)      |                                                                        |
| Time        | Volume                    | Temp        | рН          | Elec.Cond     | Dis.Oxygen       | Ox-Red Pt.        | SWL            |              | Comment:                                                               |
| Stable when | (L)                       | (°C)        | (pH units)  | ()            | ()               | (± mV)            | (m TOC)        | ()           | Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? |
| rea         | dings):                   | -           | +/- 0.05 pH |               | +/- 10%          | +/- 10 mV         | stable         |              |                                                                        |
| 10.01       | BR03_1C                   | 14.7        | 7.68        | 6213          | 9.40             | -65.5             |                |              | all samples, wide channel, <20m                                        |
|             | QC31, QC31A               | <b>5934</b> | 139,0345    | 29            | 35.12.4690       |                   |                |              | red-brown, no odour, low turb,                                         |
| 10,14       | BR03_18                   | 14.8        | 7.80        | 6265          | 11.43            | -100.             |                |              | no sed load                                                            |
|             |                           | 139.04      | 0925        |               | 35,116878        |                   |                |              | The first of the second of the                                         |
| 10.20       | BR03_1A                   | 14.8        | 7.84        | 6283          | 8.29             | -73.1             |                |              |                                                                        |
|             |                           | 139,04      |             |               | 35,116574        |                   |                |              |                                                                        |
| 11.03       | BR02=1C                   | 12.5        | 7.47        | 5457          | 9.24             | -156.8            |                |              | all samples, clear, slow moving water,                                 |
|             | riss VI-to                | 139.04      |             | Way .         | 35.116582        | -7 1              |                |              | shotcrete edges and bed, no edour,                                     |
| 11.10       | BR02_18                   |             |             | 5503          | 5.63             | -180.9            |                | Fig. 10 In I | low turb, no sed load                                                  |
| 420         | 11 1 1000                 | 139.035     |             | 1727          | 35,125710        |                   | E 10 / 10      |              | The way the second of                                                  |
| 11.20       | BR02_1A                   | 13,6        | 7.57        | 5642          | 8.42             | -137.4            |                |              |                                                                        |
| 100         | - 1                       | 139.035     |             | 3012          | 35.125667        | -17013            |                |              |                                                                        |
|             | 411                       | 121,050     | 721         | 1 2 3 1       | 0012007          |                   |                |              |                                                                        |
|             | when                      | - 19 V      | (1) 2       |               | 2000/166         |                   |                |              |                                                                        |
|             | 7                         |             |             | in the second |                  | -126-7            |                |              |                                                                        |
|             |                           |             |             |               |                  |                   |                |              | 24 (27 (27 (27 (27 (27 (27 (27 (27 (27 (27                             |
| Air bubbles | Fiel<br>s in vials? Y / N | Id QA Ched  |             | 1s? Y / N     | Paran            | BTEX              | тен РАн        | CHC PCB      | OCP OPP Tot. Metal Biol.                                               |
|             |                           |             |             |               | Para             | RONCH'S           |                |              |                                                                        |

Decontamination as per GHD procedure? Y / N Was sampling equipment pre-cleaned? Y / N COC updated? Y / N

| Parameters    | BTEX | TPH | PAH | CHC             | PCB | OCP | opp | Tot. Mctal | Biol.          | 1. 1/2 |  |  |
|---------------|------|-----|-----|-----------------|-----|-----|-----|------------|----------------|--------|--|--|
| Preservatives |      |     |     | · · · · · · · · | -   |     |     |            | Service States | 2 - 2  |  |  |

Comment: Duplicate samples collected, bottles used, access, condition of headworks etc

Purge Volumes
Casing Int. Dia (mm) 50 100 150
Vol (L/m of casing) 2.0 7.9 17.7
\*Double for gravel pack



## Swface water Purging and Sampling Record

|                | Volume                                  | Temp<br>(°C) | pH          | Elec.Cond | Dis.Oxygen | Ox-Red Pt. | SWL       |              | Comment:                                                                                                       |
|----------------|-----------------------------------------|--------------|-------------|-----------|------------|------------|-----------|--------------|----------------------------------------------------------------------------------------------------------------|
| () Stable when | (L)                                     | (0)          | (pH units)  | ()        | ()         | (± mV)     | (m)       | ()           | Colour, turbidity, sediment load, sheen, odour, flow rate purged dry?                                          |
|                | dings):                                 |              | +/- 0.05 pH | +/- 3%    | +/- 10%    | +/- 10 mV  | stable    |              |                                                                                                                |
| 12.33          | MBCOZ-IA                                | 15.8         | 7.76        | 1224      | 11.10      | -133.6     | Mal j who | V 12 1 1 2 2 | All samples, clear/brown, fast flowing                                                                         |
| te face of     | QC32, QC32                              | A            | 139.0355    | 14        | 35.125383  |            | 3 = =     |              | shallow, low turb, no sed load,                                                                                |
| 12.42          | MBCOZIB                                 | 15.8         | 7.80        | 1225      | 11.19      | -125.7     |           |              | All samples, clear/brown, fast flowing shallow, low turb, no sed load, slight methane odour, branching & rocky |
| 12.12          |                                         | 138.947      | 043         |           | 35,109155  |            |           |              | rocky                                                                                                          |
| 12.51          | MBCOLIC                                 | 15.3         | 7.64        | 1209      | 11.59      | -120.8     |           |              |                                                                                                                |
| 1 = 6.         | SKCZ-IA                                 | 138.947      | 061         | Marie T   | 35.109052  |            |           |              |                                                                                                                |
| 14.20          | MBCO1-10                                | 16.7         | 7,77        | 1474      | 10.47      | -87.1      |           |              | All samples, clear, abundant brown                                                                             |
|                |                                         | 138.94       | 7254        | 15 V3     | 35,109208  | -16. 7     |           |              | All samples, clear, abundant brown sediment, salty (sea) water odoar,                                          |
| 14.28          | MBCOL 1B                                | 16.7         | 7.86        | 1472      | 10,40      | -76.1      |           |              | free flowing, narrow channel, algue                                                                            |
| 11 000         | 111111111111111111111111111111111111111 | 138,99       | 4941        |           | 35,126707  | 100        |           |              |                                                                                                                |
| 14,38          | MBCOLIA                                 | 16.8         | 7.92        | 1474      | 9.46       | -68,7      |           |              | MBCOI-IC, single large fish                                                                                    |
|                |                                         | 138,99       | 4896        |           | 35.126728  |            |           |              | MBC01-1C, single large fish<br>(red fin?) visible in water                                                     |
| 10/4           | FACT I                                  | 100          | 22.6        | 777       | 1.45       | -1001      |           |              |                                                                                                                |
|                | 100                                     | 477774       | 17,000      |           | Se. 2514   |            |           |              | Last to be seen a last to the second to  |
| 10.01          | FC 16                                   | 14, 7        | - 10        | 11/12     | 130        | -75.5      |           |              |                                                                                                                |
|                |                                         |              |             |           |            |            |           | , , ,        |                                                                                                                |
|                |                                         |              |             |           |            |            |           |              |                                                                                                                |
|                |                                         |              |             |           |            |            | ,         |              |                                                                                                                |
| -              | LIA.                                    |              |             |           |            |            |           |              |                                                                                                                |
|                | 2.7                                     |              |             |           |            |            |           |              |                                                                                                                |
|                |                                         |              |             |           |            |            |           |              |                                                                                                                |
|                | 97.1181                                 |              |             |           |            |            |           |              |                                                                                                                |

Sampler: Sean Sparrow Date: 11/09/2020

| Sample ID | Time | GPS (UTM)                          | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                                                      |
|-----------|------|------------------------------------|-----------|------|------------|-----------|------------|--------------------------------------------------------------------------------------------------------------|
| FB10      |      |                                    |           |      |            |           |            |                                                                                                              |
| RB10      |      |                                    |           |      |            |           |            | Rinsate sample taken from WQM between BR03_1A and BR02_1C                                                    |
| BR03_1C   | 1001 | (54H)<br>321475 m E<br>6112242 m S | 14.7      | 7.68 | 6213       | 9.40      | -65.5      | Wide channel, red-brown, no odour, low turbidity, no sediment load                                           |
| QC31      |      |                                    |           |      |            |           |            | Intra-lab duplicate of BR03_1C                                                                               |
| QC31A     |      |                                    |           |      |            |           |            | Inter-lab duplicate of BR03_1C                                                                               |
| BR03_1B   | 1014 | (54H)<br>321476 m E<br>6112253 m S | 14.8      | 7.80 | 6265       | 11.43     | -100.1     | Wide channel, red-brown, no odour, low turbidity, no sediment load                                           |
| BR03_1A   | 1020 | (54H)<br>321477 m E<br>6112272 m S | 14.8      | 7.84 | 6283       | 8.29      | -73.1      | Wide channel, red-brown, no odour, low turbidity, no sediment load                                           |
| BR02_1C   | 1103 | (54H)<br>320983 m E<br>6111249 m S | 12.5      | 7.47 | 5457       | 9.24      | -156.8     | Clear, slow moving water, shotcrete edges and creek bed, no odour, low turbidity, no sediment load           |
| BR02_1B   | 1110 | (54H)<br>320987 m E<br>6111260 m S | 12.8      | 7.47 | 5503       | 5.63      | -180.9     | Clear, slow moving water, shotcrete edges and creek bed, no odour, low turbidity, no sediment load           |
| BR02_1A   | 1120 | (54H)<br>320992 m E<br>6111278 m S | 13.6      | 7.57 | 5642       | 8.42      | -137.4     | Clear, slow moving water, shotcrete edges and creek bed, no odour, low turbidity, no sediment load           |
| MBC02_1A  | 1233 | (54H)<br>312894 m E<br>6112932 m S | 15.8      | 7.76 | 1224       | 11.10     | -133.6     | Clear/brown, fast flowing, shallow, low turbidity, no sediment load, slight methane odour, branching & rocky |
| QC32      |      |                                    |           |      |            |           |            | Intra-lab duplicate of MBC02_1A                                                                              |
| QC32A     |      |                                    |           |      |            |           |            | Inter-lab duplicate of MBC02_1A                                                                              |

| MBC02_1B | 1242 | (54H)<br>312903 m E<br>6112923 m S | 15.8 | 7.80 | 1225 | 11.19 | -125.7 | Clear/brown, fast flowing, shallow, low turbidity, no sediment load, slight methane odour, branching & rocky                                                                                      |
|----------|------|------------------------------------|------|------|------|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MBC02_1C | 1251 | (54H)<br>312913 m E<br>6112920 m S | 15.3 | 7.64 | 1209 | 11.59 | -120.8 | Clear/brown, fast flowing, shallow, low turbidity, no sediment load, slight methane odour, branching & rocky                                                                                      |
| MBC01_1C | 1420 | (54H)<br>317308 m E<br>6111068 m S | 16.7 | 7.77 | 1474 | 10.47 | -87.1  | Clear, abundant brown sediment, salty (sea)water odour, free flowing, narrow channel, algae  Single large fish (red fin? Approximately 20 cm long) spotted in water, moving and behaving normally |
| MBC01_1B | 1428 | (54H)<br>317297 m E<br>6111059 m S | 16.7 | 7.86 | 1472 | 10.40 | -76.1  | Clear, abundant brown sediment, salty (sea)water odour, free flowing, narrow channel, algae                                                                                                       |
| MBC01_1A | 1438 | (54H)<br>317288 m E<br>6111051 m S | 16.8 | 7.92 | 1474 | 9.46  | -68.7  | Clear, abundant brown sediment, salty (sea)water odour, free flowing, narrow channel, algae                                                                                                       |



100% Recycled Paper Tudor eco 17/9/2020 shed 2 shed 1 Soil Sampling Garden
Jackson's Property
296 Pyrites Rd, Brukunga Dawesley Creek Rain water tank Tomato trestle Bed Raised harden 7 harden 6 Carden 4 Garden 2 Galden 5 Garden 1 shed. QC33, QC33A Garden 2 Circular beds

irrigation



### **Purging and Sampling Record**

Bore ID: 6627-5944

| Job Information   | Sampling Information                                      | Bore Information                   |
|-------------------|-----------------------------------------------------------|------------------------------------|
| Client:           | Purge Method: pumped bore                                 | SWL(mbTOC): m Logic Check:         |
| Project:125/6.828 | Sample Method:                                            | Screen: From:to m Stick Up: m      |
|                   | WQ Meter Type:                                            | NAPL Check: Bore Diam.: mm         |
| Sampler:          | Flow Cell: Y / N Pump Depth:m                             | Ref.datum: Well Cap Secure?        |
| Date: 17/9        | WLevel Meter Type: Dip / Fox / Int.Fce / Gge              | Bore Depth: 28.35 water connecting |
| Round             | Field Filtered? Y / N (filter vessel, disposable filter/s | yringe)                            |

| Time ()     | Volume<br>(L)          | Temp<br>(°C) | pH<br>(pH units) | Elec.Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dis.Oxygen | Ox-Red Pt.<br>(± mV) | SWL (m TOC) | () | Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? |
|-------------|------------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-------------|----|---------------------------------------------------------------------------------|
| Stable when | (3 consecutive dings): | -            | +/- 0.05 pH      | Contract of the last of the la | +/- 10%    | +/- 10 mV            | stable      | () | oolour, turbuity, sediment load, sheeri, odour, now rate, purged dry?           |
| 9.16        |                        | 17.3         | 6.47             | 2514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.22       | -38.6                |             |    | Clear slight methane odour                                                      |
| 9.21        |                        | 17.9         | 6.34             | 3906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.10       | -26.3                |             |    | Clear, no odour                                                                 |
| 9.25        |                        | 17.9         | 6.40             | 3789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.32       | -33.4                |             |    | Clear, no odour                                                                 |
| 9.29        |                        | 18.0         | 6.40             | 3676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.20       | -39.7                |             |    | Clear, no odour                                                                 |
| 9.33        |                        | 18.2         | 6.42             | 3674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.47       | -40.0                |             |    | Clear, no odour                                                                 |
| 9.35        |                        | 18.1         | 6.43             | 3677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.14       | -40,3                |             |    | Clear, no odour                                                                 |
|             | sample<br>taken        | 6627-        | 5944B,           | QC34,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QC34A      |                      |             |    |                                                                                 |
|             |                        |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |             |    |                                                                                 |
| ,           |                        |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |             |    |                                                                                 |
|             |                        |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                      |             |    |                                                                                 |

Field QA Checks:

Air bubbles in vials? Y / N Any violent reactions? Y / N Decontamination as per GHD procedure? Y / N Was sampling equipment pre-cleaned? Y / N COC updated? Y / N

| Parameters    | BTEX | TPH   | PAH | CHC   | PCB | OCP | OPP | Tot. Mctel | Biol. |   |  |  |
|---------------|------|-------|-----|-------|-----|-----|-----|------------|-------|---|--|--|
| Preservatives |      | : - T |     | 4 - 4 |     | -   | - 1 |            | 8     | - |  |  |



### Surface water Purging and Sampling Record

| D    | ID. |  |
|------|-----|--|
| bore | IU: |  |

| Job Information   | Sampling Information                                    | Bore Information              |
|-------------------|---------------------------------------------------------|-------------------------------|
| Client:           | Purge Method:                                           | SWL(mbTOC): m Logic Check:    |
| Project: 12516828 | Sample Method:                                          | Screen: From:to m Stick Up: m |
| Proj. No.:        | WQ Meter Type:                                          | NAPL Check: Bore Diam.: mm    |
| Sampler:          | Flow Cell: Y / N Pump Depth:                            | Ref.datum: Well Cap Secure?   |
| Date:17// 9       | WLevel Meter Type: Dip / Fox / Int.Fce / Gge            | Bore Depth: m                 |
| Round             | Field Filtered? Y / N (filter vessel, disposable filter | r/syringe)                    |

| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume                   | Temp  | рН          | Elec.Cond | Dis.Oxygen | Ox-Red Pt.         | SWL     |                    | Comment:                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|-------------|-----------|------------|--------------------|---------|--------------------|------------------------------------------------------------------------|
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (L)                      | (°C)  | (pH units)  | ()        | ()         | (± mV)             | (m TOC) | ()                 | Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? |
| THE RESIDENCE OF THE RESIDENCE OF THE PARTY | n (3 consecutive dings): | -     | +/- 0.05 pH | +/- 3%    | +/- 10%    | +/- 10 mV          | stable  |                    |                                                                        |
| 15.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 1803-2A                | 16.9  | 8.75        | 9402      | 8.21       | 71.5               |         |                    | all samples clear/brown, 420m channel                                  |
| Tar or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QC36/A                   | 54H   | 321475      | 61/2267   |            |                    |         |                    | slow moving low turb, no sed load                                      |
| 15.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR03_28                  | 17.2  | 8.65        | 9953      | 8-86       | 76.0               |         |                    |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 541-1 | 321477      | 6112255   |            | 9                  |         |                    |                                                                        |
| 15.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR03_2C                  | 19.0  | 8-47        | 15330     | 2.03       | 73.9               | a* = *  |                    |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 544   | 321474      | 6112240   | 19         | - (-O <sub>F</sub> | 6       | *                  |                                                                        |
| 16.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR02_2C                  | 13.6  | 8.01        | 6923      | 4.97       | -50,4              | 2.9%    | 1800               | all samples, clear, stagnant.                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 54H   | 320985      | 6111247   | 190        | With S             |         | 1 × 1              | algae, small spots of oil sheen.                                       |
| 16.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR02-28                  | 13.7  | 7.87        | 8844      | 1,10       | -46.1              | 44      |                    | low turb no sed load,                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 54H   | 320982      | 611/256   |            |                    | -       |                    | shotcrete edges and bed                                                |
| 16.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BR02-24                  |       | 8.08        | 7002      | 3.87       | -9.8               | 1 24    |                    |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | 54H   | 320 998     | 6411285   |            |                    |         |                    |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |       |             | 7         |            |                    |         |                    |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |       |             |           |            |                    |         |                    |                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |       |             |           | H 175-1    |                    |         | Yes and the second |                                                                        |

### Field QA Checks:

Air bubbles in vials? Y / N Any violent reactions? Y / N Decontamination as per GHD procedure? Y / N Was sampling equipment pre-cleaned? Y / N COC updated? Y / N

| Parameters    | BTEX | TPH | PAH | CHC | PCB | OCP | OPP | Tot. Mctal | Biol. |  |  |
|---------------|------|-----|-----|-----|-----|-----|-----|------------|-------|--|--|
| Preservatives |      |     |     | 3   |     |     | A.  |            | 7     |  |  |

Comment: Duplicate samples collected, bottles used, access, condition of headworks etc

Purge Volumes
Casing Int. Dia (mm) 50 100 150
Vol (L/m of casing) 2.0 7.9 17.7
\*Double for gravel pack



### Surface water Purging and Sampling Record

| Bore ID: |  |
|----------|--|
|----------|--|

| Disconsission of the last of t | Job Information                                                 |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampling II                                                                                           | aformation |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bore Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Job Inform                                                      |              |                  | Purge Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od:                                                                                                   |            |           | SWI (mbTOC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : m Logic Check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1251682                                                         |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hod:                                                                                                  |            |           | Screen: From: m Stick Up: m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ype:                                                                                                  |            |           | NAPL Check: Bore Diam.: mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Sampler:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55<br>17/9                                                      |              |                  | Flow Cell: Y / N Pump Depth:m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |            |           | Ref.datum: Well Cap Secure?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level Meter Type: Dip / Fox / Int.Fce / Gge eld Filtered? Y / N (filter vessel, disposable filter/syr |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Round                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                 |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |            |           | yringe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Time ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume<br>(L)                                                   | Temp<br>(°C) | pH<br>(pH units) | Elec.Cond   Dis.Oxygen   Ox-Red Pt.   SWL   (   (± mV)   (m TOC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                       |            |           | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| \$10 P241 S CONTACTOR STEELS \$250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3 consecutive dings):                                          | - 1          | +/- 0.05 pH      | +/- 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +/- 10%                                                                                               | +/- 10 mV  | stable    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 11.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MB CO 2 2 A                                                     | 14.1         | 8.07             | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.30                                                                                                  | 126.3      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | all samples, clear, free flowing, rocky, shallow channel, low turb, no sed load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 5AH          | \$2869           | 61/2919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       | 444        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | shallow channel, low turb, no sed load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 11.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MBC02-2B                                                        | 14.7         | 8.14             | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.71                                                                                                  | 115.4      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 644          | 3112902          | 6112919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 11.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MBC02.2                                                         |              | 8.06             | 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.83                                                                                                  | 110.5      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | 54H          | 312914           | 6112913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                                                   |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 13.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MBC01.2A                                                        | 15.5         | 829              | 1546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.42                                                                                                  | 107.7      | 100       | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all samples, clear, free flowing,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q C35/A                                                         | 5411         | 317287           | 6111054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17/19/19/19                                                                                           | A A        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wide channel low turb, no sed las                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 14.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MBOL2B                                                          | 15.5         | 8.30             | 15 //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.30                                                                                                 | 98.1       | Part Sand |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 54H          | 317301           | 6111064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       | 100        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at least & fish spotted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 14.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MBC01,2C                                                        | 15.6         | 8.34             | 1548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.84                                                                                                  | 15.5       |           | (Mar) 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | From MBCOI-IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 14/1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                               | 54H          | 317308           | A COLUMN TO THE PARTY OF THE PA |                                                                                                       | ala ( )    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | 3111         | 217-28           | 0111100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       | the second | 7         | No. of the last of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |              |                  | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                 | 3.00       | 5.5-44    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| .6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |              |                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       | 1          |           | - As - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fiel                                                            | ld QA Che    | cks:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |            |           | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Description of the contract of |  |  |  |
| Air bubbles in vials? Y / N Any violent reactions? Y / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                 |              |                  | Parar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | neters BTEX                                                                                           | TPH PAH    | CHC PCB   | OCP OPP Tot. Metal Biol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Decontamination as per GHD procedure? Y / N                     |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       | atives     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| CONTRACTOR OF THE STATE OF THE  | Was sampling equipment pre-cleaned? Y / N<br>COC updated? Y / N |              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |            |           | .554.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

Comment: Duplicate samples collected, bottles used, access, condition of headworks etc

Purge Volumes
Casing Int. Dia (mm) 50 100 150
Vol (L/m of casing) 2.0 7.9 17.7
\*Double for gravel pack

Sampler: Sean Sparrow Date: 17/09/2020

| Sample ID | GPS (UTM)             | Comment                                                    |
|-----------|-----------------------|------------------------------------------------------------|
| FB11      |                       |                                                            |
| RB11      |                       | Rinsate sample taken from WQM between 6627-5944 and DC02A  |
| Garden1   | (54H)<br>— 312296 m E | Soil sample from disused vegetable garden, sample analysed |
| Garden2   | 6122978 m S           | Soil sample from disused vegetable garden, sample analysed |
| QC33      |                       | Intra-lab duplicate sample of Garden2                      |
| QC33A     |                       | Inter-lab duplicate sample of Garden2                      |
| Garden3   |                       | Soil sample from disused vegetable garden, sample analysed |
| Garden4   |                       | Soil sample from disused vegetable garden, sample analysed |
| Garden5   |                       | Soil sample from disused vegetable garden, sample on hold  |
| Garden6   |                       | Soil sample from disused vegetable garden, sample on hold  |
| Garden7   |                       | Soil sample from disused vegetable garden, sample on hold  |
| Garden8   |                       | Soil sample from disused vegetable garden, sample on hold  |

| Sample ID   | Time | GPS (UTM)                 | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                      |
|-------------|------|---------------------------|-----------|------|------------|-----------|------------|------------------------------------------------------------------------------|
| 6627-5944_B | 0916 | (54H)                     | 17.3      | 6.47 | 2514       | 4.22      | -38.6      | Grab sample from bore well, took 6                                           |
|             | 0921 | 312289 m E<br>6122864 m S | 17.9      | 6.34 | 3906       | 2.10      | -26.3      | consecutive WQM readings to ensure water column had stabilised before taking |
|             | 0925 |                           | 17.9      | 6.40 | 3789       | 2.32      | -33.4      | samples. 294 Pyrites Road, Brukunga,<br>Informed Consent received and        |
|             | 0929 |                           | 18.0      | 6.40 | 3676       | 1.20      | -39.7      | accompanied by property owner.                                               |
|             | 0933 |                           | 18.2      | 6.42 | 3674       | 1.47      | -40.0      |                                                                              |
|             | 0935 |                           | 18.1      | 6.43 | 3677       | 2.14      | -40.3      |                                                                              |
| QC34        |      |                           |           |      |            |           |            | Intra-lab duplicate sample of 6627-5944_B                                    |
| QC34A       |      |                           |           |      |            |           |            | Inter-lab triplicate sample of 6627-5944_B                                   |

| Sample ID | Time | GPS (UTM)                           | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                                   |
|-----------|------|-------------------------------------|-----------|------|------------|-----------|------------|-------------------------------------------------------------------------------------------|
| MBC02_2A  | 1112 | (54H)<br>312869 m E<br>6112919 m S  | 14.1      | 8.07 | 1150       | 9.30      | 126.3      | All samples, clear, free flowing, rocky, shallow channel, low turbidity, no sediment load |
| MBC02_2B  | 1122 | (54H)<br>3112902 m E<br>6112919 m S | 14.7      | 8.14 | 1150       | 9.71      | 115.4      |                                                                                           |
| MBC02_2C  | 1138 | (54H)<br>312914 m E<br>6112913 m S  | 14.1      | 8.06 | 1150       | 7.83      | 110.5      |                                                                                           |
| MBC01_2A  | 1352 | (54H)<br>317287 m E<br>6111054 m S  | 15.5      | 8.29 | 1546       | 8.42      | 107.7      | All samples, clear, free flowing, wide channel, low turbidity, no sediment load           |
| MBC01_2B  | 1402 | (54H)<br>317301 m E<br>6111064 m S  | 15.5      | 8.80 | 1511       | 10.30     | 98.1       | At least 8 fish spotted from MBC01_2C                                                     |
| MBC01_2C  | 1413 | (54H)<br>317308 m E<br>6111068 m S  | 15.6      | 8.34 | 1548       | 7.84      | 15.5       |                                                                                           |
| QC35      |      |                                     |           |      |            |           |            | Intra-lab duplicate sample of 6627-5944_B                                                 |
| QC35A     |      |                                     |           |      |            |           |            | Inter-lab triplicate sample of 6627-5944_B                                                |
| BR03_2A   | 1530 | (54H)<br>321475 m E<br>6112267 m S  | 16.9      | 8.75 | 9402       | 8.21      | 71.5       | All samples, clear/brown, <20 m channel, slow moving, low turbidity, no sediment load     |
| BR03_2B   | 1549 | (54H)<br>321477 m E<br>6112255 m S  | 17.2      | 8.65 | 9953       | 8.86      | 76.0       |                                                                                           |
| BR03_2C   | 1555 | (54H)<br>321474 m E<br>6112240 m S  | 19.0      | 8.47 | 15330      | 2.03      | 73.9       |                                                                                           |
| QC36      |      |                                     |           |      |            |           |            | Intra-lab duplicate sample of BR03_2A                                                     |
| QC36A     |      |                                     |           |      |            |           |            | Inter-lab triplicate sample of BR03_2A                                                    |

| BR02_2C | 1615 | (54H)<br>320985 m E<br>6111247 m S | 13.6 | 8.01 | 6923 | 4.97 | -50.4 | All samples, clear, stagnant, algae, small spots of oil sheen, low turbidity, no sediment load, shotcrete edges and creek |
|---------|------|------------------------------------|------|------|------|------|-------|---------------------------------------------------------------------------------------------------------------------------|
| BR02_2B | 1622 | (54H)<br>320982 m E<br>6111256 m S | 13.7 | 7.87 | 8844 | 1.10 | -46.1 | bed                                                                                                                       |
| BR02_2A | 1627 | (54H)<br>320998 m E<br>6111285 m S | 13.8 | 8.08 | 7002 | 3.87 | -9.8  |                                                                                                                           |



### **Purging and Sampling Record**

|      |     | 1m7 11171  | ٠ |
|------|-----|------------|---|
| 3ore | ID: | 6627-11/31 |   |

| Job Information    | Sampling Informatio                                              | n                 | Bore Information |                  |  |  |  |
|--------------------|------------------------------------------------------------------|-------------------|------------------|------------------|--|--|--|
| Client:            | Purge Method: pumped be                                          | re                | SWL(mbTOC):      | m Logic Check:   |  |  |  |
| Project: 125 16828 | Sample Method:                                                   |                   | Screen: From:to  | m Stick Up: m    |  |  |  |
|                    | WQ Meter Type:                                                   |                   | NAPL Check:      | Bore Diam.: mm   |  |  |  |
| Sampler: 55        | Flow Cell: Y / N Pump I                                          | Depth:m           | Ref.datum:       | Well Cap Secure? |  |  |  |
| Date: 24/9         | WLevel Meter Type: Dip / Fo                                      | x / Int.Fce / Gge | Bore Depth:      | m                |  |  |  |
| Round              | Field Filtered? Y / N (filter vessel, disposable filter/syringe) |                   |                  |                  |  |  |  |

| Time | Volume                 | Temp | рН          | Elec.Cond | Dis.Oxygen | Ox-Red Pt. | SWL     |     | Comment:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|------------------------|------|-------------|-----------|------------|------------|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ()   | (L)                    | (°C) | (pH units)  | ()        | ()         | (± mV)     | (m TOC) | ()  | Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | (3 consecutive dings): | -    | +/- 0.05 pH | +/- 3%    | +/- 10%    | +/- 10 mV  | stable  |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8,47 | 5                      | 18.6 | 7,20        | 3588      | 5.81       | -66.5      |         |     | GPS 3115087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.51 | 10                     | 12.9 | 7.11        | 3594      | 6.08       | -64.3      |         |     | 544 6116419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8.54 | 20                     | 18.8 | 7.06        | 3589      | 5.91       | -6/11      |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8,59 | 30                     | 18.8 | 7.04        | 3586      | 5.60       | -60.4      |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.04 | 40                     | 18.9 | 7.05        | 3582      | 5.82       | -63,2      |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 45                     | 18.7 | 7.04        | 3570      | 6.80       | -66.4      |         | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                        | 2    |             | 1974      |            | 13         |         | A . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 377                    |      | -           |           |            | 199        | W. C.   | 5   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                        |      |             |           |            |            |         | +   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                        |      |             |           |            |            | 2       | 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                        |      |             |           |            |            |         | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                        |      |             |           | 197        |            | 100     | 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                        |      |             |           |            |            |         |     | The state of the s |
|      |                        |      |             |           |            |            |         |     | - 18 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                        |      |             |           |            |            |         |     | and the same of th |

### Field QA Checks:

Air bubbles in vials? Y / N Any violent reactions? Y / N Decontamination as per GHD procedure? Y / N Was sampling equipment pre-cleaned? Y / N COC updated? Y / N

| Parameters    | BTEX | ТРН | РАН | СНС | РСВ | ОСР | OPP | Tot. Mctal | Biol. |  |  |
|---------------|------|-----|-----|-----|-----|-----|-----|------------|-------|--|--|
| Preservatives |      |     |     |     |     |     |     |            |       |  |  |

Sampler: Sean Sparrow Date: 24/09/2020

| Sample ID  | Time | GPS (UTM)           | Temp (°C) | рН   | EC (us/cm) | DO (mg/L) | Redox (mV) | Comment                                                                   |
|------------|------|---------------------|-----------|------|------------|-----------|------------|---------------------------------------------------------------------------|
| FB12       |      |                     |           |      |            |           |            |                                                                           |
| RB12       |      |                     |           |      |            |           |            | Rinsate sample taken from WQM following sampling from 6627-11131          |
| 6627-11131 | 0847 | (54H)<br>315087 m E | 18.6      | 7.20 | 3588       | 5.81      | -66.5      | Grab sample from bore well, took 6 consecutive WQM readings to ensure     |
|            | 0851 | 6116419 m S         | 18.9      | 7.11 | 3594       | 6.08      | -64.3      | water column had stabilised before taking                                 |
|            | 0854 |                     | 18.8      | 7.06 | 3589       | 5.91      | -61.1      | samples. 483 Ironstone Range Road, Petwood, Informed Consent received and |
|            | 0859 |                     | 18.8      | 7.04 | 3586       | 5.60      | -60.4      | accompanied by property owner.                                            |
|            | 0904 |                     | 18.9      | 7.05 | 3582       | 5.82      | -63.2      |                                                                           |
|            | 0906 |                     | 18.7      | 7.04 | 3570       | 6.80      | -66.4      |                                                                           |
| QC30       |      |                     |           |      |            |           |            | Intra-lab duplicate sample of 6627-11131                                  |
| QC30A      |      |                     |           |      |            |           |            | Inter-lab triplicate sample of 6627-11131                                 |



### Purging and Sampling Record

| Bore ID: | ********* | **** |
|----------|-----------|------|
|----------|-----------|------|

| Job Information        | Sampling Information                                      | Bore Information            |
|------------------------|-----------------------------------------------------------|-----------------------------|
| Client: .1251.6.828    | Purge Method:                                             | SWL(mbTOC): m Logic Check:  |
| Project:               | Sample Method:                                            | Screen: From:to             |
| Proj. No.:             | WQ Meter Type:                                            | NAPL Check: Bore Diam.: mm  |
| Sampler: Sean, Sparrow | Flow Cell: Y / N Pump Depth:m                             | Ref.datum: Well Cap Secure? |
| Date: 28/10            | WLevel Meter Type: Dip / Fox / Int.Fce / Gge              | Bore Depth: m               |
| Round                  | Field Filtered? Y / N (filter vessel, disposable filter/s | syringe)                    |

| Time  | Volume                    | Temp | рН          | Elec.Cond | Dis.Oxygen | Ox-Red Pt. | SWL     |            | Comment:                                                               |
|-------|---------------------------|------|-------------|-----------|------------|------------|---------|------------|------------------------------------------------------------------------|
| ()    | (L)                       | (°C) | (pH units)  | ()        | ()         | (± mV)     | (m TOC) | ()         | Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? |
|       | n (3 consecutive adings): | 1    | +/- 0.05 pH | +/- 3%    | +/- 10%    | +/- 10 mV  | stable  |            |                                                                        |
| 8.50  | Tank 1                    | 15.0 | 7.46        | 188-1     | 2,99       | 85.0       |         |            | Clear, no odour, low turb, no sed load,                                |
|       | 7                         | 54H  | 311944      |           | 6124469    |            |         |            | slight foaming/bubbles                                                 |
| 9.10  | Tank 2                    | 15,2 | 7.57        | 169.7     | 5.59       | 90.8       |         |            | Clear, no odour, low turb, no sed load,                                |
|       |                           | 54H  | 3/1944      |           | 6124467    |            |         |            | very slight foaming / bubbles                                          |
| 9.30  | Tank3                     | 15.1 | 7.56        | 156.6     | 8,07       | 110.2      |         |            | Clear, no odoar, low turb, no sed load,                                |
|       |                           | 54H  | 311944      |           | 6124458    |            |         |            | Slight foaming/bubbles                                                 |
| 9.45  | Tank 4                    | 15.5 | 7.92        | 203,2     | 7.39       | 117.2      |         |            | Clear, no odour, low turb, no sed load,                                |
|       |                           | 544  | 311939      |           | 6124448    |            |         |            | very slight foaming /bubbles                                           |
| 10.10 | Tank5                     | 16.1 | 7.97        | 256.9     | 8.44       | 119.2      |         | QC38/QC38A | Clear, no odour, low turb, no sed load,                                |
|       |                           | 544  | 311939      |           | 6124437    |            | 8 %     |            | no visible foaming/bubbles                                             |
| 10.30 | Tank 6                    | 17.1 | 7.86        | 217.6     | 6.80       | 109,2      |         | FB/3/RB/3  | Clear, no odour, low turb, no sed load,                                |
|       |                           | 54H  | 311948      |           | 6/24422    |            |         |            | very slight foaming/bubbles                                            |
| 10.50 | Tank 7                    | 18.2 | 7.77        | 214.2     | 7.23       | 106.3      |         |            | Clear no odour tow turb, no sed load,                                  |
|       |                           | 54H  | 311949      |           | 6124414    |            |         |            | very slight foaming/bubbles                                            |
|       |                           |      |             |           |            |            |         |            |                                                                        |

### Field QA Checks:

Air bubbles in vials? Y / N Any violent reactions? Y / N Decontamination as per GHD procedure? Y / N Was sampling equipment pre-cleaned? Y / N COC updated? Y / N

|               |      | U.   | 4.1 | ( T | S   | (0) | -   |            | 1     | - | - | 4.2 |
|---------------|------|------|-----|-----|-----|-----|-----|------------|-------|---|---|-----|
| Parameters    | BTEX | TPH  | PAH | CHC | PCB | OCP | opp | Tot. Mctel | Biol. |   |   |     |
| Preservatives | 1    | di i |     |     |     |     |     |            |       |   |   |     |

Comment: Duplicate samples collected, bottles used, access, condition of headworks etc

Purge Volumes
Casing Int. Dia (mm) 50 100 150
Vol (L/m of casing) 2.0 7.9 17.7
\*Double for gravel pack

Sampler: Sean Sparrow Date: 28/10/2020

| Sample ID | Time | GPS (UTM)   | Temp (°C) | рН   | EC (μs/cm) | DO (mg/L) | Redox (mV) | Comment                                   |
|-----------|------|-------------|-----------|------|------------|-----------|------------|-------------------------------------------|
| FB13      |      |             |           |      |            |           |            |                                           |
| RB13      |      |             |           |      |            |           |            | Rinsate sample taken from WQM             |
|           |      |             |           |      |            |           |            | between Tank6 and Tank7                   |
| Tank1     | 0850 | (54H)       | 15.0      | 7.46 | 188.1      | 2.99      | 85.0       | Clear, no odour, low turbidity, no        |
|           |      | 311944 m E  |           |      |            |           |            | sediment load, slight foaming/bubbles     |
|           |      | 6124469 m S |           |      |            |           |            |                                           |
| Tank2     | 0910 | (54H)       | 15.2      | 7.57 | 169.7      | 5.59      | 90.8       | Clear, no odour, low turbidity, no        |
|           |      | 311944 m E  |           |      |            |           |            | sediment load, very slight                |
|           |      | 6124467 m S |           |      |            |           |            | foaming/bubbles                           |
| Tank3     | 0930 | (54H)       | 15.1      | 7.56 | 156.6      | 8.07      | 110.2      | Clear, no odour, low turbidity, no        |
|           |      | 311944 m E  |           |      |            |           |            | sediment load, slight foaming/bubbles     |
|           |      | 6124458 m S |           |      |            |           |            |                                           |
| Tank4     | 0945 | (54H)       | 15.5      | 7.92 | 203.2      | 7.39      | 117.2      | Clear, no odour, low turbidity, no        |
|           |      | 311939 m E  |           |      |            |           |            | sediment load, very slight                |
|           |      | 6124448 m S |           |      |            |           |            | foaming/bubbles                           |
| Tank5     | 1010 | (54H)       | 16.1      | 7.97 | 256.9      | 8.44      | 119.2      | Clear, no odour, low turbidity, no        |
|           |      | 311939 m E  |           |      |            |           |            | sediment load, no visible foaming/bubbles |
|           |      | 6124437 m S |           |      |            |           |            |                                           |
| QC38      |      |             |           |      |            |           |            | Intra-lab duplicate of Tank5              |
| QC38A     |      |             |           |      |            |           |            | Inter-lab duplicate of Tank5              |
| Tank6     | 1030 | (54H)       | 17.1      | 7.86 | 217.6      | 6.80      | 109.2      | Clear, no odour, low turbidity, no        |
|           |      | 311948 m E  |           |      |            |           |            | sediment load, very slight                |
|           |      | 6124422 m S |           |      |            |           |            | foaming/bubbles                           |
| Tank7     | 1050 | (54H)       | 18.2      | 7.77 | 214.2      | 7.23      | 106.3      | Clear, no odour, low turbidity, no        |
|           |      | 311949 m E  |           |      |            |           |            | sediment load, very slight                |
|           |      | 6124414 m S |           |      |            |           |            | foaming/bubbles                           |

Sampler: Sean Sparrow

### (Water)

| Sample ID | Date       | Temp (°C) | рН   | EC μ/cm) | DO (mg/L) | Redox (mV) | Comment                                                                                                     |
|-----------|------------|-----------|------|----------|-----------|------------|-------------------------------------------------------------------------------------------------------------|
| FB01      | 17/11/2020 |           |      |          |           |            |                                                                                                             |
| RB01      | 17/11/2020 |           |      |          |           |            | Rinsate sample taken from 100 mm<br>Concrete Core bit after drilling HPA5                                   |
| RB02      | 18/11/2020 |           |      |          |           |            | Rinsate sample taken from 150 mm<br>Concrete Core bit after drilling<br>12516828/Tank7/03                   |
| W1        | 17/11/2020 |           |      |          |           |            | Grab sample of DI water being used to lubricate Concrete Core bit while drilling on Hot Pad A               |
| W2        | 18/11/2020 | 26.3      | 8.36 | 407.3    | 5.08      | -116.9     | Grab sample of mains water from hose being used to lubricate Concrete Core bit while drilling in Tank 7     |
| FD01      | 18/11/2020 |           |      |          |           |            | Intra-laboratory duplicate of W2                                                                            |
| FS01      | 18/11/2020 |           |      |          |           |            | Secondary intra-laboratory duplicate of W2                                                                  |
| W3        | 24/11/2020 | 24.2      | 8.52 | 354.0    | 5.78      | -110.3     | Grab sample of mains water from hose being used to lubricate Concrete Core bit while drilling Tanks 1 and 4 |
| FD02      | 24/11/2020 |           |      |          |           |            | Intra-laboratory duplicate of W3                                                                            |
| FS02      | 24/11/2020 |           |      |          |           |            | Secondary intra-laboratory duplicate of W3                                                                  |
| FB02      | 24/11/2020 |           |      |          |           |            |                                                                                                             |
| RB03      | 24/11/2020 |           |      |          |           |            | Rinsate sample taken from 150 mm<br>Concrete Core bit after drilling<br>12516828/Tank1/3                    |

### (Hot Pad)

| Sample ID | Date       | GPS (UTM)   | Comment                                   |
|-----------|------------|-------------|-------------------------------------------|
| HPA1      | 17/11/2020 | (54H)       | Concrete core sample taken from Hot Pad A |
|           |            | 311955 m E  |                                           |
|           |            | 6124470 m S |                                           |
| HPA2      | 17/11/2020 | (54H)       | Concrete core sample taken from Hot Pad A |
|           |            | 311967 m E  |                                           |
|           |            | 6124474 m S |                                           |
| HPA3      | 17/11/2020 | (54H)       | Concrete core sample taken from Hot Pad A |
|           |            | 311976 m E  |                                           |
|           |            | 6124468 m S |                                           |
| HPA4      | 17/11/2020 | (54H)       | Concrete core sample taken from Hot Pad A |
|           |            | 311974 m E  |                                           |
|           |            | 6124457 m S |                                           |
| HPA5      | 17/11/2020 | (54H)       | Concrete core sample taken from Hot Pad A |
|           |            | 311969 m E  |                                           |
|           |            | 6124454 m S |                                           |
| HPB1      | 24/11/2020 | (54H)       | Concrete core sample taken from Hot Pad B |
| HPB/QA    | 24/11/2020 | 311966 m E  | Intra-laboratorya duplicate of HPB1       |
|           |            | 6124486 m S |                                           |
| HPB2      | 24/11/2020 | (54H)       | Concrete core sample taken from Hot Pad B |
|           |            | 311980 m E  |                                           |
|           |            | 6124491 m S |                                           |
| HPB3      | 24/11/2020 | (54H)       | Concrete core sample taken from Hot Pad B |
|           |            | 311985 m E  |                                           |
|           |            | 6124514 m S |                                           |
| HPB4      | 24/11/2020 | (54H)       | Concrete core sample taken from Hot Pad B |
|           |            | 311970 m E  |                                           |
|           |            | 6124510 m S |                                           |
| HPB5      | 24/11/2020 | (54H)       | Concrete core sample taken from Hot Pad B |
|           |            | 311963 m E  |                                           |
|           |            | 6124517 m S |                                           |

### (Tank concrete cores)

| Sample ID          | Date       | GPS (UTM)   | Comment                                               |
|--------------------|------------|-------------|-------------------------------------------------------|
| 12516828/Tank7/01a | 18/11/2020 | (54H)       | Concrete core sample taken from Tank7 (cut to be 1/2) |
| 12516828/Tank7/01b |            | 311960 m E  | Concrete core sample taken from Tank7 (cut to be 1/8) |
| 12516828/Tank7/01c |            | 6124409 m S | Concrete core sample taken from Tank7                 |
|                    |            |             | (cut to be 1/8, treated by Xypex)                     |
| 12516828/QAa       |            |             | Intra-laboratory duplicate of 12516828/Tank7/01a      |
|                    |            |             | (cut to be 1/8)                                       |
| 12516828/QAb       |            |             | Intra-laboratory duplicate of 12516828/Tank7/01b      |
|                    |            |             | (cut to be 1/8)                                       |
| 12516828/Tank7/02a | 18/11/2020 | (54H)       | Concrete core sample taken from Tank7 (cut to be 1/2) |
| 12516828/Tank7/02b |            | 311954 m E  | Concrete core sample taken from Tank7 (cut to be 1/4) |
| 12516828/Tank7/02c |            | 6124414 m S | Concrete core sample taken from Tank7                 |
|                    |            |             | (cut to be 1/4, treated by Xypex)                     |
| 12516828/Tank7/03a | 18/11/2020 | (54H)       | Concrete core sample taken from Tank7 (cut to be 1/2) |
| 12516828/Tank7/03b |            | 311950 m E  | Concrete core sample taken from Tank7 (cut to be 1/4) |
| 12516828/Tank7/03c |            | 6124407 m S | Concrete core sample taken from Tank7                 |
|                    |            |             | (cut to be 1/4, treated by Xypex)                     |
| 12516828/Tank4/01a | 24/11/2020 | (54H)       | Concrete core sample taken from Tank4 (cut to be 1/2) |
| 12516828/Tank4/01b |            | 311940 m E  | Concrete core sample taken from Tank4 (cut to be 1/4) |
| 12516828/Tank4/01c |            | 6124447 m S | Concrete core sample taken from Tank4                 |
|                    |            |             | (cut to be 1/4, treated by Xypex)                     |
| 12516828/Tank4/02a | 24/11/2020 | (54H)       | Concrete core sample taken from Tank4 (cut to be 1/2) |
| 12516828/Tank4/02b |            | 311943 m E  | Concrete core sample taken from Tank4 (cut to be 1/4) |
| 12516828/Tank4/02c |            | 6124453 m S | Concrete core sample taken from Tank4                 |
|                    |            |             | (cut to be 1/4, treated by Xypex)                     |
| 12516828/Tank4/03a | 24/11/2020 | (54H)       | Concrete core sample taken from Tank4 (cut to be 1/2) |
| 12516828/Tank4/03b |            | 311948 m E  | Concrete core sample taken from Tank4 (cut to be 1/4) |
| 12516828/Tank4/03c |            | 6124448 m S | Concrete core sample taken from Tank4                 |
|                    |            |             | (cut to be 1/4, treated by Xypex)                     |

| Sample ID          | Date       | GPS (UTM)   | Comment                                               |
|--------------------|------------|-------------|-------------------------------------------------------|
| 12516828/Tank1/01a | 24/11/2020 | (54H)       | Concrete core sample taken from Tank1 (cut to be 1/2) |
| 12516828/Tank1/01b |            | 311944 m E  | Concrete core sample taken from Tank1 (cut to be 1/4) |
| 12516828/Tank1/01c |            | 6124474 m S | Concrete core sample taken from Tank1                 |
|                    |            |             | (cut to be 1/4, treated by Xypex)                     |
| 12516828/Tank1/02a | 24/11/2020 | (54H)       | Concrete core sample taken from Tank1 (cut to be 1/2) |
| 12516828/Tank1/02b |            | 311947 m E  | Concrete core sample taken from Tank1 (cut to be 1/4) |
| 12516828/Tank1/02c |            | 6124472 m S | Concrete core sample taken from Tank1                 |
|                    |            |             | (cut to be 1/4, treated by Xypex)                     |
| 12516828/Tank1/03a | 24/11/2020 | (54H)       | Concrete core sample taken from Tank1 (cut to be 1/2) |
| 12516828/Tank1/03b |            | 311943 m E  | Concrete core sample taken from Tank1 (cut to be 1/4) |
| 12516828/Tank1/03c |            | 6124470 m S | Concrete core sample taken from Tank1                 |
|                    |            |             | (cut to be 1/4, treated by Xypex)                     |

### GHD

### **Groundwater Gauging Sheet**

| Client:               | CFS          |                |                        | WL Meter Type: Dip / Fox / Int.Fce / Gge |  |  |
|-----------------------|--------------|----------------|------------------------|------------------------------------------|--|--|
|                       | Brukunga S   | TC             |                        | Date: 23/02/2021                         |  |  |
| 00011011              | 2516828      |                |                        | Time:                                    |  |  |
| Location: I           | Brukunga in  | rvestigation   | n area                 | Sampler: Sean Sparrow                    |  |  |
| Location /<br>Bore ID | Stick up (m) | SWL<br>(mbTOC) | Thickness of NAPL (mm) | Comment                                  |  |  |
| KAN26                 |              |                | 8.646                  |                                          |  |  |
| KAN23                 |              |                | 17,320                 |                                          |  |  |
| KAN12                 |              |                | 1.404                  |                                          |  |  |
| HOI                   |              |                | 2.768                  |                                          |  |  |
| H02                   |              |                | 1.627                  |                                          |  |  |
| awol                  |              |                | 0.755                  |                                          |  |  |
| KAN41                 |              | Was ARTS       | 13.891                 |                                          |  |  |
| KANSI                 |              | 1 200          | 14.530                 | - broken well cap/top of casing          |  |  |
| KAN45                 |              | *ABU           | 6.576                  | 7/1/1/1/1/                               |  |  |
| GW03                  |              | \$975          | 9.048                  |                                          |  |  |
| BH22                  |              | 2 .7           | 2.446                  |                                          |  |  |
| H03                   |              |                | 4,902                  |                                          |  |  |
| H12                   |              |                | 2.044                  |                                          |  |  |
| H04a                  |              |                | 2.018                  |                                          |  |  |
| H04b                  |              |                | 0.819                  |                                          |  |  |
| 405                   |              |                | 2.186                  |                                          |  |  |
| HII                   |              |                | 100                    | - unable to locate gauged con            |  |  |
| H06a                  |              |                | 1.660                  | as it was similar distance from c        |  |  |
| H066                  |              |                | 1.662                  |                                          |  |  |
| C04a                  |              |                | 4.243                  |                                          |  |  |
|                       |              |                | 1.27)                  |                                          |  |  |
| KAN52                 |              |                | 17.185                 |                                          |  |  |
| BH15                  | 4            | SHAS!          | 17.185                 |                                          |  |  |
| C02                   |              |                | 1.345                  | replacement of HII                       |  |  |

Project: 12516828 CFS Brukunga STC

Date: 23/02/2021

Sampler: Sean Sparrow

South of Pond 4 pH 2.65 EC 11973

South of CFS pH 2.85 EC 6175

Creek\_6 pH 2.88 EC 5687

Creek\_5 pH 2.97 EC 6401

Creek\_4 pH 3.18 EC 9179

North of CFS pH 2.88 EC 9529

North of Diversion pH 7.49 EC 1841

### **Sampling Record Sheet**

Client: CFS Project: CFS Brukunga State Training Centre Project No: 12516828

Sampler: Sean Sparrow Date: 23/02/2021

| Well ID | SWL    | Comments                                                                                                                                                                          |
|---------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KAN26   | 8.646  |                                                                                                                                                                                   |
| KAN23   | 17.320 |                                                                                                                                                                                   |
| KAN12   | 1.404  |                                                                                                                                                                                   |
| H01     | 2.768  |                                                                                                                                                                                   |
| H02     | 1.627  |                                                                                                                                                                                   |
| GW01    | 0.755  |                                                                                                                                                                                   |
| KAN41   | 13.891 |                                                                                                                                                                                   |
| KAN51   | 14.530 | Had a broken well cap/ top of casing, survey data for this well may not be accurate, however was covered by detachable gatic to prevent debris falling into the well              |
| KAN45   | 6.576  |                                                                                                                                                                                   |
| GW03    | 9.048  |                                                                                                                                                                                   |
| BH22    | 2.446  |                                                                                                                                                                                   |
| H03     | 4.902  |                                                                                                                                                                                   |
| H12     | 2.044  |                                                                                                                                                                                   |
| H04a    | 2.018  |                                                                                                                                                                                   |
| H04b    | 0.819  |                                                                                                                                                                                   |
| H05     | 2.186  |                                                                                                                                                                                   |
| H11     | -      | Unable to locate well (possibly labelled with different ID that did not appear on our maps), gauged CO2 instead as it was a similar distance from/ parallel to the creek from H11 |
| C02     | 1.345  | Replacement for H11                                                                                                                                                               |
| H06a    | 1.662  |                                                                                                                                                                                   |
| H06b    | 1.543  |                                                                                                                                                                                   |
| C04a    | 4.243  |                                                                                                                                                                                   |
| KAN52   | 17.185 |                                                                                                                                                                                   |
| BH15    | 8.532  |                                                                                                                                                                                   |

| Location description     | рН   | EC    |
|--------------------------|------|-------|
| North of Diversion Drain | 7.49 | 1841  |
| North of CFS Site        | 2.88 | 9529  |
| Creek_4                  | 3.18 | 9179  |
| Creek_5                  | 2.97 | 6401  |
| Creek_6                  | 2.88 | 5687  |
| South of CFS Site        | 2.85 | 6175  |
| South of Pond 4          | 2.65 | 11973 |

### **Appendix J** – Calibration Certificates

airmet

Instrument

Geotech Interface Meter (30m)

Serial No.

4038

Air-Met Scientific Pty Ltd 1300 137 067

| Item            | Test             | Pass     | Comments |
|-----------------|------------------|----------|----------|
| Battery         | Compartment      | <b>√</b> |          |
| _               | Capacity         | ✓        | 8.4V     |
|                 |                  |          |          |
| Probe           | Cleaned/Decon.   | ✓        |          |
|                 | Operation        | ✓        | 4        |
| Connectors      | Condition        | ✓        |          |
|                 |                  | ✓        |          |
| Tape Check      | Cleaned          | ✓        |          |
| Connectors      | Checked for cuts | ✓        |          |
|                 |                  | ,        |          |
| Instrument Test | At surface level | ✓        |          |
|                 |                  |          |          |
|                 |                  |          |          |
|                 |                  |          |          |
|                 |                  |          |          |
|                 |                  |          |          |
|                 |                  |          |          |

### Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:

Joseph Tomas

Calibration date:

11-Jun-20

Next calibration due:

10-Aug-20



### **EQUIPMENT CERTIFICATION REPORT**

# PGN9003842-9003846 - INTERFACE METER Plant Number: 235 24 3 Serial Number: 268006 Probe Length: 60 M

| ITEM          | TEST                          | PASS  | COMMENTS |
|---------------|-------------------------------|-------|----------|
| Battery       | Compartment /<br>Capacity     | ₹8.40 | 9v       |
| Probe         | Clean / Operation             | W,    |          |
| Earth Lead    | Check if equipped             |       |          |
| Tape Check    | Cleaned /<br>Checked for cuts |       |          |
| Function test | At surface level              |       |          |

Checked By: Milma FoucheDate: 18/2/2/Signed:

### **Accessories List:**

| Interface Meter | Tape Guide       | Decon 90 Solution |
|-----------------|------------------|-------------------|
| Brush           | Spare 9v Battery | Transport Box     |
|                 | *                |                   |

 $\mathcal{Z}_{i}$ 



**135 135** | kennards.com.au

### **Multi Parameter Water Meter**

Instrument YSI Quatro Pro Plus

**Serial No.** 14D101793



| Item          | Test             | Pass     | Comments |
|---------------|------------------|----------|----------|
| Battery       | Charge Condition | ✓        |          |
|               | Fuses            | ✓        |          |
|               | Capacity         | ✓        |          |
| Switch/keypad | Operation        | ✓        |          |
| Display       | Intensity        | ✓        |          |
|               | Operation        | ✓        |          |
|               | (segments)       | ,        |          |
| Grill Filter  | Condition        | <b>✓</b> |          |
|               | Seal             | ✓        |          |
| PCB           | Condition        | ✓        |          |
| Connectors    | Condition        | ✓        |          |
| Sensor        | 1. pH            | ✓        |          |
|               | 2. mV            | ✓        |          |
|               | 3. EC            | ✓        |          |
|               | 4. D.O           | ✓        |          |
|               | 5. Temp          | ✓        |          |
| Alarms        | Beeper           |          |          |
|               | Settings         |          |          |
| Software      | Version          |          |          |
| Data logger   | Operation        |          |          |
| Download      | Operation        |          |          |
| Other tests:  |                  |          |          |

### **Certificate of Calibration**

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor     | Serial no | Standard Solutions | Certified | Solution Bottle | Instrument Reading |
|------------|-----------|--------------------|-----------|-----------------|--------------------|
|            |           |                    |           | Number          |                    |
| 2. pH 7.00 |           | pH 7.00            |           | 330737          | pH 7.00            |
| 3. pH 4.00 |           | pH 4.00            |           | 330734          | pH 3.99            |
| 4. mV      |           | 236.0mV            |           | 333082/329762   | 243.46 mV          |
| 5. EC      |           | 2.76mS             |           | 329027          | 2.76mS             |
| 6. D.O     |           | 0.00ppm            |           | 10465           | 0                  |
| 7. Temp    |           | 18.6               |           | MultiTherm      | 15.7               |

Calibrated by: Giovanni Pambuan

Calibration date: 5/05/2020

Next calibration due: 4/06/2020

Instrument

**YSI Quatro Pro Plus** 

Serial No.

18J104323



### Air-Met Scientific Pty Ltd 1300 137 067

| Item          | Test                 | Pass     | Comments |
|---------------|----------------------|----------|----------|
| Battery       | Charge Condition     | <b>✓</b> |          |
| -             | Fuses                | ✓        |          |
|               | Capacity             | ✓        |          |
| Switch/keypad | Operation            | ✓        |          |
| Display       | Intensity            | ✓        |          |
|               | Operation (segments) | <b>✓</b> |          |
| Grill Filter  | Condition            | ✓        |          |
|               | Seal                 | ✓        |          |
| PCB           | Condition            | 1        |          |
| Connectors    | Condition            | ✓        |          |
| Sensor        | 1. pH                | ✓        |          |
|               | 2. mV                | ✓        |          |
|               | 3. EC                | ✓        |          |
|               | 4. D.O               | ✓        |          |
|               | 5. Temp              | ✓        |          |
| Alarms        | Beeper               |          |          |
|               | Settings             |          |          |
| Software      | Version              |          |          |
| Data logger   | Operation            |          | A        |
| Download      | Operation            |          |          |
| Other tests:  |                      |          |          |

### Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor          | Serial no | Standard Solutions | Certified | Solution Bottle | Instrument Reading |
|-----------------|-----------|--------------------|-----------|-----------------|--------------------|
|                 |           |                    |           | Number          |                    |
| 1. D.O          |           | 0 ppm              |           | 10465           | 0 ppm              |
| 2. Conductivity |           | 2760uS             |           | 329027          | 2760uS             |
| 3. pH7          |           | pH 7.00            |           | 330737          | pH 7.00            |
| 4. pH4          |           | pH 4.00            |           | 330734          | pH 4.00            |
| 5. ORP mV       |           | 231mV              |           | 333082/329762   | 235.32 mV          |
| 7. Temp °C      |           | 20.5               |           | Multimeter      | 19.4               |

Calibrated by:

Giovanni Pambuan

Calibration date:

15-May-20

Next calibration due:

11-Nov-20

airmet

11/06/2020

Instrument

**YSI Quatro Pro Plus** 

Serial No. 14D101793

Air-Met Scientific Pty Ltd 1300 137 067

| ltem          | Test                 | Pass     | Comments |
|---------------|----------------------|----------|----------|
| Battery       | Charge Condition     | 1        |          |
|               | Fuses                | ✓        |          |
|               | Capacity             | ✓        |          |
|               |                      |          |          |
| Switch/keypad | Operation            | ✓        |          |
| Display       | Intensity            | ✓        |          |
|               | Operation (segments) | <b>✓</b> |          |
| Grill Filter  | Condition            | ✓        |          |
|               | Seal                 | ✓        |          |
| PCB           | Condition            | ✓        |          |
| Connectors    | Condition            | ✓        |          |
| Sensor        | 1. pH                | ✓        |          |
|               | 2. mV                | ✓        |          |
|               | 3. EC                | ✓        |          |
|               | 4. D.O               | ✓        |          |
| N.            | 5. Temp              | ✓        |          |
| Alarms        | Beeper               |          | ,        |
|               | Settings             |          |          |
| Software      | Version              |          |          |
| Data logger   | Operation            |          |          |
| Download      | Operation            |          |          |
| Other tests:  |                      |          |          |

### Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor     | Serial no | Standard Solutions | Certified | Solution Bottle | Instrument Reading |
|------------|-----------|--------------------|-----------|-----------------|--------------------|
|            |           |                    |           | Number          |                    |
| 2. pH 7.00 |           | pH 7.00            |           | 330737          | pH 7.00            |
| 3. pH 4.00 |           | pH 4.00            |           | 330734          | pH 3.99            |
| 4. mV      |           | 236.0mV            |           | 333082/329762   | 237.96mV           |
| 5. EC      | 1         | 2.76mS             |           | 329027          | 2.76mS             |
| 6. D.O     |           | 0.00ppm            |           | 10465           | 0                  |
| 7. Temp    |           | 18.6               |           | MultiTherm      | 18.2               |

Calibrated by:

Giovanni Pambuan

Calibration date:

11/06/2020

Next calibration due:

11/07/2020

Instrument

**YSI Quatro Pro Plus** 

Serial No.

12C101136



### Air-Met Scientific Pty Ltd 1300 137 067

| ltem          | Test                 | Pass | Comments |
|---------------|----------------------|------|----------|
| Battery       | Charge Condition     | 1    |          |
|               | Fuses                | 1    |          |
|               | Capacity             | ✓    |          |
| Switch/keypad | Operation            | ✓    |          |
| Display       | Intensity            | ✓    |          |
|               | Operation (segments) | ✓    |          |
| Grill Filter  | Condition            | ✓    |          |
|               | Seal                 | ✓    |          |
| PCB           | Condition            | 1    |          |
| Connectors    | Condition            | ✓    |          |
| Sensor        | 1. pH                | ✓    |          |
|               | 2. mV                | ✓    |          |
|               | 3. EC                | ✓    |          |
|               | 4. D.O               | ✓    |          |
|               | 5. Temp              | ✓    |          |
| Alarms        | Beeper               |      |          |
|               | Settings             |      |          |
| Software      | Version              |      |          |
| Data logger   | Operation            |      |          |
| Download      | Operation            |      |          |
| Other tests:  |                      |      |          |

### Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode

Aspirated mode

| Sensor     | Serial no | Standard Solutions | Certified | Solution Bottle<br>Number | Instrument Reading |
|------------|-----------|--------------------|-----------|---------------------------|--------------------|
| 1. pH 7.00 |           | pH 7.00            |           | 330737                    | pH 6.99            |
| 2. pH 4.00 |           | pH 4.00            |           | 330734                    | pH 3.99            |
| 3. mV      |           | 231mV              |           | 333082/329762             | 243.02 mV          |
| 4. EC      |           | 2.760 mS           |           | 329027                    | 2.760 mS           |
| 6. D.O     |           | 0 ppm              |           | 10465                     | 0.0ppm             |
| 7. Temp    |           | 21.3               |           | MultiTherm                | 15.9               |

Calibrated by:

Giovanni Pambuan

Calibration date:

7/07/2020



Instrument

**YSI Quatro Pro Plus** 

Serial No. 1

11C100758

Air-Met Scientific Pty Ltd 1300 137 067

| Item          | Test                 | Pass     | Comments |
|---------------|----------------------|----------|----------|
| Battery       | Charge Condition     | ✓        |          |
| <del>-</del>  | Fuses                | ✓        |          |
|               | Capacity             | ✓        |          |
| Switch/keypad | Operation            | <b>✓</b> |          |
| Display       | Intensity            | ✓        |          |
|               | Operation (segments) | <b>✓</b> |          |
| Grill Filter  | Condition            | ✓        |          |
|               | Seal                 | ✓        |          |
| PCB           | Condition            | <b>✓</b> |          |
| Connectors    | Condition            | ✓        |          |
| Sensor        | 1. pH                | ✓        |          |
|               | 2. mV                | ✓        |          |
|               | 3. EC                | ✓        |          |
|               | 4. D.O               | <b>✓</b> |          |
|               | 5. Temp              | ✓        |          |
| Alarms        | Beeper               |          |          |
|               | Settings             |          |          |
| Software      | Version              |          |          |
| Data logger   | Operation            |          |          |
| Download      | Operation            |          |          |
| Other tests:  |                      |          |          |

### **Certificate of Calibration**

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor     | Serial no | Standard Solutions | Certified | Solution Bottle | Instrument Reading |
|------------|-----------|--------------------|-----------|-----------------|--------------------|
|            |           |                    |           | Number          |                    |
| 1. pH 7.00 |           | pH 7.00            |           | 330737          | pH 6.69            |
| 2. pH 4.00 |           | pH 4.00            |           | 330734          | pH 4.02            |
| 3. mV      |           | 231mV              |           | 333082/329762   | 228.5 mV           |
| 4. EC      |           | 2.76 mS            |           | 329027          | 2.76mS             |
| 6. D.O     |           | 0 ppm              |           | 10465           | 0ppm               |
| 7. Temp    |           | 27                 |           | MultiThem       | 22.5               |

Calibrated by:

Giovanni Pambuan

Calibration date:

7-Aug-20



Instrument

**YSI Quatro Pro Plus** 

Serial No. 1

11C100758

# Air-Met Scientific Pty Ltd 1300 137 067

| Item          | Test                 | Pass     | Comments |
|---------------|----------------------|----------|----------|
| Battery       | Charge Condition     | ✓        |          |
|               | Fuses                | ✓        |          |
|               | Capacity             | ✓        |          |
| Switch/keypad | Operation            | <b>✓</b> |          |
| Display       | Intensity            | <b>✓</b> |          |
|               | Operation (segments) | <b>✓</b> |          |
| Grill Filter  | Condition            | ✓        |          |
|               | Seal                 | ✓        |          |
| PCB           | Condition            | <b>✓</b> |          |
| Connectors    | Condition            | ✓        |          |
| Sensor        | 1. pH                | ✓        |          |
|               | 2. mV                | ✓        |          |
|               | 3. EC                | ✓        |          |
|               | 4. D.O               | <b>√</b> |          |
|               | 5. Temp              | ✓        |          |
| Alarms        | Beeper               |          |          |
|               | Settings             |          |          |
| Software      | Version              |          |          |
| Data logger   | Operation            |          |          |
| Download      | Operation            |          |          |
| Other tests:  |                      |          |          |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor     | Serial no | Standard Solutions | Certified | Solution Bottle | Instrument Reading |
|------------|-----------|--------------------|-----------|-----------------|--------------------|
|            |           |                    |           | Number          |                    |
| 1. pH 7.00 |           | pH 7.00            |           | 330737          | pH 6.69            |
| 2. pH 4.00 |           | pH 4.00            |           | 330734          | pH 4.02            |
| 3. mV      |           | 231mV              |           | 333082/329762   | 228.5 mV           |
| 4. EC      |           | 2.76 mS            |           | 329027          | 2.76mS             |
| 6. D.O     |           | 0 ppm              |           | 10465           | 0ppm               |
| 7. Temp    |           | 27                 |           | MultiThem       | 22.5               |

Calibrated by:

Giovanni Pambuan

Calibration date:

7-Aug-20

Instrument

**YSI Quatro Pro Plus** 

Serial No.

12C101136



# Air-Met Scientific Pty Ltd 1300 137 067

| Item                                    | Test                 | Pass     | Comments |
|-----------------------------------------|----------------------|----------|----------|
| Battery                                 | Charge Condition     | <b>✓</b> |          |
| *************************************** | Fuses                | ✓        |          |
|                                         | Capacity             | ✓        |          |
| Switch/keypad                           | Operation            | ✓        |          |
| Display                                 | Intensity            | ✓        |          |
| -                                       | Operation (segments) | <b>✓</b> |          |
| Grill Filter                            | Condition            | ✓        |          |
|                                         | Seal                 | ✓        |          |
| PCB                                     | Condition            | ✓        |          |
| Connectors                              | Condition            | ✓        |          |
| Sensor                                  | 1. pH                | ✓        |          |
|                                         | 2. mV                | ✓        |          |
|                                         | 3. EC                | ✓        |          |
|                                         | 4. D.O               | ✓        |          |
|                                         | 5. Temp              | ✓        |          |
| Alarms                                  | Beeper               |          |          |
|                                         | Settings             |          | '        |
| Software                                | Version              |          |          |
| Data logger                             | Operation            |          |          |
| Download                                | Operation            |          |          |
| Other tests:                            |                      |          |          |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Diffusion mode

Aspirated mode

| Sensor     | Serial no | Standard Solutions | Certified | Solution Bottle | Instrument Reading |
|------------|-----------|--------------------|-----------|-----------------|--------------------|
|            |           |                    |           | Number          |                    |
| 1. pH 7.00 |           | pH 7.00            |           | 330737          | pH 7.00            |
| 2. pH 4.00 |           | pH 4.00            |           | 330734          | pH 4.08            |
| 3. mV      |           | 231mV              |           | 333082/329762   | 247.7 mV           |
| 4. EC      |           | 2.760 mS           |           | 329027          | 2.154mS            |
| 6. D.O     |           | 0 ppm              |           | 10640           | 0.0ppm             |
| 7. Temp    | 8         | 21.3               |           | MultiTherm      | 13.9               |

Calibrated by:

Jamie Duggan

Calibration date:

13/08/2020

airmet

Instrument

YSI Quatro Pro Plus

Serial No.

18J104308

# Air-Met Scientific Pty Ltd 1300 137 067

| Item          | Test                    | Pass     | Comments                              |
|---------------|-------------------------|----------|---------------------------------------|
| Battery       | Charge Condition        | : 🗸      | •                                     |
|               | Fuses                   | ✓        |                                       |
|               | Capacity                |          |                                       |
| Switch/keypad | Operation               |          |                                       |
| Display       | Intensity               | ✓        |                                       |
| <u> </u>      | Operation<br>(segments) | <i>✓</i> | ·                                     |
| Grill Filter  | Condition               | <b>✓</b> |                                       |
|               | Seal                    | ✓        |                                       |
| PCB           | Condition               | ✓        |                                       |
| Connectors    | Condition               | . 🗸      |                                       |
| Sensor        | 1. pH                   | ✓        |                                       |
|               | 2. mV                   | . 🗸      |                                       |
|               | 3. EC                   | ✓        |                                       |
|               | 4. D.O                  | <b>✓</b> |                                       |
|               | 5. Temp                 | <b>√</b> |                                       |
| Alarms        | Beeper                  |          |                                       |
|               | Settings                | ,        |                                       |
| Software      | Version                 |          |                                       |
| Data logger   | Operation               |          |                                       |
| Download      | Operation               |          |                                       |
| Other tests:  |                         |          | new 1m cable and 4 sensors 27/03/2020 |

#### Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor          | Serial no | Standard Solutions | Certified | Solution Bottle | Instrument Reading |
|-----------------|-----------|--------------------|-----------|-----------------|--------------------|
|                 |           |                    |           | Number          |                    |
| 1. D.O          |           | 0 ppm              |           | 123302          | 0 ppm              |
| 2. Conductivity |           | 2760uS             |           | 329027          | 2760uS             |
| 3. pH7          |           | pH 7.00            |           | 330737          | pH 6.94            |
| 4. pH4          |           | pH 4.00            |           | 330734          | pH 3.89            |
| 5. ORP mV       |           | 235.1mV            |           | 329762/333082   | 242.10 mV          |
| 7. Temp °C      |           | 19.3               |           | Multimeter      | 17.3               |

Calibrated by:

Jamie Duggan

Calibration date:

16-Sep-20

Next calibration due:

15-Mar-21

Gas Detection Air Sampling & Monitoring Environmental & Water Quality Monitoring



# Air-Met Scientific Pty Ltd ABN 73 006 849 949

Ph 1300 137 067

#### Multi Parameter Water Meter

**YSI Quatro Pro Plus** Instrument

Serial No. 09K101344

| ltem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test             | Pass                                    |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|----------|
| Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Charge Condition | <b>-</b>                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Capacity         |                                         | <u> </u> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recharge OK?     | √ · · · · · · · · · · · · · · · · · · · |          |
| Switch/keypad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Operation        | ✓                                       |          |
| Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intensity        | ✓                                       | :        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Operation        | ✓                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (segments)       |                                         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                         |          |
| Minimum minimum ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Seal             | <b>√</b>                                |          |
| Connectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Condition        | <b>/</b>                                |          |
| Sensor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. pH            | ✓                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2. mV            | ✓                                       |          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3. Conductivity  | ✓                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4. D.O           | . 🗸                                     |          |
| \tag{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ticl{\titil\tin\tint{\text{\text{\text{\tin}\text{\text{\text{\ti}\tint{\text{\texi}\tint{\text{\texi}\text{\texitit}\\ \tittt{\tin}\tint{\text{\texi}\tinint{\text{\ti}\tint{\ti}\tex{ | 5. Temp          | √                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                         |          |
| Alarms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Beeper           | · 🗸                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Settings         | <b></b> ✓                               |          |
| Software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Version          | ✓                                       |          |
| Data logger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Operation        | <b>√</b>                                |          |
| Download                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Operation        |                                         |          |
| Other tests:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                         | ·<br>:   |

### Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor   | Serial no | Standard Solutions |               | Instrument Reading |
|----------|-----------|--------------------|---------------|--------------------|
| Temp     |           | 20                 |               | 19                 |
| pH7      |           | pH 7               | 330737        | pH 7.00            |
| pH4      |           | pH 4               | 330734        | pH 4.13            |
| EC       |           | 2760µS/cm          | 329027        | 2760µS/cm          |
| ORP (mV) |           | 231mV              | 333082/329762 | 236.00mV           |
| DO Zero  |           | Sodium sulfite     | 10465         | 0.0%               |

Calibrated by: Jamie Duggan

Calibration date: 27-Oct-20

Next calibration due: 25-Apr-21



& sampling equipment

Tel: +61 8 9328 2900 lax: +61 8 9328 2677

eco@ecoenvironmental.com.au www.ecoenvironmental.com.au 214 Lord St Perth WA 6000

#### **Equipment Information**

Instrument:

YSIPP6P

Serial Number:

13B101199 (Display)

14J100123 (Sonde)

| Equipment Check                         | Enclosed | Returned | Comment |
|-----------------------------------------|----------|----------|---------|
| YSI Pro Plus Display                    |          |          | Comment |
| YSI Quatro Sonde                        | Ø        |          |         |
| - YSI 1001 pH Probe (LN: 12J)           |          |          |         |
| - YSI 1002 ORP Probe (LN: 12G)          |          |          | -       |
| - YSI 5560 Cond/Temp Probe (LN: 13L)    |          |          |         |
| - YSI Polarographic DO Sensor (LN: 14E) |          |          |         |
| Flow Cell & Attachments (x2)            |          |          |         |
| Probe Guard                             |          |          |         |
| Rubber Storage/Calibration Sleeve       | Ø        |          |         |
| Calibration Cup + Cap                   |          |          |         |
| YSI Cable Management Kit                |          |          | -       |
| YSI Pro Series ProComm II Kit           | Ø,       |          |         |
| User Manual + Flow Cell Manual + CD-Rom | ď        |          |         |
| Spare Batteries ( x 2 ) & Screwdriver   | Ġ,       |          |         |
| Laminated Quick Start Guide             | G        |          |         |
|                                         |          |          | 40      |

#### Sensor Calibration Details

|                                 | Calibration Undertaken              | Accuracy                       | Pass | Fail    |
|---------------------------------|-------------------------------------|--------------------------------|------|---------|
| Temperature<br>Dissolved Oxygen | Factory Calibrated  100% Saturation | ±0.2°C<br>+2%                  |      |         |
|                                 | Pressure Compensation               | 10(1 hPa                       | 13   |         |
| Conductivity                    | 12.88mS/cm                          | ±0.5%                          | Ø    |         |
|                                 | Check linearity at 1.413mS/cm       | ±0.5%                          |      |         |
| Salinity                        | Auto Calibrated                     | <u>+</u> 1%                    |      |         |
| pH                              | pH 7.00                             | <u>+</u> 0.2                   | 12   |         |
| ORP                             | ☐ pH 4.00<br>☐ 2_42 mV at 22°C      | <u>+</u> 0.2<br><u>+</u> 20mV  |      |         |
| Salinity<br>pH                  | Auto Calibrated  pH 7.00  pH 4.00   | ±0.5%<br>±1%<br>± 0.2<br>± 0.2 |      | 0 0 0 0 |

This is to certify that where possible, this instrument has been calibrated in accordance with the manufacturer's calibration procedure as recommended in the instrument service manual.

ECO Standard Rental Terms & Conditions apply to all equipment calibrations.

Regards

Opilation 22/10/20

**Equipment Specialist** ECO Environmental



# **EQUIPMENT CERTIFICATION REPORT**

#### PGN9003871 WATER QUALITY METER - MULTIFUNCTION (YSI PRO PLUS)

Plant Number: 1077348 | Serial Number: 201101814

| SENSOR              | CONCENTRATION            | SPAN 1                        | SPAN 2              | TRACEABILITY | PASS |
|---------------------|--------------------------|-------------------------------|---------------------|--------------|------|
| pН                  | pH 7.00 / pH 4.00        | 7.00 pH                       | 4.00 pH             | 330731702    |      |
| Conductivity        | 12.88 mS/cm              | 12.88 mS/cm                   |                     | 343265       |      |
| Dissolved<br>Oxygen | Sodium Sulphite /<br>Air | 0.0% in<br>Sodium<br>Sulphite | % Saturation in Air | 10465        | Ø    |
| ORP                 | 240mV @ 20°C             | 240mV                         |                     | 337308       |      |

| Battery Status <u>100</u> %    | Temperature 25,8°C |
|--------------------------------|--------------------|
| Electrodes Cleaned and Checked |                    |

Note: Calibration solution traceability information is available upon request.

Checked By: Wilma Fouch Date: 18/2/2/ Signed:

**Accessories List:** 

| User's Manual           | pH Sensor                  | Conductivity/ Temp Sensor |
|-------------------------|----------------------------|---------------------------|
| Dissolved Oxygen Sensor | Redox (ORP) Sensor         | Flow Cell                 |
| User Guide              | Stainless Steel Restrictor | Spare Batteries           |
| Calibration Cup         |                            |                           |



135 135 kennards.com.au

# **Appendix K** – Laboratory Reports and Chain of Custody Documentation



# **CHAIN OF CUSTODY FORM - Client**

National phone number 1300 424 344 Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 ① 02 9910 6200 | 🗠 sydney@envirolab.com.au [Copyright and Confidential] Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 Client: GHD Client Project Name/Number/Site etc (ie report title): ① 08 9317 2505 | See lab@mpl.com.au Contact Person: Robert Webb Melbourne Lab - Envirolab Services Project Mar: Dilara Valiff PO No.: 12516828 25 Research Drive, Groydon South, VIC-3136-@ 03 9763 2500 I R melbourne@envirolab.com.au Sampler: Robert Webb Envirolab Quote No. : 19SA002 Date results required: standard Address: 211 Victoria Square, Adelaide SA 5000 Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067 ③ 08 7087 6800 | ≫ adelalde@envirolab.com.au Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required surcharges apply Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 468764489 Additional report format: esdat / equis / Phone: Mob: ① 07 3266 9532 | :⊰ brisbane@envirolab.com.au Lab Comments: Email: <u>Darwin Office</u> - Envirolab Services Unit 20/119 Reichardt Road, Winnellie, NT 0820 1 08 8967 1201 | darwin@envirolab.com.au Robert, Webb2@ghd, com Dilara, Valiff@ghd.com Sample information **Tests Required** Comments 3 PFAS FAS Short Su (sediment) Short Provide as much Client Sample ID or **Envirolab Sample** Depth Date sampled Type of sample Suite information about the ID Information (wate sample as you can r) SS01 8/05/2020 soil SS02 8/05/2020 <u>soil</u> Envirolet Services 1 SS03 8/05/2020 12 Ashley St soil 1 FOOD A SW 2007 Ph. (02) 9910 6200 SS04 8/05/2020 soil SS05 8/05/2020 <u>soil</u> Date Received h SS06 8/05/2020 <u>soil</u> Time Received: SS07 -8/05/2020 soil. 1 SS08 8/05/2020 soil Cooling (ICE) \$\$09 \* 8/05/2020 <u>soil</u> Ī۵ **SS10** 8/05/2020 lioz n/None SS11 8/05/2020 <u>soil</u> 1 SS12 8/05/2020 soil 1

10

6

SS13

SS14

SS15

SS16

8/05/2020

8/05/2020

8/05/2020

8/05/2020

<u>soil</u>

<u>soil</u>

soil

soil

1

1

**ENVIROLAB GROUP** 

243030 CM

|          |                      |             |             |                 |     |          |               | T     |     |      |   |     |  | 1    | T T      |   |                       |
|----------|----------------------|-------------|-------------|-----------------|-----|----------|---------------|-------|-----|------|---|-----|--|------|----------|---|-----------------------|
| <b>-</b> |                      | SS17        | 8/05/2020   | soil            | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
| L        | 18                   | SS18        | 8/05/2020   | soil            | 1   |          |               |       |     |      |   |     |  |      | <u> </u> |   |                       |
| L        | 19                   | SS19        | 8/05/2020   | soil            | 1   |          |               |       |     |      |   |     |  | <br> |          |   |                       |
|          | 20                   | SS20        | 8/05/2020   | <u>soil</u>     | 1   |          |               |       |     |      |   |     |  |      | <u> </u> |   |                       |
| L        | 71                   | SS21        | 8/05/2020   | soil            | 1   | <u> </u> |               |       |     |      |   |     |  |      | 1        |   |                       |
|          | 77                   | SS22        | 8/05/2020   | soil            | 1   |          |               |       |     |      |   | L . |  |      |          |   |                       |
|          | 23                   | SS23        | 8/05/2020   | <u>soil</u>     | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | 24                   | SS24        | 8/05/2020   | soil            | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | 25                   | SS25        | 8/05/2020   | soil            | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | 26                   | SS26        | 8/05/2020   | soil            | 1   |          |               |       |     |      |   |     |  |      |          | - |                       |
|          | 77                   | SS27        | 8/05/2020   | <u>soil</u>     | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | 18                   | SS28        | 8/05/2020   | <u>soil</u>     | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
| *        | 74                   | SS29        | 8/05/2020   | <u>soil</u>     | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
| ` .      | 30                   | SS30        | 8/05/2020   | <u>soil</u>     | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | 31                   | WB01        | _ 6/05/2020 | water           | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | 32                   | FXB01 7.    | 7/05/2020   | <u>water</u>    | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
| ·        | 37                   | FX01        | 7/05/2020   | water           | 1   |          |               |       |     |      | _ |     |  |      |          |   |                       |
|          | 34                   | FX02        | 7/05/2020   | water           | 1   |          |               |       |     |      |   | _!  |  |      |          |   | Log                   |
|          | 35                   | FX03        | 7/05/2020   | <u>water</u>    | 1   |          |               |       | -   |      |   | ,,, |  |      |          |   |                       |
|          | 36                   | FX04        | 7/05/2020   | <u>water</u>    | 1   |          |               |       |     |      |   | ¥   |  |      |          |   |                       |
|          | 37                   | FX05        | 7/05/2020   | water           | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | 38                   | FX06        | 7/05/2020   |                 | 1   |          |               |       |     |      |   |     |  |      | l        |   |                       |
| L        | 39                   | FX07        | 7/05/2020   |                 | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | YO                   | DC02        | 8/05/2020   | water, see      | 1   | 1962     |               |       |     |      |   |     |  |      |          |   |                       |
|          | 41                   | DC03        | 8/05/2020   | water, sediment | 1   | 1159     | <u>د</u><br>د | pulin |     | 1.11 |   |     |  |      |          |   |                       |
|          | ,42                  | DC04        | 8/05/2020   | water, sediment | 1   | 754      | S             | ediv  | ser | イバ   |   |     |  |      |          |   |                       |
| 17.2 20  | 1. /424              | Jafev. DC05 | 8/05/2020   | water, sediment | 1   | 15       | ا<br>ما       | lecti | re  | 4    |   |     |  |      |          |   |                       |
|          | 1: 14:4              | QC11 🕰 .    | 8/05/2020   | water S         | 1   | ,        |               |       |     |      | , |     |  |      |          |   |                       |
|          | 1/2                  | QC11a       | 8/05/2020   | water           | _ 1 |          |               | i     |     |      |   |     |  |      |          |   | Please forward to ALS |
|          | \rightarrow \sqrt{5} | QC12        | 8/05/2020   | sediment        | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          |                      | QC12a       | 8/05/2020   | sediment        | -1- | -        |               |       |     |      |   |     |  |      |          |   | Please forward to ALS |
|          | 46/47                | DC07        | 8/05/2020   | water, sediment | 1   |          |               |       |     |      |   |     |  |      |          |   | ·                     |
| L        | 48                   | RB01        | 6/05/2020   | water           | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | પ ૧                  | RB02        | 6/05/2020   | <u>water</u>    | 1   |          |               | :-    |     |      |   |     |  |      |          |   |                       |
|          | :50                  | RB03        | 7/05/2020   | <u>water</u>    | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | '51                  | RB04 ,      | 7/05/2020   | <u>water</u>    | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | -52                  | RB05        | 8/05/2020   | water           | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |
|          | <u> </u>             | RB06 🔩      | 8/05/2020   | <u>water</u>    | 1   |          |               |       |     |      |   |     |  |      |          |   |                       |

| - 54 | FB01              | 6/05/2020              | water               | 1                                                |                                                  | Γ                                                |                                                  |                                                  |                                                      |                                                  |                                                  | П                                                |   |                                                  |              |                                                  |          |                        |
|------|-------------------|------------------------|---------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---|--------------------------------------------------|--------------|--------------------------------------------------|----------|------------------------|
| 755  | FB02              | 7/05/2020              | water               | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  |                                                  | $\Box$                                           |   |                                                  |              |                                                  |          |                        |
| 56   | FB03              | 8/05/2020              | water               | 1                                                | <u> </u>                                         | <u> </u>                                         |                                                  |                                                  |                                                      |                                                  |                                                  | 1                                                |   |                                                  |              |                                                  |          |                        |
| 57   | TB01              | 6/05/2020              | water               | 1                                                |                                                  |                                                  |                                                  | _                                                |                                                      |                                                  |                                                  | Н                                                |   |                                                  |              |                                                  | _        | -                      |
| -58  | TB02              | 7/05/2020              | water               | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  |                                                  | $\Box$                                           |   |                                                  |              |                                                  |          |                        |
| 59   | SW03_0-0.2        | 6/05/2020              | soil                | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  | †                                                |                                                  |   |                                                  |              |                                                  | _        |                        |
| 60   | SW03_0,5-0.7      | 6/05/2020              | soil                | <del></del>                                      | <u> </u>                                         |                                                  |                                                  |                                                  |                                                      | <u> </u>                                         | _                                                | ╅                                                |   |                                                  |              |                                                  |          |                        |
| 18.  | SW03_1.5-1.7      | 6/05/2020              | soil                | 1                                                | <del></del>                                      |                                                  |                                                  |                                                  |                                                      |                                                  | _                                                | -                                                |   |                                                  |              |                                                  |          |                        |
| (62  | SW03_4.8-4.9      | 6/05/2020              | soil                |                                                  |                                                  |                                                  | <u> </u>                                         |                                                  |                                                      |                                                  |                                                  |                                                  |   |                                                  |              |                                                  |          |                        |
| 6'3  | SW04_0-0.2        | 6/05/2020              | soil                |                                                  |                                                  |                                                  |                                                  |                                                  | <br>_                                                |                                                  |                                                  | $\vdash$                                         |   |                                                  |              |                                                  |          |                        |
| 64   | SW04_1.0-1.3      | 6/05/2020              | soil                | 1                                                |                                                  |                                                  |                                                  |                                                  | <br><u> </u>                                         |                                                  |                                                  |                                                  | - |                                                  |              |                                                  |          |                        |
| 65   | QC04              | 6/05/2020              | soil                | 1                                                |                                                  |                                                  |                                                  |                                                  | <u> </u>                                             |                                                  |                                                  | -                                                |   |                                                  |              | <u> </u>                                         |          |                        |
|      | QC04a             | 6/05/2020              | soil                | 1                                                |                                                  | <del>                                     </del> | <u> </u>                                         |                                                  |                                                      |                                                  | <del> </del>                                     | $\vdash$                                         |   |                                                  |              | <del> </del> -                                   |          | Please forward to ALS  |
| 66   | SW04_2,0-2,1      | 6/05/2020              | soil                | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  | <del>                                     </del> | $\vdash \vdash$                                  |   |                                                  |              | <u> </u>                                         |          | i icase forward to ALS |
| 67   | SW04_3.85_3.9     | 6/05/2020              | soil                | 广                                                | <u> </u>                                         |                                                  |                                                  |                                                  | <br><del>                                     </del> |                                                  |                                                  | $\vdash \vdash$                                  |   |                                                  |              |                                                  |          | <del> </del>           |
| 6.8  | SW04_4.5-4.6      | 6/05/2020              | soil                | 1                                                | 1                                                |                                                  |                                                  |                                                  | <br><del>                                     </del> |                                                  |                                                  | $\square$                                        |   |                                                  |              |                                                  |          |                        |
| 69   | SW05_0-0,2 /      | 6/05/2020              | <u>soil</u>         | 1                                                | 1                                                |                                                  |                                                  | <u> </u>                                         | <br>╁                                                | <u> </u>                                         | <del>                                     </del> | $\vdash$                                         |   |                                                  |              |                                                  |          |                        |
| 70   | SW05_1.0-1.1      | 6/05/2020              | soil                | 1                                                | <del>                                     </del> |                                                  |                                                  |                                                  |                                                      |                                                  |                                                  |                                                  |   |                                                  |              | <u> </u>                                         |          |                        |
| 71   | SW05_2.0-2.2      | 6/05/2020              | <u>soil</u>         |                                                  |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  |                                                  |                                                  |   |                                                  |              |                                                  |          |                        |
| 70   | SW05_3.4-3.6      | 6/05/2020              | soil                |                                                  |                                                  |                                                  |                                                  |                                                  | <br>                                                 |                                                  |                                                  |                                                  |   | -                                                |              |                                                  |          |                        |
| 73   | SW06_0.5-0.7      | 6/05/2020              | soil                |                                                  |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  |                                                  |                                                  |   |                                                  |              |                                                  |          |                        |
| 74   | SW06_4.1-4.2      | 6/05/2020              | soil                | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  |                                                  |                                                  |   |                                                  |              |                                                  |          |                        |
| 75   | SW06_4.3-4.4      | 6/05/2020              | <u>soil</u>         | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  |                                                  |                                                  |   |                                                  |              |                                                  |          |                        |
| 7%   | SW07_0.2-0.3 ",   | 7/05/2020              | soil                | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  |                                                  |                                                  |   |                                                  |              | <u> </u>                                         |          |                        |
| 77   | SW07_1.0-1.2      | 7/05/2020              | <u>soil</u>         | ļ                                                |                                                  |                                                  |                                                  |                                                  |                                                      |                                                  |                                                  | Ш                                                |   |                                                  |              |                                                  |          |                        |
| 43   | SW07_2,5-2,8      | 7/05/2020              | <u>soil</u>         | 1 .                                              |                                                  |                                                  |                                                  | <u> </u>                                         | <u> </u>                                             |                                                  |                                                  |                                                  |   |                                                  |              |                                                  |          |                        |
| 79   | QC06              | 7/05/2020              | <u>soil</u>         | 1_                                               | ļ                                                |                                                  |                                                  | ļ                                                | <u> </u>                                             |                                                  | <u> </u>                                         | $\sqcup$                                         |   |                                                  |              | ļ                                                |          |                        |
| ==   | QC06a             | 7/05/2020              | <u>soil</u>         | 1                                                | <u> </u>                                         |                                                  |                                                  |                                                  |                                                      | <u> </u>                                         |                                                  |                                                  |   |                                                  |              |                                                  |          | Please forward to ALS  |
| 60   | SW07_4.2-4.3      | 7/05/2020              | <u>soil</u>         |                                                  | <u> </u>                                         |                                                  | ļ                                                |                                                  | ļ                                                    |                                                  |                                                  |                                                  |   |                                                  |              | <u> </u>                                         |          |                        |
| 81   | SW08_0.5-0.6      | 7/05/2020              | soil                | 1                                                | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | $\vdash$                                         | ₩-                                                   | <del> </del>                                     |                                                  | $\vdash \vdash$                                  |   |                                                  |              |                                                  | <u> </u> | <u> </u>               |
| 82   | SW08_2.3-2.4      | 7/05/2020<br>7/05/2020 | soil                | _1                                               | <del> </del>                                     |                                                  | <u> </u>                                         | <u> </u>                                         | <br>├                                                | -                                                | <del></del>                                      | $\vdash$                                         |   |                                                  |              | <del>                                     </del> |          |                        |
| 24   | SW08_4.0-4.1 × 3  | 7/05/2020              | soil                |                                                  | <u> </u>                                         | <u> </u>                                         | <u> </u>                                         | ├                                                | <br>├                                                | -                                                | -                                                | <del>                                     </del> |   |                                                  |              | <u> </u>                                         | -        |                        |
| 85.  | SW09_0.1-0.2      | 7/05/2020              | <u>soil</u><br>soil | <del>                                     </del> | $\vdash$                                         |                                                  | <del>  -</del>                                   |                                                  | <br>                                                 | $\vdash$                                         |                                                  | $\vdash \vdash$                                  |   |                                                  |              |                                                  | _        |                        |
| MC   | SW09_1.6=1.8 - 1, | 7/05/2020              | soil                | 1                                                | <u> </u>                                         |                                                  |                                                  | <del>                                     </del> | <br>├                                                |                                                  | -                                                | $\vdash \vdash$                                  |   |                                                  | -            | -                                                | _        |                        |
| 86   | SW09_1.0-1.8 - 1, | 7/05/2020              | soil                | <del>-                                    </del> |                                                  |                                                  |                                                  | <del> </del>                                     | <br><del> </del>                                     |                                                  |                                                  | $\vdash \vdash$                                  |   | -                                                | -            |                                                  |          |                        |
| 87   | SW09_4.0-4.2      | 7/05/2020              | <u>soil</u>         |                                                  | $\vdash$                                         | <u> </u>                                         | -                                                | <del>                                     </del> | <br><del>                                     </del> |                                                  | <del> </del>                                     | +                                                |   | -                                                |              | <del>                                     </del> |          | <del> </del>           |
| 88   | SW09_5.5-5.7      | 7/05/2020              | soil                | 1                                                | $\vdash$                                         |                                                  | <u> </u>                                         | <del>                                     </del> | <br><del> </del>                                     | <del>                                     </del> | _                                                | ├                                                |   | <del>                                     </del> | <del> </del> | $\vdash$                                         |          | <del></del>            |
| 89   | SW01_0.1-0.3      | 7/05/2020              | soil                | 1                                                |                                                  |                                                  | <del> </del>                                     | <u> </u>                                         | t                                                    |                                                  |                                                  |                                                  |   |                                                  |              |                                                  |          | -                      |
| 90   | SW01_1.9-2.0      | 7/05/2020              | soil                | 1                                                |                                                  |                                                  | <del>                                     </del> |                                                  | <br>$\vdash$                                         |                                                  | <del> </del>                                     | $\Box$                                           |   |                                                  | <u> </u>     |                                                  |          | <del></del>            |

243030

|         |                  |                   |             |      |          |          |  |   |  |     |   | - ( | ٠٧٠          | _                     |
|---------|------------------|-------------------|-------------|------|----------|----------|--|---|--|-----|---|-----|--------------|-----------------------|
| PQ      | SW01_3.3-3.6     | 7/05/2020         | soil        |      |          |          |  |   |  |     |   |     |              |                       |
| 92      | QC07             | 7/05/2020         | <u>soil</u> |      |          |          |  |   |  |     |   |     |              |                       |
| _       | QC07a            | 7/05/2020         | <u>soil</u> |      |          |          |  |   |  |     |   |     |              | Please forward to ALS |
| 93      | SW02_0.1-0.3     | 7/05/2020         | soil        | 1    |          |          |  |   |  | П   |   |     |              |                       |
| 94      | SW02_0.9-1.1     | 7/05/2020         | soil        | 1    |          |          |  |   |  |     |   |     |              |                       |
| 95      | SW02_1.4-1.5     | 7/05/2020         | soil        |      |          |          |  |   |  |     |   |     |              |                       |
| 96      | SW10_0-0.2       | 7/05/2020         | <u>soil</u> |      |          |          |  |   |  |     |   |     |              |                       |
| 97      | SW10_0.8-0.9     | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  | П   |   |     |              |                       |
| - A8    | SW10_1.5-1.7_    | 7/05/2020         | soil        | 1_1_ |          |          |  |   |  |     |   |     |              |                       |
| 99      | SW10_2.7-2.8     | 7/05/2020         | <u>soil</u> |      |          |          |  |   |  | П   |   |     |              |                       |
| 100     | SW11_0-0.1       | 7/05/2020         | soil        | 1    |          |          |  |   |  |     |   |     |              |                       |
| 101     | SW11_0.4-0.5     | 7/05/2020         | <u>soil</u> |      |          |          |  |   |  |     |   |     |              | ·                     |
| 102     | SW11_1.3-1.5     | 7/05/2020         | <u>soil</u> |      |          |          |  |   |  |     |   |     |              |                       |
| 103     | SW11_2.0-2.3     | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     |              |                       |
| 104     | QC08             | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     |              | -                     |
|         | QC08a            | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     |              | Please forward to ALS |
| 105     | SW11_3.0-3.2     | 7/05/2020         | <u>soil</u> |      |          | <u> </u> |  |   |  |     |   |     |              |                       |
| 10b / V | SW12             | 7/05/2020         | <u>soil</u> | 1    |          |          |  | · |  |     |   |     |              |                       |
| 107     | SW13 /           | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     |              |                       |
| 108     | SW14 /           | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  | . ] |   |     |              |                       |
| 109     | sw15             | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     | ļ            |                       |
| 110     | SW16             | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     | -            |                       |
| 111 37  | SW17             | 7/05/2020         | <u>soil</u> | 1_1_ |          |          |  |   |  |     |   |     |              |                       |
| 112 - 5 | SW18             | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     |              |                       |
| in      | SW19             | 7/05/2020         | <u>soil</u> | 1    |          | ·        |  |   |  |     |   |     |              |                       |
| NR      | SW20             | 7/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     | _ |     |              |                       |
| 11900   | SB01_0-0.2       | 6/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     |              |                       |
| 115     |                  | - 0.6 \ 6/05/2020 | <u>soil</u> | 1    |          |          |  |   |  |     |   |     |              |                       |
| 1116    | SB01_0.9-1.1 (0) |                   | soil        |      |          |          |  |   |  |     |   |     | <br><u> </u> |                       |
| _ NUE   | SB01_1.7-1.9     | 6/05/2020         | <u>soil</u> |      | 1        |          |  |   |  |     |   | _   |              |                       |
| NB      | SB01_2.3-2.8     | 6/05/2020         | <u>soil</u> |      |          |          |  |   |  |     |   |     |              |                       |
| UK      | SB01_3.0-3.2 🤾   | 6/05/2020         | <u>soil</u> |      |          |          |  |   |  |     |   |     |              |                       |
| 117     | SB02_0.1-0.3     | 6/05/2020         | <u>soil</u> |      |          |          |  |   |  |     |   |     |              |                       |
| 117     | SB02_0.1-0.3     | 6/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     |              |                       |
| 118     | QC02             | 6/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     |              |                       |
|         | QC02a            | 6/05/2020         | soil        | 1    |          |          |  |   |  | Ш   |   |     |              | Please forward to ALS |
| 119     | SB02_0.6-0.8     | 6/05/2020         | <u>soil</u> | 1    |          |          |  |   |  | Ш   |   |     |              |                       |
| 120     | SB02_0.8-0.95    | 6/05/2020         | <u>soil</u> |      | <u> </u> |          |  |   |  |     |   |     |              |                       |
| 121     | SB03_0-0.2 ( )   |                   | soil        | 1    |          | <br>     |  |   |  |     |   |     |              |                       |
| 124     | SB03_0.4-0.6     | 6/05/2020         | <u>soil</u> | 1    |          |          |  |   |  |     |   |     | <u></u>      |                       |

|                      | CD02 0 0 4 4                   |               | CIOE IOOOO     | 2.7                                                            |     |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  | . —      | <del> </del>          |
|----------------------|--------------------------------|---------------|----------------|----------------------------------------------------------------|-----|----------|---|---|------------------------------------------|----------------------------------------------------|-------------|------|-----------|----------|--|------------|--------------------------------|--|----------|-----------------------|
| 1,5.7                | SB03_0.9-1.1                   |               | 6/05/2020      | <u>soil</u>                                                    | 1   | ├—       |   |   |                                          |                                                    |             | -    |           | $\vdash$ |  |            |                                |  |          |                       |
| 124                  | SB03_1.7-1.9                   |               | 6/05/2020      | soil                                                           |     |          |   |   |                                          |                                                    |             |      |           | $\vdash$ |  |            |                                |  | ├—       |                       |
| 125                  | SB03_2.3-2.8                   |               | 6/05/2020      | soil                                                           |     | <b> </b> |   |   |                                          |                                                    | <u> </u>    |      |           |          |  |            |                                |  | <u> </u> |                       |
| 126                  | SB03_3-3.2                     |               | 6/05/2020      | <u>soil</u>                                                    |     |          |   |   |                                          |                                                    | -           |      |           | $\sqcup$ |  |            |                                |  | <u> </u> |                       |
| 127                  | SB04_0-0.2                     |               | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             |      |           | $\sqcup$ |  |            |                                |  |          |                       |
| 128                  | QC05                           |               | 6/05/2020      | soil                                                           | 1   |          |   |   |                                          |                                                    | L           |      | _         |          |  |            |                                |  |          |                       |
|                      | QC05a                          |               | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             |      |           | Ш        |  |            |                                |  |          | Please forward to ALS |
| 150                  | SB05_0.1-0.2                   |               | 6/05/2020      | <u>soil</u>                                                    | 1   | L        |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  | -        |                       |
| 130                  | SB05_0.3-0.4                   |               | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 131                  | SB05_0.8-1.0                   |               | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 132                  | QC01                           |               | 6/05/2020      | <u>soil</u>                                                    |     |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
|                      | QC01a .                        |               | 6/05/2020      | <u>soil</u>                                                    |     |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          | Please forward to ALS |
| 1133                 | SB05_1.7-1.9                   |               | 6/05/2020      | <u>soil</u>                                                    |     |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 13.1                 | SB05_3.1-3.3                   |               | 6/05/2020      | <u>soil</u>                                                    |     |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  | ,        |                       |
| 135                  | SB06_Concrete                  |               | 6/05/2020      | concrete                                                       | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 136                  | SB08_Concrete                  | 1             | 6/05/2020      | concrete                                                       | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 127                  | SB05-Concrete 🗡 🤊              | 1             | 6/05/2020      | <u>concrete</u>                                                | 1   |          |   |   |                                          |                                                    |             |      | -         |          |  |            | ÷                              |  |          |                       |
| - NB                 | SB02-Concrete                  |               | 6/05/2020      | <u>concrete</u>                                                | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 13.8                 | \$B06_0.23-0.4                 |               | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 12.9                 | SB06_0.4-0.6                   | ŗ             | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 114:0                | SB06_1.0-1.2                   |               | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 1417                 | SB06_1.9-2.1                   | ,             | 6/05/2020      | <u>soil</u>                                                    |     |          |   |   |                                          |                                                    |             |      |           |          |  | •          |                                |  |          |                       |
| 142                  | SB07_0-0.2                     |               | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             | บ    |           | П        |  |            |                                |  |          |                       |
| 142 139              | QC03 '}                        | ,             | 6/05/2020      | <u>soil</u>                                                    | _ 1 |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| , similiano          | QC03a                          |               | 6/05/2020      | soil                                                           | 1   |          |   |   |                                          |                                                    |             |      |           | П        |  |            |                                |  |          | Please forward to ALS |
| 149 :00              | SB07_0.4-0.6                   | ,             | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             |      |           | П        |  |            |                                |  |          |                       |
| 145 /                | SB08_02-0.4 (()                | 1-0,3         | 6/05/2020      | <u>soil</u>                                                    | 1   |          |   |   |                                          |                                                    |             |      |           | П        |  |            | •                              |  |          | ,                     |
| 146 1:-              | SB08_0.4-0.6 TO,               | 3-0,5         | 6/05/2020      | soil                                                           | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          | ·                     |
| 147 148              | Creek_5                        |               | 8/05/2020      | water, sediment                                                | ſ   |          |   |   |                                          |                                                    |             |      |           |          |  | ,          |                                |  |          |                       |
| 149 1150             | Creek_6                        |               | 8/05/2020      | water, sediment                                                | 1   |          |   |   |                                          |                                                    | `           |      |           |          |  |            |                                |  |          | -                     |
| 1151                 | QC13                           |               | 8/05/2020      | <u>wa</u> ter                                                  | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          |                       |
| 1521                 | QC13a                          |               | 8/05/2020      | water                                                          | 1   |          |   |   |                                          |                                                    |             |      |           | П        |  |            |                                |  | ĺ        |                       |
| NR                   | QC14                           |               | 8/05/2020      | sediment                                                       | 1   | T        |   |   |                                          |                                                    |             | ·    |           | П        |  |            |                                |  |          |                       |
| NR                   | QC14a                          |               | 8/05/2020      | sediment                                                       | 1   |          |   |   |                                          |                                                    |             |      |           |          |  |            |                                |  |          | -                     |
| NYC                  | Creek_4                        |               | 8/05/2020      | water, sediment                                                | 1   |          |   | T |                                          |                                                    |             |      |           | -        |  |            |                                |  |          |                       |
|                      | Please tick the box if observe | ed settled se | ediment presen | nt in water samples is to be included in the extraction and/or |     |          |   |   |                                          |                                                    | or anal     | vsis |           |          |  |            |                                |  | _        |                       |
| Relinquished by (C G |                                |               | 0              | Received by (Company):                                         |     |          |   |   |                                          |                                                    |             |      |           |          |  | b Use Only |                                |  |          |                       |
| Print Name:          | Robert Webb                    |               | -              | Print Name:                                                    |     |          |   |   |                                          |                                                    | Job number: |      |           |          |  |            | Cooling: Ice / Ice pack / None |  |          |                       |
|                      | RW                             |               |                |                                                                |     |          |   |   |                                          | Temperature: Security seal: Intact / Broken / None |             |      |           |          |  |            |                                |  |          |                       |
|                      | 1/05/2020                      |               |                |                                                                |     |          |   |   | TAT Req - SAME day / 1 / 2 / 3 / 4 / STD |                                                    |             |      |           |          |  |            |                                |  |          |                       |
|                      | 5-03                           |               |                | Med and                                                        |     | 4.6      | ۸ |   |                                          |                                                    | ,           | -7 0 | <u>ua</u> | , ,      |  |            | , 515                          |  |          |                       |

156, SW5-0.3

161. When unlabelled.

157. SW 6 1.2. 158. SSO Form 302\_4006. CICLO Water 159. CICLO Water 160. CICLO Water.

Issue date: 7 October 2019



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 243030**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Robert Webb                      |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                                            |
|--------------------------------------|--------------------------------------------|
| Your Reference                       | <u>12516828</u>                            |
| Number of Samples                    | 121 soil, 31 water, 7 sediment, 4 concrete |
| Date samples received                | 13/05/2020                                 |
| Date completed instructions received | 13/05/2020                                 |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                     |                                                                    |  |
|------------------------------------|--------------------------------------------------------------------|--|
| Date results requested by          | 25/05/2020                                                         |  |
| Date of Issue                      | 25/05/2020                                                         |  |
| NATA Accreditation Number 2901.    | This document shall not be reproduced except in full.              |  |
| Accredited for compliance with ISO | /IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |

**Results Approved By** 

Fiona Tan, LC Supervisor

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-1   | 243030-2   | 243030-3   | 243030-4   | 243030-5   |
| Your Reference                                     | UNITS | SS01       | SS02       | SS03       | SS04       | SS05       |
| Date Sampled                                       |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample                                     |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.2        | <0.1       | <0.1       | <0.1       | <0.1       |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 0.2        | <0.1       | 0.1        | <0.1       | 0.4        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.2       | <0.1       | <0.1       | <0.1       | <0.1       |
| 6:2 FTS                                            | μg/kg | <0.2       | <0.1       | <0.1       | <0.1       | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.4       | <0.2       | <0.2       | <0.2       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 99         | 94         | 100        | 100        | 105        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 91         | 88         | 90         | 91         | 90         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 83         | 89         | 91         | 140        | 105        |
| Extracted ISTD 13 C4 PFOS                          | %     | 81         | 101        | 97         | 132        | 96         |
| Extracted ISTD 13 C4 PFOA                          | %     | 82         | 90         | 94         | 132        | 94         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 87         | 87         | 93         | 148        | 100        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 100        | 100        | 105        | 100        | 87         |
| Total Positive PFHxS & PFOS                        | μg/kg | 0.4        | <0.1       | 0.1        | <0.1       | 0.4        |
| Total Positive PFOS & PFOA                         | μg/kg | 0.2        | <0.1       | 0.1        | <0.1       | 0.4        |
| Total Positive PFAS                                | μg/kg | 0.4        | <0.1       | 0.1        | <0.1       | 0.4        |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-6   | 243030-7   | 243030-8   | 243030-9   | 243030-10  |
| Your Reference                                     | UNITS | SS06       | SS07       | SS08       | SS09       | SS10       |
| Date Sampled                                       |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample                                     |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.1       | <0.1       | <0.1       | <0.1       | 0.3        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | <0.1       | 0.2        | <0.1       | 2.3        | 2.2        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.1       | <0.1       | <0.1       | 0.2        | 0.9        |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 86         | 102        | 87         | 88         | 99         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 94         | 80         | 87         | 90         | 90         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 90         | 86         | 76         | 74         | 93         |
| Extracted ISTD 13 C4 PFOS                          | %     | 98         | 87         | 79         | 70         | 85         |
| Extracted ISTD 13 C4 PFOA                          | %     | 82         | 88         | 74         | 68         | 85         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 96         | 100        | 93         | 74         | 93         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 87         | 80         | 67         | 67         | 67         |
| Total Positive PFHxS & PFOS                        | μg/kg | <0.1       | 0.2        | <0.1       | 2.3        | 2.4        |
| Total Positive PFOS & PFOA                         | μg/kg | <0.1       | 0.2        | <0.1       | 2.4        | 3.1        |
| Total Positive PFAS                                | μg/kg | <0.1       | 0.2        | <0.1       | 2.4        | 3.4        |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-11  | 243030-12  | 243030-13  | 243030-14  | 243030-15  |
| Your Reference                                     | UNITS | SS11       | SS12       | SS13       | SS14       | SS15       |
| Date Sampled                                       |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample                                     |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.1       | <0.1       | <0.1       | <0.1       | 0.7        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | <0.1       | 3.6        | 0.3        | 0.2        | 65         |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.1       | 0.8        | <0.1       | 0.1        | 5.6        |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 96         | 84         | 88         | 93         | 109        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 81         | 82         | 82         | 89         | 87         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 93         | 79         | 69         | 71         | 67         |
| Extracted ISTD 13 C4 PFOS                          | %     | 85         | 79         | 81         | 70         | 66         |
| Extracted ISTD 13 C4 PFOA                          | %     | 85         | 76         | 71         | 65         | 65         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 96         | 85         | 74         | 74         | 70         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 67         | 67         | 73         | 53         | 60         |
| Total Positive PFHxS & PFOS                        | μg/kg | <0.1       | 3.6        | 0.3        | 0.2        | 66         |
| Total Positive PFOS & PFOA                         | μg/kg | <0.1       | 4.4        | 0.3        | 0.3        | 71         |
| Total Positive PFAS                                | μg/kg | <0.1       | 4.4        | 0.3        | 0.3        | 71         |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-16  | 243030-17  | 243030-18  | 243030-19  | 243030-20  |
| Your Reference                                     | UNITS | SS16       | SS17       | SS18       | SS19       | SS20       |
| Date Sampled                                       |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample                                     |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.2        | 0.3        | <0.2       | <0.2       | <0.2       |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 18         | 36         | 0.3        | <0.2       | 0.4        |
| Perfluorooctanoic acid PFOA                        | μg/kg | 1.3        | 2.2        | <0.2       | <0.2       | <0.2       |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.1       | <0.2       | <0.2       | <0.2       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.2       | <0.4       | <0.4       | <0.4       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 96         | 93         | 97         | 97         | 101        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 87         | 83         | 89         | 90         | 90         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 64         | 57         | 57         | 52         | 71         |
| Extracted ISTD 13 C4 PFOS                          | %     | 64         | 57         | 62         | 55         | 74         |
| Extracted ISTD 13 C4 PFOA                          | %     | 65         | 56         | 59         | 50         | 71         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 67         | 63         | 70         | 56         | 78         |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | 67         | 53         | 53         | 47         | 60         |
| Total Positive PFHxS & PFOS                        | µg/kg | 18         | 36         | 0.3        | <0.2       | 0.4        |
| Total Positive PFOS & PFOA                         | μg/kg | 19         | 38         | 0.3        | <0.2       | 0.4        |
| Total Positive PFAS                                | μg/kg | 19         | 39         | 0.3        | <0.2       | 0.4        |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-21  | 243030-22  | 243030-23  | 243030-24  | 243030-25  |
| Your Reference                                     | UNITS | SS21       | SS22       | SS23       | SS24       | SS25       |
| Date Sampled                                       |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample                                     |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.1       |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 1.9        | 0.5        | 0.3        | 0.3        | 0.2        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.1       |
| 6:2 FTS                                            | μg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.4       | <0.4       | <0.4       | <0.4       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 91         | 87         | 91         | 92         | 97         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 90         | 93         | 83         | 87         | 87         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 95         | 90         | 86         | 102        | 102        |
| Extracted ISTD 13 C4 PFOS                          | %     | 94         | 85         | 89         | 104        | 96         |
| Extracted ISTD 13 C4 PFOA                          | %     | 94         | 82         | 97         | 100        | 94         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 93         | 85         | 119        | 111        | 107        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 93         | 73         | 80         | 73         | 87         |
| Total Positive PFHxS & PFOS                        | μg/kg | 1.9        | 0.5        | 0.3        | 0.3        | 0.2        |
| Total Positive PFOS & PFOA                         | μg/kg | 1.9        | 0.5        | 0.3        | 0.3        | 0.2        |
| Total Positive PFAS                                | μg/kg | 1.9        | 0.5        | 0.3        | 0.3        | 0.2        |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-26  | 243030-27  | 243030-28  | 243030-29  | 243030-30  |
| Your Reference                                     | UNITS | SS26       | SS27       | SS28       | SS29       | SS30       |
| Date Sampled                                       |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample                                     |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.1       | 0.4        | <0.2       | <0.2       | <0.2       |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | <0.1       | 18         | <0.2       | 0.8        | 0.2        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.1       | 0.1        | <0.2       | <0.2       | <0.2       |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.1       | <0.2       | <0.2       | <0.2       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.2       | <0.4       | <0.4       | <0.4       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 103        | 92         | 99         | 101        | 94         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 89         | 88         | 84         | 87         | 85         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 105        | 136        | 102        | 112        | 105        |
| Extracted ISTD 13 C4 PFOS                          | %     | 106        | 134        | 98         | 104        | 106        |
| Extracted ISTD 13 C4 PFOA                          | %     | 103        | 129        | 97         | 106        | 106        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 115        | 141        | 111        | 104        | 100        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 87         | 113        | 87         | 87         | 107        |
| Total Positive PFHxS & PFOS                        | μg/kg | <0.1       | 18         | <0.2       | 0.8        | 0.2        |
| Total Positive PFOS & PFOA                         | μg/kg | <0.1       | 18         | <0.2       | 0.8        | 0.2        |
| Total Positive PFAS                                | μg/kg | <0.1       | 19         | <0.2       | 0.8        | 0.2        |

| PFAS in Soils Short                                |       |            |            |            |              |              |
|----------------------------------------------------|-------|------------|------------|------------|--------------|--------------|
| Our Reference                                      |       | 243030-44  | 243030-47  | 243030-59  | 243030-61    | 243030-64    |
| Your Reference                                     | UNITS | QC11       | DC07       | SW03_0-0.2 | SW03_1.5-1.7 | SW04_1.0-1.3 |
| Date Sampled                                       |       | 08/05/2020 | 08/05/2020 | 06/05/2020 | 06/05/2020   | 06/05/2020   |
| Type of sample                                     |       | soil       | sediment   | soil       | soil         | soil         |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020   | 20/05/2020   |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020   | 20/05/2020   |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.2       | 0.7        | 0.4        | 0.2          | 0.6          |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 3.5        | 27         | 0.6        | 0.4          | 1.1          |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.2       | 0.8        | <0.2       | <0.2         | <0.2         |
| 6:2 FTS                                            | μg/kg | <0.2       | <0.2       | <0.2       | <0.2         | <0.2         |
| 8:2 FTS                                            | μg/kg | <0.4       | <0.4       | <0.4       | <0.4         | <0.4         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 95         | 98         | 107        | 96           | 95           |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 90         | 85         | 85         | 86           | 82           |
| Extracted ISTD 18 O2 PFHxS                         | %     | 93         | 93         | 95         | 81           | 98           |
| Extracted ISTD 13 C4 PFOS                          | %     | 94         | 87         | 81         | 81           | 96           |
| Extracted ISTD 13 C4 PFOA                          | %     | 85         | 79         | 88         | 76           | 88           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 89         | 59         | 93         | 74           | 89           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 67         | 100        | 87         | 73           | 73           |
| Total Positive PFHxS & PFOS                        | μg/kg | 3.5        | 28         | 1.1        | 0.6          | 1.7          |
| Total Positive PFOS & PFOA                         | μg/kg | 3.5        | 28         | 0.6        | 0.4          | 1.1          |
| Total Positive PFAS                                | μg/kg | 3.5        | 29         | 1.1        | 0.6          | 1.7          |

| PFAS in Soils Short                                |       |            |              |              |            |              |
|----------------------------------------------------|-------|------------|--------------|--------------|------------|--------------|
| Our Reference                                      |       | 243030-65  | 243030-66    | 243030-68    | 243030-69  | 243030-70    |
| Your Reference                                     | UNITS | QC04       | SW04_2.0-2.1 | SW04_4.5-4.6 | SW05_0-0.2 | SW05_1.0-1.1 |
| Date Sampled                                       |       | 06/05/2020 | 06/05/2020   | 06/05/2020   | 06/05/2020 | 06/05/2020   |
| Type of sample                                     |       | soil       | soil         | soil         | soil       | soil         |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020   | 20/05/2020   | 20/05/2020 | 20/05/2020   |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020   | 20/05/2020   | 20/05/2020 | 20/05/2020   |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.4        | 0.3          | <0.2         | 0.4        | 0.5          |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 0.6        | 0.8          | 0.4          | 0.6        | 0.5          |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.2       | <0.2         | <0.2         | <0.2       | <0.2         |
| 6:2 FTS                                            | μg/kg | <0.2       | <0.2         | <0.2         | <0.2       | <0.2         |
| 8:2 FTS                                            | μg/kg | <0.4       | <0.4         | <0.4         | <0.4       | <0.4         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 104        | 94           | 102          | 97         | 99           |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 86         | 91           | 91           | 95         | 88           |
| Extracted ISTD 18 O2 PFHxS                         | %     | 93         | 90           | 88           | 86         | 66           |
| Extracted ISTD 13 C4 PFOS                          | %     | 85         | 83           | 79           | 83         | 73           |
| Extracted ISTD 13 C4 PFOA                          | %     | 91         | 79           | 85           | 76         | 70           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 89         | 81           | 93           | 70         | 74           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 73         | 60           | 67           | 60         | 86           |
| Total Positive PFHxS & PFOS                        | μg/kg | 1.0        | 1.2          | 0.4          | 0.9        | 1.1          |
| Total Positive PFOS & PFOA                         | μg/kg | 0.6        | 0.8          | 0.4          | 0.6        | 0.5          |
| Total Positive PFAS                                | μg/kg | 1.0        | 1.2          | 0.4          | 0.9        | 1.1          |

| PFAS in Soils Short                                |       |              |              |              |              |            |
|----------------------------------------------------|-------|--------------|--------------|--------------|--------------|------------|
| Our Reference                                      |       | 243030-74    | 243030-75    | 243030-76    | 243030-78    | 243030-79  |
| Your Reference                                     | UNITS | SW06_4.1-4.2 | SW06_4.3-4.4 | SW07_0.2-0.3 | SW07_2.5-2.8 | QC06       |
| Date Sampled                                       |       | 06/05/2020   | 06/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020 |
| Type of sample                                     |       | soil         | soil         | soil         | soil         | soil       |
| Date prepared                                      | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.3          | <0.1         | <0.2         | 0.4          | 0.4        |
| Perfluorooctanesulfonic acid PFOS                  | µg/kg | 0.8          | <0.1         | 0.3          | 1.1          | 1.1        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.2         | <0.1         | <0.2         | <0.2         | <0.2       |
| 6:2 FTS                                            | μg/kg | <0.2         | <0.1         | <0.2         | <0.2         | <0.2       |
| 8:2 FTS                                            | μg/kg | <0.4         | <0.2         | <0.4         | <0.4         | <0.4       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 96           | 102          | 94           | 99           | 104        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 87           | 79           | 85           | 92           | 86         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 65           | 90           | 69           | 66           | 71         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 75           | 98           | 79           | 73           | 76         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 66           | 99           | 71           | 65           | 70         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 59           | 95           | 78           | 61           | 66         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 72           | 124          | 90           | 63           | 72         |
| Total Positive PFHxS & PFOS                        | µg/kg | 1.0          | <0.1         | 0.3          | 1.5          | 1.6        |
| Total Positive PFOS & PFOA                         | μg/kg | 0.8          | <0.1         | 0.3          | 1.1          | 1.1        |
| Total Positive PFAS                                | μg/kg | 1.0          | <0.1         | 0.3          | 1.5          | 1.6        |

| PFAS in Soils Short                                |       |              |              |              |              |              |
|----------------------------------------------------|-------|--------------|--------------|--------------|--------------|--------------|
| Our Reference                                      |       | 243030-81    | 243030-82    | 243030-85    | 243030-88    | 243030-89    |
| Your Reference                                     | UNITS | SW08_0.5-0.6 | SW08_2.3-2.4 | SW09_0.1-0.2 | SW09_5.5-5.7 | SW01_0.1-0.3 |
| Date Sampled                                       |       | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   |
| Type of sample                                     |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared                                      | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Date analysed                                      | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.4          | <0.2         | 0.9          | <0.1         | 0.3          |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 1.0          | <0.2         | 1.6          | 0.3          | 0.6          |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.2         | <0.2         | <0.2         | <0.1         | <0.2         |
| 6:2 FTS                                            | μg/kg | <0.2         | <0.2         | <0.2         | <0.1         | <0.2         |
| 8:2 FTS                                            | μg/kg | <0.4         | <0.4         | <0.4         | <0.2         | <0.4         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 96           | 100          | 98           | 97           | 92           |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 94           | 92           | 89           | 90           | 100          |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 71           | 64           | 72           | 82           | 74           |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 79           | 69           | 80           | 87           | 86           |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 69           | 64           | 73           | 86           | 72           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 80           | 61           | 81           | 109          | 85           |
| Extracted ISTD 13 C2 8:2FTS                        | %     | 85           | 67           | 90           | 112          | 91           |
| Total Positive PFHxS & PFOS                        | μg/kg | 1.4          | <0.2         | 2.5          | 0.3          | 0.9          |
| Total Positive PFOS & PFOA                         | μg/kg | 1.0          | <0.2         | 1.6          | 0.3          | 0.6          |
| Total Positive PFAS                                | μg/kg | 1.4          | <0.2         | 2.5          | 0.3          | 0.9          |

| PFAS in Soils Short                                |       |              |              |              |              |              |
|----------------------------------------------------|-------|--------------|--------------|--------------|--------------|--------------|
| Our Reference                                      |       | 243030-90    | 243030-93    | 243030-94    | 243030-97    | 243030-98    |
| Your Reference                                     | UNITS | SW01_1.9-2.0 | SW02_0.1-0.3 | SW02_0.9-1.1 | SW10_0.8-0.9 | SW10_1.5-1.7 |
| Date Sampled                                       |       | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   |
| Type of sample                                     |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared                                      | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Date analysed                                      | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.3          | 0.3          | 0.5          | 3.9          | 0.7          |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 0.3          | 0.5          | 0.7          | 1.2          | <0.2         |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.1         | <0.2         | <0.2         | 0.4          | <0.2         |
| 6:2 FTS                                            | μg/kg | <0.1         | <0.2         | <0.2         | <0.1         | <0.2         |
| 8:2 FTS                                            | μg/kg | <0.2         | <0.4         | <0.4         | <0.2         | <0.4         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 97           | 94           | 97           | 98           | 98           |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 92           | 91           | 85           | 87           | 86           |
| Extracted ISTD 18 O2 PFHxS                         | %     | 77           | 74           | 68           | 78           | 67           |
| Extracted ISTD 13 C4 PFOS                          | %     | 88           | 85           | 79           | 90           | 77           |
| Extracted ISTD 13 C4 PFOA                          | %     | 83           | 76           | 74           | 87           | 77           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 99           | 75           | 69           | 94           | 80           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 100          | 97           | 83           | 112          | 95           |
| Total Positive PFHxS & PFOS                        | μg/kg | 0.6          | 0.9          | 1.2          | 5.1          | 0.7          |
| Total Positive PFOS & PFOA                         | μg/kg | 0.3          | 0.5          | 0.7          | 1.7          | <0.2         |
| Total Positive PFAS                                | μg/kg | 0.6          | 0.9          | 1.2          | 5.5          | 0.7          |

| PFAS in Soils Short                                |       |            |              |            |            |            |
|----------------------------------------------------|-------|------------|--------------|------------|------------|------------|
| Our Reference                                      |       | 243030-100 | 243030-103   | 243030-104 | 243030-106 | 243030-107 |
| Your Reference                                     | UNITS | SW11_0-0.1 | SW11_2.0-2.3 | QC08       | SW12       | SW13       |
| Date Sampled                                       |       | 07/05/2020 | 07/05/2020   | 07/05/2020 | 07/05/2020 | 07/05/2020 |
| Type of sample                                     |       | soil       | soil         | soil       | soil       | soil       |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020   | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020   | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.6        | 0.3          | 0.6        | <0.2       | 1.6        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 1.2        | <0.2         | 0.4        | 1.2        | 5.0        |
| Perfluorooctanoic acid PFOA                        | μg/kg | 0.1        | <0.2         | <0.2       | <0.2       | <0.2       |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.2         | <0.2       | <0.2       | <0.2       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.4         | <0.4       | <0.4       | <0.4       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 95         | 91           | 97         | 90         | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 90         | 85           | 94         | 86         | 85         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 82         | 68           | 62         | 73         | 83         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 94         | 82           | 67         | 86         | 89         |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 87         | 77           | 64         | 77         | 84         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 104        | 84           | 68         | 86         | 75         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 115        | 95           | 72         | 92         | 96         |
| Total Positive PFHxS & PFOS                        | μg/kg | 1.8        | 0.3          | 1          | 1.2        | 6.6        |
| Total Positive PFOS & PFOA                         | μg/kg | 1.3        | <0.2         | 0.4        | 1.2        | 5.0        |
| Total Positive PFAS                                | μg/kg | 1.9        | 0.3          | 1          | 1.2        | 6.6        |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-108 | 243030-109 | 243030-110 | 243030-111 | 243030-112 |
| Your Reference                                     | UNITS | SW14       | SW15       | SW16       | SW17       | SW18       |
| Date Sampled                                       |       | 07/05/2020 | 07/05/2020 | 07/05/2020 | 07/05/2020 | 07/05/2020 |
| Type of sample                                     |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.3        | 1.8        | 0.5        | 1.0        | 0.5        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 2.1        | 29         | 2.6        | 1.3        | 0.8        |
| Perfluorooctanoic acid PFOA                        | μg/kg | 0.2        | 0.3        | <0.2       | <0.2       | <0.2       |
| 6:2 FTS                                            | μg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| 8:2 FTS                                            | μg/kg | <0.4       | 0.4        | <0.4       | <0.4       | <0.4       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 89         | 94         | 93         | 97         | 96         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 82         | 83         | 86         | 88         | 86         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 82         | 74         | 80         | 82         | 87         |
| Extracted ISTD 13 C4 PFOS                          | %     | 93         | 83         | 91         | 91         | 94         |
| Extracted ISTD 13 C4 PFOA                          | %     | 86         | 80         | 83         | 86         | 86         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 81         | 78         | 73         | 78         | 83         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 73         | 81         | 79         | 84         | 89         |
| Total Positive PFHxS & PFOS                        | μg/kg | 2.4        | 31         | 3.1        | 2.4        | 1.3        |
| Total Positive PFOS & PFOA                         | μg/kg | 2.3        | 29         | 2.6        | 1.3        | 0.8        |
| Total Positive PFAS                                | μg/kg | 2.6        | 31         | 3.1        | 2.4        | 1.3        |

| PFAS in Soils Short                                |       |            |            |              |              |            |
|----------------------------------------------------|-------|------------|------------|--------------|--------------|------------|
| Our Reference                                      |       | 243030-113 | 243030-114 | 243030-115   | 243030-117   | 243030-118 |
| Your Reference                                     | UNITS | SW19       | SB01_0-0.2 | SB01_0.2-0.4 | SB02_0.1-0.3 | QC02       |
| Date Sampled                                       |       | 07/05/2020 | 06/05/2020 | 06/05/2020   | 06/05/2020   | 06/05/2020 |
| Type of sample                                     |       | soil       | soil       | soil         | soil         | soil       |
| Date prepared                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020   | 20/05/2020   | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020 | 20/05/2020 | 20/05/2020   | 20/05/2020   | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.2       | 210        | 210          | 0.4          | 0.3        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 0.5        | 1,400      | 1,300        | 1.9          | 1.1        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.2       | 27         | 30           | <0.1         | <0.1       |
| 6:2 FTS                                            | μg/kg | <0.2       | 0.3        | 0.6          | <0.1         | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.4       | 0.6        | 1            | <0.2         | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 97         | 80         | 107          | 95           | 91         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 85         | 89         | 93           | 90           | 90         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 84         | 78         | 81           | 108          | 100        |
| Extracted ISTD 13 C4 PFOS                          | %     | 91         | 78         | 78           | 109          | 106        |
| Extracted ISTD 13 C4 PFOA                          | %     | 84         | 90         | 96           | 111          | 101        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 70         | #          | #            | 114          | 95         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 70         | #          | #            | 138          | 110        |
| Total Positive PFHxS & PFOS                        | μg/kg | 0.5        | 1,600      | 1,500        | 2.3          | 1.4        |
| Total Positive PFOS & PFOA                         | μg/kg | 0.5        | 1,400      | 1,300        | 1.9          | 1.1        |
| Total Positive PFAS                                | μg/kg | 0.5        | 1,600      | 1,500        | 2.3          | 1.4        |

| PFAS in Soils Short                                |       |              |            |              |              |            |
|----------------------------------------------------|-------|--------------|------------|--------------|--------------|------------|
| Our Reference                                      |       | 243030-119   | 243030-121 | 243030-122   | 243030-123   | 243030-127 |
| Your Reference                                     | UNITS | SB02_0.6-0.8 | SB03_0-0.2 | SB03_0.4-0.6 | SB03_0.9-1.1 | SB04_0-0.2 |
| Date Sampled                                       |       | 06/05/2020   | 06/05/2020 | 06/05/2020   | 06/05/2020   | 06/05/2020 |
| Type of sample                                     |       | soil         | soil       | soil         | soil         | soil       |
| Date prepared                                      | -     | 20/05/2020   | 21/05/2020 | 20/05/2020   | 20/05/2020   | 20/05/2020 |
| Date analysed                                      | -     | 20/05/2020   | 21/05/2020 | 20/05/2020   | 20/05/2020   | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.6          | 130        | 2.3          | <0.1         | 4.3        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 3.0          | 130        | 3.6          | 0.1          | 19         |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.2         | 14         | 0.3          | <0.1         | 2.0        |
| 6:2 FTS                                            | μg/kg | <0.2         | 2.1        | <0.1         | <0.1         | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.4         | 2.6        | <0.2         | <0.2         | 2.9        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 95           | 96         | 94           | 94           | 99         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 90           | 93         | 89           | 84           | 85         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 92           | 90         | 102          | 98           | 95         |
| Extracted ISTD 13 C4 PFOS                          | %     | 95           | 113        | 104          | 110          | 98         |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 86           | 95         | 117          | 105          | 98         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 74           | #          | 150          | 109          | #          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 85           | #          | #            | 122          | 148        |
| Total Positive PFHxS & PFOS                        | μg/kg | 3.6          | 260        | 5.9          | 0.1          | 24         |
| Total Positive PFOS & PFOA                         | μg/kg | 3.0          | 140        | 3.9          | 0.1          | 21         |
| Total Positive PFAS                                | μg/kg | 3.6          | 280        | 6.2          | 0.1          | 29         |

| PFAS in Soils Short                              |       |            |              |              |              |               |
|--------------------------------------------------|-------|------------|--------------|--------------|--------------|---------------|
| Our Reference                                    |       | 243030-128 | 243030-129   | 243030-130   | 243030-131   | 243030-135    |
| Your Reference                                   | UNITS | QC05       | SB05_0.1-0.2 | SB05_0.3-0.4 | SB05_0.8-1.0 | SB06_Concrete |
| Date Sampled                                     |       | 06/05/2020 | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020    |
| Type of sample                                   |       | soil       | soil         | soil         | soil         | concrete      |
| Date prepared                                    | -     | 20/05/2020 | 20/05/2020   | 21/05/2020   | 20/05/2020   | 20/05/2020    |
| Date analysed                                    | -     | 20/05/2020 | 20/05/2020   | 21/05/2020   | 20/05/2020   | 20/05/2020    |
| Perfluorohexanesulfonic acid - PFHxS             | μg/kg | 2.6        | 1.7          | 2.7          | 15           | <0.1          |
| Perfluorooctanesulfonic acid PFOS                | μg/kg | 13         | 27           | 250          | 0.5          | <0.1          |
| Perfluorooctanoic acid PFOA                      | μg/kg | 1.2        | 0.3          | 1.4          | <0.1         | <0.1          |
| 6:2 FTS                                          | μg/kg | <0.1       | 0.2          | 0.6          | <0.1         | <0.1          |
| 8:2 FTS                                          | μg/kg | 1          | 5.9          | 1            | <0.2         | <0.2          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS      | %     | 93         | 93           | 82           | 93           | 93            |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA      | %     | 83         | 83           | 86           | 87           | 89            |
| Extracted ISTD 18 O <sub>2</sub> PFHxS           | %     | 103        | 90           | 100          | 100          | 69            |
| Extracted ISTD 13 C4 PFOS                        | %     | 106        | 100          | 110          | 103          | 81            |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA | %     | 118        | 106          | 88           | 116          | 63            |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS          | %     | #          | 104          | #            | 143          | 39            |
| Extracted ISTD 13 C2 8:2FTS                      | %     | #          | 138          | #            | 148          | 50            |
| Total Positive PFHxS & PFOS                      | μg/kg | 15         | 29           | 250          | 15           | <0.1          |
| Total Positive PFOS & PFOA                       | μg/kg | 14         | 27           | 250          | 0.5          | <0.1          |
| Total Positive PFAS                              | μg/kg | 18         | 35           | 260          | 15           | <0.1          |

| PFAS in Soils Short                                |       |               |               |               |              |              |
|----------------------------------------------------|-------|---------------|---------------|---------------|--------------|--------------|
| Our Reference                                      |       | 243030-136    | 243030-137    | 243030-138    | 243030-139   | 243030-140   |
| Your Reference                                     | UNITS | SB08_Concrete | SB05_Concrete | SB06_0.23-0.4 | SB06_0.4-0.6 | SB06_1.0-1.2 |
| Date Sampled                                       |       | 06/05/2020    | 06/05/2020    | 06/05/2020    | 06/05/2020   | 06/05/2020   |
| Type of sample                                     |       | concrete      | concrete      | soil          | soil         | soil         |
| Date prepared                                      | -     | 20/05/2020    | 21/05/2020    | 21/05/2020    | 21/05/2020   | 21/05/2020   |
| Date analysed                                      | -     | 20/05/2020    | 21/05/2020    | 21/05/2020    | 21/05/2020   | 21/05/2020   |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.1          | 200           | <0.1          | 0.3          | 0.5          |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | <0.1          | 1,200         | 0.9           | 25           | 26           |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.1          | 16            | <0.1          | <0.1         | 0.2          |
| 6:2 FTS                                            | μg/kg | <0.1          | 8.9           | <0.1          | 0.1          | <0.1         |
| 8:2 FTS                                            | μg/kg | <0.2          | 7.9           | <0.2          | <0.2         | <0.2         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 90            | 128           | 93            | 94           | 92           |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 90            | 90            | 83            | 87           | 80           |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 84            | 78            | 83            | 80           | 81           |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 92            | 92            | 106           | 103          | 104          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 78            | 81            | 87            | 85           | 85           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 66            | 106           | 80            | 72           | 76           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 68            | 195           | 98            | 97           | 97           |
| Total Positive PFHxS & PFOS                        | μg/kg | <0.1          | 1,400         | 0.9           | 26           | 26           |
| Total Positive PFOS & PFOA                         | μg/kg | <0.1          | 1,200         | 0.9           | 25           | 26           |
| Total Positive PFAS                                | μg/kg | <0.1          | 1,400         | 0.9           | 26           | 27           |

| PFAS in Soils Short                                |       |            |            |              |              |              |
|----------------------------------------------------|-------|------------|------------|--------------|--------------|--------------|
| Our Reference                                      |       | 243030-142 | 243030-143 | 243030-144   | 243030-145   | 243030-146   |
| Your Reference                                     | UNITS | SB07_0-0.2 | QC03       | SB07_0.4-0.6 | SB08_0.2-0.4 | SB08_0.4-0.6 |
| Date Sampled                                       |       | 06/05/2020 | 06/05/2020 | 06/05/2020   | 06/05/2020   | 06/05/2020   |
| Type of sample                                     |       | soil       | soil       | soil         | soil         | soil         |
| Date prepared                                      | -     | 21/05/2020 | 21/05/2020 | 21/05/2020   | 21/05/2020   | 21/05/2020   |
| Date analysed                                      | -     | 21/05/2020 | 21/05/2020 | 21/05/2020   | 21/05/2020   | 21/05/2020   |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 15         | 18         | 19           | 6.5          | 4.8          |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 140        | 170        | 740          | 33           | 0.8          |
| Perfluorooctanoic acid PFOA                        | μg/kg | 2.6        | 3.3        | 2.9          | 0.9          | 0.2          |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.1       | 0.2          | <0.1         | 0.1          |
| 8:2 FTS                                            | μg/kg | 0.4        | 0.4        | 0.5          | <0.2         | <0.2         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 104        | 98         | 125          | 102          | 96           |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 82         | 82         | 80           | 82           | 81           |
| Extracted ISTD 18 O2 PFHxS                         | %     | 79         | 83         | 84           | 84           | 83           |
| Extracted ISTD 13 C4 PFOS                          | %     | 114        | 114        | 114          | 121          | 98           |
| Extracted ISTD 13 C4 PFOA                          | %     | 91         | 88         | 90           | 87           | 88           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 87         | 92         | 91           | 89           | 86           |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 114        | 122        | 105          | 117          | 109          |
| Total Positive PFHxS & PFOS                        | μg/kg | 150        | 190        | 760          | 39           | 5.7          |
| Total Positive PFOS & PFOA                         | μg/kg | 140        | 170        | 740          | 34           | 1.0          |
| Total Positive PFAS                                | μg/kg | 160        | 190        | 760          | 40           | 6.0          |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-148 | 243030-150 | 243030-151 | 243030-152 | 243030-153 |
| Your Reference                                     | UNITS | Creek 5    | Creek 6    | QC13       | QC13a      | DC03       |
| Date Sampled                                       |       | 06/05/2020 | 06/05/2020 | 06/05/2020 | 06/05/2020 | 06/05/2020 |
| Type of sample                                     |       | sediment   | sediment   | water      | water      | sediment   |
| Date prepared                                      | -     | 21/05/2020 | 21/05/2020 | 21/05/2020 | 21/05/2020 | 21/05/2020 |
| Date analysed                                      | -     | 21/05/2020 | 21/05/2020 | 21/05/2020 | 21/05/2020 | 21/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 160        | 49         | 55         | 39         | 3.0        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 810        | 160        | 290        | 500        | 58         |
| Perfluorooctanoic acid PFOA                        | μg/kg | 32         | 3.2        | 5.1        | 5.5        | 1.6        |
| 6:2 FTS                                            | μg/kg | <0.5       | <0.2       | <0.2       | <0.2       | 1          |
| 8:2 FTS                                            | μg/kg | <1         | <0.4       | <0.4       | <0.4       | <1         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 106        | 110        | 106        | 112        | 96         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 97         | 82         | 84         | 81         | 80         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 105        | 73         | 71         | 67         | 65         |
| Extracted ISTD 13 C4 PFOS                          | %     | 97         | 116        | 111        | 110        | 73         |
| Extracted ISTD 13 C4 PFOA                          | %     | 86         | 73         | 70         | 66         | 68         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 147        | 76         | 87         | 67         | 74         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 120        | 69         | 85         | 60         | 90         |
| Total Positive PFHxS & PFOS                        | μg/kg | 970        | 210        | 340        | 540        | 61         |
| Total Positive PFOS & PFOA                         | μg/kg | 840        | 160        | 300        | 510        | 60         |
| Total Positive PFAS                                | μg/kg | 1,000      | 210        | 350        | 540        | 64         |

| PFAS in Soils Short                         |       |            |            |               |            |
|---------------------------------------------|-------|------------|------------|---------------|------------|
| Our Reference                               |       | 243030-154 | 243030-155 | 243030-162    | 243030-163 |
| Your Reference                              | UNITS | DC04       | DC05       | SB02_Concrete | Creek 4    |
| Date Sampled                                |       | 06/05/2020 | 06/05/2020 | 06/05/2020    | 06/05/2020 |
| Type of sample                              |       | sediment   | sediment   | concrete      | sediment   |
| Date prepared                               | -     | 21/05/2020 | 21/05/2020 | 21/05/2020    | 21/05/2020 |
| Date analysed                               | -     | 21/05/2020 | 21/05/2020 | 21/05/2020    | 21/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS        | μg/kg | 1.4        | 0.3        | 0.2           | 4.6        |
| Perfluorooctanesulfonic acid PFOS           | μg/kg | 44         | 7.0        | 0.2           | 33         |
| Perfluorooctanoic acid PFOA                 | μg/kg | 0.9        | <0.2       | <0.1          | 0.6        |
| 6:2 FTS                                     | μg/kg | <0.5       | <0.2       | <0.1          | <0.2       |
| 8:2 FTS                                     | μg/kg | <1         | <0.4       | <0.2          | <0.4       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 98         | 99         | 97            | 92         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 82         | 81         | 101           | 81         |
| Extracted ISTD 18 O <sub>2</sub> PFHxS      | %     | 66         | 76         | 82            | 69         |
| Extracted ISTD 13 C4 PFOS                   | %     | 60         | 78         | 103           | 79         |
| Extracted ISTD 13 C <sub>4</sub> PFOA       | %     | 62         | 77         | 97            | 74         |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS     | %     | 63         | 77         | 90            | 83         |
| Extracted ISTD 13 C2 8:2FTS                 | %     | 71         | 94         | 101           | 94         |
| Total Positive PFHxS & PFOS                 | μg/kg | 45         | 7.3        | 0.3           | 38         |
| Total Positive PFOS & PFOA                  | μg/kg | 45         | 7.0        | 0.2           | 34         |
| Total Positive PFAS                         | μg/kg | 46         | 7.3        | 0.3           | 38         |

| Moisture       |       |            |            |            |            |            |
|----------------|-------|------------|------------|------------|------------|------------|
| Our Reference  |       | 243030-1   | 243030-2   | 243030-3   | 243030-4   | 243030-5   |
| Your Reference | UNITS | SS01       | SS02       | SS03       | SS04       | SS05       |
| Date Sampled   |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared  | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Date analysed  | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Moisture       | %     | 50         | 18         | 12         | 19         | 13         |
| Moisture       |       |            |            |            |            |            |
| Our Reference  |       | 243030-6   | 243030-7   | 243030-8   | 243030-9   | 243030-10  |
| Your Reference | UNITS | SS06       | SS07       | SS08       | SS09       | SS10       |
| Date Sampled   |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared  | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Date analysed  | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Moisture       | %     | 19         | 11         | 12         | 20         | 13         |
| Moisture       |       |            |            |            |            |            |
| Our Reference  |       | 243030-11  | 243030-12  | 243030-13  | 243030-14  | 243030-15  |
| Your Reference | UNITS | SS11       | SS12       | SS13       | SS14       | SS15       |
| Date Sampled   |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared  | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Date analysed  | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Moisture       | %     | 18         | 18         | 18         | 17         | 16         |
| Moisture       |       |            |            |            |            |            |
| Our Reference  |       | 243030-16  | 243030-17  | 243030-18  | 243030-19  | 243030-20  |
| Your Reference | UNITS | SS16       | SS17       | SS18       | SS19       | SS20       |
| Date Sampled   |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared  | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Date analysed  | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Moisture       | %     | 23         | 19         | 39         | 51         | 38         |
| Moisture       |       |            |            |            |            |            |
| Our Reference  |       | 243030-21  | 243030-22  | 243030-23  | 243030-24  | 243030-25  |
| Your Reference | UNITS | SS21       | SS22       | SS23       | SS24       | SS25       |
| Date Sampled   |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample |       | soil       | soil       | soil       | soil       | soil       |
| Date prepared  | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Date analysed  | -     | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 | 20/05/2020 |
| Moisture       | %     | 43         | 34         | 36         | 42         | 13         |

| Matakan                |       |              |              |              |              |              |
|------------------------|-------|--------------|--------------|--------------|--------------|--------------|
| Moisture Our Reference |       | 243030-26    | 243030-27    | 243030-28    | 243030-29    | 243030-30    |
| Your Reference         | UNITS | SS26         | SS27         | SS28         | SS29         | SS30         |
| Date Sampled           | UNITS | 08/05/2020   | 08/05/2020   | 08/05/2020   | 08/05/2020   | 08/05/2020   |
| · ·                    |       |              |              |              |              |              |
| Type of sample         |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared          | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed          | %     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture               | 70    | 14           | 9.7          | 38           | 45           | 42           |
| Moisture               |       |              |              |              |              |              |
| Our Reference          |       | 243030-44    | 243030-47    | 243030-59    | 243030-61    | 243030-64    |
| Your Reference         | UNITS | QC11         | DC07         | SW03_0-0.2   | SW03_1.5-1.7 | SW04_1.0-1.3 |
| Date Sampled           |       | 08/05/2020   | 08/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   |
| Type of sample         |       | soil         | sediment     | soil         | soil         | soil         |
| Date prepared          | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed          | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture               | %     | 40           | 63           | 44           | 41           | 44           |
| Moisture               |       |              |              |              |              |              |
| Our Reference          |       | 243030-65    | 243030-66    | 243030-68    | 243030-69    | 243030-70    |
| Your Reference         | UNITS | QC04         | SW04_2.0-2.1 | SW04_4.5-4.6 | SW05_0-0.2   | SW05_1.0-1.1 |
| Date Sampled           |       | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   |
| Type of sample         |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared          | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed          | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture               | %     | 40           | 44           | 50           | 48           | 52           |
| Moisture               |       |              |              |              |              |              |
| Our Reference          |       | 243030-74    | 243030-75    | 243030-76    | 243030-78    | 243030-79    |
| Your Reference         | UNITS | SW06_4.1-4.2 | SW06_4.3-4.4 | SW07_0.2-0.3 | SW07_2.5-2.8 | QC06         |
| Date Sampled           |       | 06/05/2020   | 06/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   |
| Type of sample         |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared          | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed          | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture               | %     | 40           | 13           | 41           | 39           | 36           |
| Moisture               |       |              |              |              |              |              |
| Our Reference          |       | 243030-81    | 243030-82    | 243030-85    | 243030-88    | 243030-89    |
| Your Reference         | UNITS | SW08_0.5-0.6 | SW08_2.3-2.4 | SW09_0.1-0.2 | SW09_5.5-5.7 | SW01_0.1-0.3 |
| Date Sampled           |       | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   |
| Type of sample         |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared          | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed          | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture               | %     | 50           | 58           | 44           | 13           | 36           |
|                        |       | <u> </u>     |              |              | <u> </u>     |              |

| Moisture       |       |              |              |              |              |              |
|----------------|-------|--------------|--------------|--------------|--------------|--------------|
| Our Reference  |       | 243030-90    | 243030-93    | 243030-94    | 243030-97    | 243030-98    |
| Your Reference | UNITS | SW01_1.9-2.0 | SW02_0.1-0.3 | SW02_0.9-1.1 | SW10_0.8-0.9 | SW10_1.5-1.7 |
| Date Sampled   |       | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   |
| Type of sample |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared  | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed  | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture       | %     | 20           | 32           | 38           | 24           | 54           |
| Moisture       |       |              |              |              |              |              |
| Our Reference  |       | 243030-100   | 243030-103   | 243030-104   | 243030-106   | 243030-107   |
| Your Reference | UNITS | SW11_0-0.1   | SW11_2.0-2.3 | QC08         | SW12         | SW13         |
| Date Sampled   |       | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   |
| Type of sample |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared  | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed  | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture       | %     | 16           | 50           | 65           | 30           | 41           |
| Moisture       |       |              |              |              |              |              |
| Our Reference  |       | 243030-108   | 243030-109   | 243030-110   | 243030-111   | 243030-112   |
| Your Reference | UNITS | SW14         | SW15         | SW16         | SW17         | SW18         |
| Date Sampled   |       | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   | 07/05/2020   |
| Type of sample |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared  | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed  | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture       | %     | 32           | 58           | 42           | 36           | 33           |
| Moisture       |       |              |              |              |              |              |
| Our Reference  |       | 243030-113   | 243030-114   | 243030-115   | 243030-117   | 243030-118   |
| Your Reference | UNITS | SW19         | SB01_0-0.2   | SB01_0.2-0.4 | SB02_0.1-0.3 | QC02         |
| Date Sampled   |       | 07/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   |
| Type of sample |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared  | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed  | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture       | %     | 40           | 11           | 16           | 6.3          | 6.3          |
| Moisture       |       |              |              |              |              |              |
| Our Reference  |       | 243030-119   | 243030-121   | 243030-122   | 243030-123   | 243030-127   |
| Your Reference | UNITS | SB02_0.6-0.8 | SB03_0-0.2   | SB03_0.4-0.6 | SB03_0.9-1.1 | SB04_0-0.2   |
| Date Sampled   |       | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   |
| Type of sample |       | soil         | soil         | soil         | soil         | soil         |
| Date prepared  | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   |
| Date analysed  | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   |
| Moisture       | %     | 44           | 4.0          | 11           | 12           | 14           |

| Moisture       |       | 0.40000 400  | 0.40000 400  | 0.40000 400  | 040000 404   | 0.40000 400   |
|----------------|-------|--------------|--------------|--------------|--------------|---------------|
| Our Reference  |       | 243030-128   | 243030-129   | 243030-130   | 243030-131   | 243030-138    |
| Your Reference | UNITS | QC05         | SB05_0.1-0.2 | SB05_0.3-0.4 | SB05_0.8-1.0 | SB06_0.23-0.4 |
| Date Sampled   |       | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020    |
| Type of sample |       | soil         | soil         | soil         | soil         | soil          |
| Date prepared  | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020    |
| Date analysed  | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020    |
| Moisture       | %     | 14           | 12           | 15           | 11           | 9.3           |
| Moisture       |       |              |              |              |              |               |
| Our Reference  |       | 243030-139   | 243030-140   | 243030-142   | 243030-143   | 243030-144    |
| Your Reference | UNITS | SB06_0.4-0.6 | SB06_1.0-1.2 | SB07_0-0.2   | QC03         | SB07_0.4-0.6  |
| Date Sampled   |       | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020    |
| Type of sample |       | soil         | soil         | soil         | soil         | soil          |
| Date prepared  | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020    |
| Date analysed  | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020    |
| Moisture       | %     | 13           | 11           | 16           | 16           | 9.0           |
| Moisture       |       |              |              |              |              |               |
| Our Reference  |       | 243030-145   | 243030-146   | 243030-148   | 243030-150   | 243030-151    |
| Your Reference | UNITS | SB08_0.2-0.4 | SB08_0.4-0.6 | Creek 5      | Creek 6      | QC13          |
| Date Sampled   |       | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020    |
| Type of sample |       | soil         | soil         | sediment     | sediment     | water         |
| Date prepared  | -     | 19/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 21/05/2020    |
| Date analysed  | -     | 20/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 22/05/2020    |
| Moisture       | %     | 11           | 6.4          | 73           | 45           | 42            |
| Moisture       |       |              |              |              |              |               |
| Our Reference  |       | 243030-152   | 243030-153   | 243030-154   | 243030-155   | 243030-163    |
| Your Reference | UNITS | QC13a        | DC03         | DC04         | DC05         | Creek 4       |
| Date Sampled   |       | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020   | 06/05/2020    |
| Type of sample |       | water        | sediment     | sediment     | sediment     | sediment      |
| Date prepared  | -     | 21/05/2020   | 19/05/2020   | 19/05/2020   | 19/05/2020   | 21/05/2020    |
| Date analysed  | -     | 22/05/2020   | 20/05/2020   | 20/05/2020   | 20/05/2020   | 22/05/2020    |
| Moisture       | %     | 44           | 77           | 69           | 31           | 55            |

| PFAS in Waters Short                               |       | 0.40000 04 | 040000 00  | 040000 00  | 040000 04  | 040000 05  |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-31  | 243030-32  | 243030-33  | 243030-34  | 243030-35  |
| Your Reference                                     | UNITS | WB01       | FXB01      | FX01       | FX02       | FX03       |
| Date Sampled                                       |       | 06/05/2020 | 07/05/2020 | 07/05/2020 | 07/05/2020 | 07/05/2020 |
| Type of sample                                     |       | water      | water      | water      | water      | water      |
| Date prepared                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Date analysed                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.01      | <0.01      | 0.01       | 0.01       | 0.02       |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.01      | <0.01      | 0.01       | 0.03       | 0.04       |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      | 0.01       | <0.01      | 0.01       |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 104        | 100        | 103        | 104        | 95         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 91         | 92         | 94         | 92         | 98         |
| Extracted ISTD 18 O <sub>2</sub> PFHxS             | %     | 87         | 87         | 86         | 86         | 88         |
| Extracted ISTD 13 C4 PFOS                          | %     | 90         | 89         | 91         | 86         | 91         |
| Extracted ISTD 13 C4 PFOA                          | %     | 102        | 101        | 102        | 99         | 100        |
| Extracted ISTD 13 C2 6:2FTS                        | %     | 138        | 136        | 149        | 154        | 152        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 98         | 96         | 102        | 101        | 96         |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.01      | <0.01      | 0.03       | 0.05       | 0.06       |
| Total Positive PFOA & PFOS                         | μg/L  | <0.01      | <0.01      | 0.03       | 0.03       | 0.05       |
| Total Positive PFAS                                | μg/L  | <0.01      | <0.01      | 0.04       | 0.05       | 0.07       |

| PFAS in Waters Short                               |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-36  | 243030-37  | 243030-38  | 243030-39  | 243030-40  |
| Your Reference                                     | UNITS | FX04       | FX05       | FX06       | FX07       | DC02       |
| Date Sampled                                       |       | 07/05/2020 | 07/05/2020 | 07/05/2020 | 07/05/2020 | 08/05/2020 |
| Type of sample                                     |       | water      | water      | water      | water      | water      |
| Date prepared                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Date analysed                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.01      | 0.02       | <0.01      | <0.01      | 0.01       |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.01       | 0.06       | 0.02       | 0.01       | 0.03       |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 97         | 104        | 102        | 106        | 103        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 94         | 92         | 93         | 94         | 91         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 85         | 86         | 88         | 85         | 85         |
| Extracted ISTD 13 C4 PFOS                          | %     | 90         | 89         | 89         | 89         | 88         |
| Extracted ISTD 13 C4 PFOA                          | %     | 99         | 99         | 101        | 97         | 100        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 146        | 152        | 143        | 138        | 137        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 97         | 98         | 94         | 94         | 91         |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.01       | 0.08       | 0.02       | 0.01       | 0.04       |
| Total Positive PFOA & PFOS                         | μg/L  | 0.01       | 0.06       | 0.02       | 0.01       | 0.03       |
| Total Positive PFAS                                | μg/L  | 0.01       | 0.08       | 0.02       | 0.01       | 0.04       |

| PFAS in Waters Short                               |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-41  | 243030-42  | 243030-43  | 243030-45  | 243030-46  |
| Your Reference                                     | UNITS | DC03       | DC04       | DC05       | QC12       | DC07       |
| Date Sampled                                       |       | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 | 08/05/2020 |
| Type of sample                                     |       | water      | water      | water      | water      | water      |
| Date prepared                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 21/05/2020 | 19/05/2020 |
| Date analysed                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 21/05/2020 | 19/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.02       | 0.02       | 0.04       | 2.1        | 0.05       |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.05       | 0.06       | 0.09       | 0.64       | 0.09       |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      | <0.01      | 0.14       | <0.01      |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 101        | 106        | 104        | 97         | 96         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 91         | 94         | 87         | 90         | 96         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 88         | 87         | 84         | 93         | 87         |
| Extracted ISTD 13 C4 PFOS                          | %     | 92         | 86         | 86         | 100        | 93         |
| Extracted ISTD 13 C4 PFOA                          | %     | 103        | 102        | 105        | 94         | 99         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 149        | 142        | 138        | 91         | 137        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 95         | 95         | 89         | 84         | 93         |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.07       | 0.08       | 0.13       | 2.7        | 0.14       |
| Total Positive PFOA & PFOS                         | μg/L  | 0.05       | 0.06       | 0.09       | 0.78       | 0.09       |
| Total Positive PFAS                                | μg/L  | 0.07       | 0.08       | 0.13       | 2.9        | 0.14       |

| PFAS in Waters Short                               |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-48  | 243030-49  | 243030-50  | 243030-51  | 243030-52  |
| Your Reference                                     | UNITS | RB01       | RB02       | RB03       | RB04       | RB05       |
| Date Sampled                                       |       | 06/05/2020 | 06/05/2020 | 07/05/2020 | 07/05/2020 | 08/05/2020 |
| Type of sample                                     |       | water      | water      | water      | water      | water      |
| Date prepared                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Date analysed                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 108        | 99         | 98         | 103        | 106        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 90         | 89         | 89         | 92         | 88         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 86         | 84         | 92         | 83         | 85         |
| Extracted ISTD 13 C4 PFOS                          | %     | 86         | 93         | 98         | 96         | 92         |
| Extracted ISTD 13 C4 PFOA                          | %     | 98         | 98         | 105        | 99         | 101        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 140        | 133        | 144        | 129        | 132        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 91         | 95         | 99         | 94         | 88         |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Total Positive PFOA & PFOS                         | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Total Positive PFAS                                | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |

| PFAS in Waters Short                               |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-53  | 243030-54  | 243030-55  | 243030-56  | 243030-57  |
| Your Reference                                     | UNITS | RB06       | FB01       | FB02       | FB03       | TB01       |
| Date Sampled                                       |       | 08/05/2020 | 06/05/2020 | 07/05/2020 | 08/05/2020 | 06/05/2020 |
| Type of sample                                     |       | water      | water      | water      | water      | water      |
| Date prepared                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Date analysed                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 | 19/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 112        | 97         | 101        | 100        | 109        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 97         | 101        | 100        | 107        | 101        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 84         | 94         | 95         | 94         | 92         |
| Extracted ISTD 13 C4 PFOS                          | %     | 88         | 96         | 93         | 91         | 76         |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 96         | 98         | 102        | 98         | 102        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 129        | 128        | 131        | 130        | 136        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 91         | 81         | 84         | 82         | 57         |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Total Positive PFOA & PFOS                         | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Total Positive PFAS                                | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |

| PFAS in Waters Short                               |       |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                                      |       | 243030-58  | 243030-147 | 243030-149 | 243030-161 |
| Your Reference                                     | UNITS | TB02       | Creek 5    | Creek 6    | Creek 4    |
| Date Sampled                                       |       | 07/05/2020 | 06/05/2020 | 06/05/2020 | 06/05/2020 |
| Type of sample                                     |       | water      | water      | water      | water      |
| Date prepared                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 21/05/2020 |
| Date analysed                                      | -     | 19/05/2020 | 19/05/2020 | 19/05/2020 | 21/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.01      | 2.2        | 2.0        | 0.17       |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.01      | 0.94       | 0.66       | 0.12       |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | 0.23       | 0.14       | 0.01       |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 105        | 107        | 104        | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 99         | 105        | 99         | 94         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 93         | 93         | 91         | 100        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 80         | 78         | 80         | 103        |
| Extracted ISTD 13 C4 PFOA                          | %     | 101        | 100        | 98         | 95         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 131        | 133        | 122        | 90         |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | 58         | 75         | 73         | 94         |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.01      | 3.1        | 2.6        | 0.29       |
| Total Positive PFOA & PFOS                         | μg/L  | <0.01      | 1.2        | 0.80       | 0.13       |
| Total Positive PFAS                                | μg/L  | <0.01      | 3.4        | 2.8        | 0.30       |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|-----------|------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL       | Method     | Blank      | # | Base       | Dup.       | RPD | LCS-1      | 243030-2   |
| Date prepared                                      | -          |           |            | 20/05/2020 | 1 | 20/05/2020 | 20/05/2020 |     | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -          |           |            | 20/05/2020 | 1 | 20/05/2020 | 20/05/2020 |     | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | 1 | 0.2        | 0.3        | 40  | 111        | 102        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | <0.1       | 1 | 0.2        | 0.4        | 67  | 107        | 99         |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | 1 | <0.2       | <0.2       | 0   | 108        | 103        |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | <0.1       | 1 | <0.2       | <0.2       | 0   | 104        | 97         |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | 1 | <0.4       | <0.4       | 0   | 106        | 92         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 95         | 1 | 99         | 89         | 11  | 96         | 94         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | 84         | 1 | 91         | 92         | 1   | 90         | 88         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 89         | 1 | 83         | 79         | 5   | 88         | 89         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 106        | 1 | 81         | 89         | 9   | 100        | 100        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | 91         | 1 | 82         | 81         | 1   | 87         | 90         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 80         | 1 | 87         | 84         | 4   | 79         | 96         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | 103        | 1 | 100        | 90         | 11  | 92         | 114        |

| QUALITY C                                         | CONTROL: F | PFAS in S | oils Short |       |    | Du         | plicate    |     | Spike Re   | covery %   |
|---------------------------------------------------|------------|-----------|------------|-------|----|------------|------------|-----|------------|------------|
| Test Description                                  | Units      | PQL       | Method     | Blank | #  | Base       | Dup.       | RPD | LCS-2      | 243030-22  |
| Date prepared                                     | -          |           |            | [NT]  | 11 | 20/05/2020 | 20/05/2020 |     | 20/05/2020 | 20/05/2020 |
| Date analysed                                     | -          |           |            | [NT]  | 11 | 20/05/2020 | 20/05/2020 |     | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS              | µg/kg      | 0.1       | Org-029    | [NT]  | 11 | <0.1       | <0.1       | 0   | 117        | 113        |
| Perfluorooctanesulfonic acid PFOS                 | μg/kg      | 0.1       | Org-029    | [NT]  | 11 | <0.1       | <0.1       | 0   | 101        | 104        |
| Perfluorooctanoic acid PFOA                       | μg/kg      | 0.1       | Org-029    | [NT]  | 11 | <0.1       | <0.1       | 0   | 99         | 103        |
| 6:2 FTS                                           | μg/kg      | 0.1       | Org-029    | [NT]  | 11 | <0.1       | <0.1       | 0   | 102        | 105        |
| 8:2 FTS                                           | μg/kg      | 0.2       | Org-029    | [NT]  | 11 | <0.2       | <0.2       | 0   | 104        | 100        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %          |           | Org-029    | [NT]  | 11 | 96         | 94         | 2   | 93         | 99         |
| Surrogate 13 C <sub>2</sub> PFOA                  | %          |           | Org-029    | [NT]  | 11 | 81         | 82         | 1   | 82         | 89         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %          |           | Org-029    | [NT]  | 11 | 93         | 86         | 8   | 99         | 88         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %          |           | Org-029    | [NT]  | 11 | 85         | 85         | 0   | 112        | 89         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %          |           | Org-029    | [NT]  | 11 | 85         | 79         | 7   | 112        | 88         |

| QUALITY CONTROL: PFAS in Soils Short               |       |     |         |       |    | Du   | Spike Recovery % |     |       |           |
|----------------------------------------------------|-------|-----|---------|-------|----|------|------------------|-----|-------|-----------|
| Test Description                                   | Units | PQL | Method  | Blank | #  | Base | Dup.             | RPD | LCS-2 | 243030-22 |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |     | Org-029 | [NT]  | 11 | 96   | 89               | 8   | 112   | 89        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |     | Org-029 | [NT]  | 11 | 67   | 60               | 11  | 157   | 73        |

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |       |    | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|-----------|------------|-------|----|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL       | Method     | Blank | #  | Base       | Dup.       | RPD | LCS-3      | 243030-74  |
| Date prepared                                      | -          |           |            | [NT]  | 21 | 20/05/2020 | 20/05/2020 |     | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -          |           |            | [NT]  | 21 | 20/05/2020 | 20/05/2020 |     | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | [NT]  | 21 | <0.2       | <0.2       | 0   | 106        | 114        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | [NT]  | 21 | 1.9        | 1.5        | 24  | 104        | 108        |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | [NT]  | 21 | <0.2       | <0.2       | 0   | 97         | 101        |
| 6:2 FTS                                            | µg/kg      | 0.1       | Org-029    | [NT]  | 21 | <0.2       | <0.2       | 0   | 91         | 101        |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | [NT]  | 21 | <0.4       | <0.4       | 0   | 99         | 96         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | [NT]  | 21 | 91         | 98         | 7   | 100        | 100        |
| Surrogate 13 C <sub>2</sub> PFOA                   | %          |           | Org-029    | [NT]  | 21 | 90         | 91         | 1   | 90         | 93         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | [NT]  | 21 | 95         | 102        | 7   | 84         | 62         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | [NT]  | 21 | 94         | 91         | 3   | 97         | 72         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | [NT]  | 21 | 94         | 94         | 0   | 92         | 62         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | [NT]  | 21 | 93         | 93         | 0   | 90         | 60         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | [NT]  | 21 | 93         | 93         | 0   | 98         | 67         |

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |       |    | Du         | plicate    |     | Spike Re   | ecovery %  |
|----------------------------------------------------|------------|-----------|------------|-------|----|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL       | Method     | Blank | #  | Base       | Dup.       | RPD | LCS-4      | 243030-108 |
| Date prepared                                      | -          |           |            | [NT]  | 44 | 20/05/2020 | 20/05/2020 |     | 20/05/2020 | 20/05/2020 |
| Date analysed                                      | -          |           |            | [NT]  | 44 | 20/05/2020 | 20/05/2020 |     | 20/05/2020 | 20/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | µg/kg      | 0.1       | Org-029    | [NT]  | 44 | <0.2       | <0.2       | 0   | 97         | 116        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | [NT]  | 44 | 3.5        | 3.0        | 15  | 109        | 107        |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | [NT]  | 44 | <0.2       | <0.2       | 0   | 103        | 101        |
| 6:2 FTS                                            | µg/kg      | 0.1       | Org-029    | [NT]  | 44 | <0.2       | <0.2       | 0   | 97         | 103        |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | [NT]  | 44 | <0.4       | <0.4       | 0   | 88         | 98         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | [NT]  | 44 | 95         | 101        | 6   | 104        | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | [NT]  | 44 | 90         | 84         | 7   | 91         | 85         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | [NT]  | 44 | 93         | 95         | 2   | 102        | 86         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | [NT]  | 44 | 94         | 87         | 8   | 102        | 92         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | [NT]  | 44 | 85         | 88         | 3   | 104        | 85         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | [NT]  | 44 | 89         | 85         | 5   | 113        | 74         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | [NT]  | 44 | 67         | 67         | 0   | 152        | 90         |

| QUALITY C                                         | CONTROL: F | PFAS in S | oils Short |       |    | Du         | plicate    |     | Spike Re   | ecovery %  |
|---------------------------------------------------|------------|-----------|------------|-------|----|------------|------------|-----|------------|------------|
| Test Description                                  | Units      | PQL       | Method     | Blank | #  | Base       | Dup.       | RPD | LCS-5      | 243030-138 |
| Date prepared                                     | -          |           |            | [NT]  | 70 | 20/05/2020 | 20/05/2020 |     | 21/05/2020 | 21/05/2020 |
| Date analysed                                     | -          |           |            | [NT]  | 70 | 20/05/2020 | 20/05/2020 |     | 21/05/2020 | 21/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS              | µg/kg      | 0.1       | Org-029    | [NT]  | 70 | 0.5        | 0.6        | 18  | 111        | 113        |
| Perfluorooctanesulfonic acid PFOS                 | μg/kg      | 0.1       | Org-029    | [NT]  | 70 | 0.5        | 0.5        | 0   | 103        | 106        |
| Perfluorooctanoic acid PFOA                       | μg/kg      | 0.1       | Org-029    | [NT]  | 70 | <0.2       | <0.2       | 0   | 101        | 101        |
| 6:2 FTS                                           | μg/kg      | 0.1       | Org-029    | [NT]  | 70 | <0.2       | <0.2       | 0   | 96         | 97         |
| 8:2 FTS                                           | μg/kg      | 0.2       | Org-029    | [NT]  | 70 | <0.4       | <0.4       | 0   | 82         | 95         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %          |           | Org-029    | [NT]  | 70 | 99         | 96         | 3   | 92         | 95         |
| Surrogate 13 C <sub>2</sub> PFOA                  | %          |           | Org-029    | [NT]  | 70 | 88         | 83         | 6   | 85         | 84         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %          |           | Org-029    | [NT]  | 70 | 66         | 66         | 0   | 117        | 84         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %          |           | Org-029    | [NT]  | 70 | 73         | 76         | 4   | 119        | 103        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %          |           | Org-029    | [NT]  | 70 | 70         | 71         | 1   | 118        | 86         |

| QUALITY C                                          | CONTROL: F | PFAS in S | oils Short |       |    | Du   | plicate |     | Spike Re | ecovery %  |
|----------------------------------------------------|------------|-----------|------------|-------|----|------|---------|-----|----------|------------|
| Test Description                                   | Units      | PQL       | Method     | Blank | #  | Base | Dup.    | RPD | LCS-5    | 243030-138 |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | [NT]  | 70 | 74   | 78      | 5   | 133      | 78         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | [NT]  | 70 | 86   | 76      | 12  | 120      | 96         |

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |       |    | Du         | plicate    |     | Spike Re | covery % |
|----------------------------------------------------|------------|-----------|------------|-------|----|------------|------------|-----|----------|----------|
| Test Description                                   | Units      | PQL       | Method     | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date prepared                                      | -          |           |            | [NT]  | 89 | 20/05/2020 | 20/05/2020 |     |          | [NT]     |
| Date analysed                                      | -          |           |            | [NT]  | 89 | 20/05/2020 | 20/05/2020 |     |          | [NT]     |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | [NT]  | 89 | 0.3        | <0.2       | 40  |          | [NT]     |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | [NT]  | 89 | 0.6        | 0.5        | 18  |          | [NT]     |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | [NT]  | 89 | <0.2       | <0.2       | 0   |          | [NT]     |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | [NT]  | 89 | <0.2       | <0.2       | 0   |          | [NT]     |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | [NT]  | 89 | <0.4       | <0.4       | 0   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | [NT]  | 89 | 92         | 103        | 11  |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | [NT]  | 89 | 100        | 88         | 13  |          | [NT]     |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | [NT]  | 89 | 74         | 73         | 1   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | [NT]  | 89 | 86         | 83         | 4   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | [NT]  | 89 | 72         | 77         | 7   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | [NT]  | 89 | 85         | 80         | 6   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | [NT]  | 89 | 91         | 91         | 0   |          | [NT]     |

| QUALITY C                                          | CONTROL: F | PFAS in S | oils Short |       |     | Du         | plicate    |     | Spike Re | covery % |
|----------------------------------------------------|------------|-----------|------------|-------|-----|------------|------------|-----|----------|----------|
| Test Description                                   | Units      | PQL       | Method     | Blank | #   | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date prepared                                      | -          |           |            | [NT]  | 107 | 20/05/2020 | 20/05/2020 |     | [NT]     |          |
| Date analysed                                      | -          |           |            | [NT]  | 107 | 20/05/2020 | 20/05/2020 |     | [NT]     |          |
| Perfluorohexanesulfonic acid - PFHxS               | µg/kg      | 0.1       | Org-029    | [NT]  | 107 | 1.6        | 1.8        | 12  | [NT]     |          |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | [NT]  | 107 | 5.0        | 5.7        | 13  | [NT]     |          |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | [NT]  | 107 | <0.2       | 0.2        | 0   | [NT]     |          |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | [NT]  | 107 | <0.2       | <0.2       | 0   | [NT]     |          |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | [NT]  | 107 | <0.4       | <0.4       | 0   | [NT]     |          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | [NT]  | 107 | 100        | 100        | 0   | [NT]     |          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | [NT]  | 107 | 85         | 86         | 1   | [NT]     |          |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | [NT]  | 107 | 83         | 81         | 2   | [NT]     |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | [NT]  | 107 | 89         | 89         | 0   | [NT]     |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | [NT]  | 107 | 84         | 84         | 0   | [NT]     |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | [NT]  | 107 | 75         | 81         | 8   | [NT]     |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | [NT]  | 107 | 96         | 110        | 14  | [NT]     |          |

| QUALITY (                                         | CONTROL: F | PFAS in S | oils Short |       |     | Du         | plicate    |     | Spike Re | covery % |
|---------------------------------------------------|------------|-----------|------------|-------|-----|------------|------------|-----|----------|----------|
| Test Description                                  | Units      | PQL       | Method     | Blank | #   | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date prepared                                     | -          |           |            | [NT]  | 119 | 20/05/2020 | 20/05/2020 |     |          | [NT]     |
| Date analysed                                     | -          |           |            | [NT]  | 119 | 20/05/2020 | 20/05/2020 |     |          | [NT]     |
| Perfluorohexanesulfonic acid - PFHxS              | μg/kg      | 0.1       | Org-029    | [NT]  | 119 | 0.6        | 0.6        | 0   |          | [NT]     |
| Perfluorooctanesulfonic acid PFOS                 | µg/kg      | 0.1       | Org-029    | [NT]  | 119 | 3.0        | 2.7        | 11  |          | [NT]     |
| Perfluorooctanoic acid PFOA                       | µg/kg      | 0.1       | Org-029    | [NT]  | 119 | <0.2       | <0.2       | 0   |          | [NT]     |
| 6:2 FTS                                           | μg/kg      | 0.1       | Org-029    | [NT]  | 119 | <0.2       | <0.2       | 0   |          | [NT]     |
| 8:2 FTS                                           | μg/kg      | 0.2       | Org-029    | [NT]  | 119 | <0.4       | <0.4       | 0   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %          |           | Org-029    | [NT]  | 119 | 95         | 92         | 3   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA       | %          |           | Org-029    | [NT]  | 119 | 90         | 88         | 2   |          | [NT]     |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %          |           | Org-029    | [NT]  | 119 | 92         | 95         | 3   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %          |           | Org-029    | [NT]  | 119 | 95         | 99         | 4   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %          |           | Org-029    | [NT]  | 119 | 86         | 89         | 3   |          | [NT]     |

| QUALITY C                                          | ONTROL: F | PFAS in S | oils Short |       |     | Du   | plicate |     | Spike Re | covery % |
|----------------------------------------------------|-----------|-----------|------------|-------|-----|------|---------|-----|----------|----------|
| Test Description                                   | Units     | PQL       | Method     | Blank | #   | Base | Dup.    | RPD | [NT]     | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %         |           | Org-029    | [NT]  | 119 | 74   | 77      | 4   | [NT]     | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %         |           | Org-029    | [NT]  | 119 | 85   | 81      | 5   | [NT]     | [NT]     |

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |       |     | Du         | plicate    |     | Spike Re | covery % |
|----------------------------------------------------|------------|-----------|------------|-------|-----|------------|------------|-----|----------|----------|
| Test Description                                   | Units      | PQL       | Method     | Blank | #   | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date prepared                                      | -          |           |            | [NT]  | 136 | 20/05/2020 | 20/05/2020 |     |          | [NT]     |
| Date analysed                                      | -          |           |            | [NT]  | 136 | 20/05/2020 | 20/05/2020 |     |          | [NT]     |
| Perfluorohexanesulfonic acid - PFHxS               | µg/kg      | 0.1       | Org-029    | [NT]  | 136 | <0.1       | <0.1       | 0   |          | [NT]     |
| Perfluorooctanesulfonic acid PFOS                  | µg/kg      | 0.1       | Org-029    | [NT]  | 136 | <0.1       | <0.1       | 0   |          | [NT]     |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | [NT]  | 136 | <0.1       | <0.1       | 0   |          | [NT]     |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | [NT]  | 136 | <0.1       | <0.1       | 0   |          | [NT]     |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | [NT]  | 136 | <0.2       | <0.2       | 0   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | [NT]  | 136 | 90         | 91         | 1   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | [NT]  | 136 | 90         | 88         | 2   |          | [NT]     |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | [NT]  | 136 | 84         | 87         | 4   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | [NT]  | 136 | 92         | 92         | 0   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | [NT]  | 136 | 78         | 78         | 0   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | [NT]  | 136 | 66         | 59         | 11  |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | [NT]  | 136 | 68         | 62         | 9   |          | [NT]     |

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |       |     | Du         | plicate    |     | Spike Re | covery % |
|----------------------------------------------------|------------|-----------|------------|-------|-----|------------|------------|-----|----------|----------|
| Test Description                                   | Units      | PQL       | Method     | Blank | #   | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date prepared                                      | -          |           |            | [NT]  | 148 | 21/05/2020 | 21/05/2020 |     |          | [NT]     |
| Date analysed                                      | -          |           |            | [NT]  | 148 | 21/05/2020 | 21/05/2020 |     |          | [NT]     |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | [NT]  | 148 | 160        | 190        | 17  |          | [NT]     |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | [NT]  | 148 | 810        | 980        | 19  |          | [NT]     |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | [NT]  | 148 | 32         | 30         | 6   |          | [NT]     |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | [NT]  | 148 | <0.5       | <0.5       | 0   |          | [NT]     |
| 3:2 FTS                                            | μg/kg      | 0.2       | Org-029    | [NT]  | 148 | <1         | <1         | 0   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | [NT]  | 148 | 106        | 104        | 2   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | [NT]  | 148 | 97         | 100        | 3   |          | [NT]     |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | [NT]  | 148 | 105        | 105        | 0   |          | [NT]     |
| Extracted ISTD 13 C <sub>4</sub> PFOS              | %          |           | Org-029    | [NT]  | 148 | 97         | 95         | 2   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | [NT]  | 148 | 86         | 84         | 2   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | [NT]  | 148 | 147        | 137        | 7   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | [NT]  | 148 | 120        | 84         | 35  |          | [NT]     |

| QUALITY CO                                         | ONTROL: PI | AS in W | aters Short |            |    | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|---------|-------------|------------|----|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL     | Method      | Blank      | #  | Base       | Dup.       | RPD | LCS-W1     | 243030-32  |
| Date prepared                                      | -          |         |             | 21/05/2020 | 31 | 19/05/2020 | 19/05/2020 |     | 21/05/2020 | 19/05/2020 |
| Date analysed                                      | -          |         |             | 21/05/2020 | 31 | 19/05/2020 | 19/05/2020 |     | 21/05/2020 | 19/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.01    | Org-029     | <0.01      | 31 | <0.01      | <0.01      | 0   | 108        | 109        |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.01    | Org-029     | <0.01      | 31 | <0.01      | <0.01      | 0   | 109        | 112        |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.01    | Org-029     | <0.01      | 31 | <0.01      | <0.01      | 0   | 111        | 106        |
| 6:2 FTS                                            | μg/L       | 0.01    | Org-029     | <0.01      | 31 | <0.01      | <0.01      | 0   | 100        | 105        |
| 8:2 FTS                                            | μg/L       | 0.02    | Org-029     | <0.02      | 31 | <0.02      | <0.02      | 0   | 95         | 92         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |         | Org-029     | 99         | 31 | 104        | 105        | 1   | 108        | 108        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |         | Org-029     | 97         | 31 | 91         | 90         | 1   | 93         | 90         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |         | Org-029     | 90         | 31 | 87         | 91         | 4   | 87         | 86         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |         | Org-029     | 85         | 31 | 90         | 91         | 1   | 88         | 85         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |         | Org-029     | 73         | 31 | 102        | 104        | 2   | 98         | 98         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |         | Org-029     | 75         | 31 | 138        | 141        | 2   | 134        | 128        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |         | Org-029     | 60         | 31 | 98         | 94         | 4   | 100        | 96         |

| QUALITY CO                                        | ONTROL: PI | AS in W | aters Short |       |    | Du         | plicate    |     | Spike Re   | covery %   |
|---------------------------------------------------|------------|---------|-------------|-------|----|------------|------------|-----|------------|------------|
| Test Description                                  | Units      | PQL     | Method      | Blank | #  | Base       | Dup.       | RPD | LCS-W2     | 243030-55  |
| Date prepared                                     | -          |         |             | [NT]  | 41 | 19/05/2020 | 19/05/2020 |     | 21/05/2020 | 19/05/2020 |
| Date analysed                                     | -          |         |             | [NT]  | 41 | 19/05/2020 | 19/05/2020 |     | 21/05/2020 | 19/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS              | μg/L       | 0.01    | Org-029     | [NT]  | 41 | 0.02       | 0.02       | 0   | 92         | 102        |
| Perfluorooctanesulfonic acid PFOS                 | μg/L       | 0.01    | Org-029     | [NT]  | 41 | 0.05       | 0.05       | 0   | 103        | 101        |
| Perfluorooctanoic acid PFOA                       | μg/L       | 0.01    | Org-029     | [NT]  | 41 | <0.01      | <0.01      | 0   | 98         | 99         |
| 6:2 FTS                                           | μg/L       | 0.01    | Org-029     | [NT]  | 41 | <0.01      | <0.01      | 0   | 88         | 102        |
| 8:2 FTS                                           | μg/L       | 0.02    | Org-029     | [NT]  | 41 | <0.02      | <0.02      | 0   | 91         | 99         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %          |         | Org-029     | [NT]  | 41 | 101        | 100        | 1   | 100        | 96         |
| Surrogate 13 C <sub>2</sub> PFOA                  | %          |         | Org-029     | [NT]  | 41 | 91         | 89         | 2   | 99         | 103        |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %          |         | Org-029     | [NT]  | 41 | 88         | 84         | 5   | 90         | 90         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %          |         | Org-029     | [NT]  | 41 | 92         | 88         | 4   | 86         | 90         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %          |         | Org-029     | [NT]  | 41 | 103        | 100        | 3   | 72         | 94         |

| QUALITY CO                                         | ONTROL: PF | AS in W | aters Short |       |    | Du   | plicate |     | Spike Re | covery %  |
|----------------------------------------------------|------------|---------|-------------|-------|----|------|---------|-----|----------|-----------|
| Test Description                                   | Units      | PQL     | Method      | Blank | #  | Base | Dup.    | RPD | LCS-W2   | 243030-55 |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |         | Org-029     | [NT]  | 41 | 149  | 138     | 8   | 78       | 120       |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |         | Org-029     | [NT]  | 41 | 95   | 89      | 7   | 70       | 81        |

| QUALITY C                                          | ONTROL: P | FAS in W | aters Short |       |    | Du         | plicate    |     | Spike Re | covery % |
|----------------------------------------------------|-----------|----------|-------------|-------|----|------------|------------|-----|----------|----------|
| Test Description                                   | Units     | PQL      | Method      | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date prepared                                      | -         |          |             | [NT]  | 54 | 19/05/2020 | 19/05/2020 |     |          | [NT]     |
| Date analysed                                      | -         |          |             | [NT]  | 54 | 19/05/2020 | 19/05/2020 |     |          | [NT]     |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L      | 0.01     | Org-029     | [NT]  | 54 | <0.01      | <0.01      | 0   |          | [NT]     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L      | 0.01     | Org-029     | [NT]  | 54 | <0.01      | <0.01      | 0   |          | [NT]     |
| Perfluorooctanoic acid PFOA                        | μg/L      | 0.01     | Org-029     | [NT]  | 54 | <0.01      | <0.01      | 0   |          | [NT]     |
| 6:2 FTS                                            | μg/L      | 0.01     | Org-029     | [NT]  | 54 | <0.01      | <0.01      | 0   |          | [NT]     |
| 8:2 FTS                                            | μg/L      | 0.02     | Org-029     | [NT]  | 54 | <0.02      | <0.02      | 0   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %         |          | Org-029     | [NT]  | 54 | 97         | 98         | 1   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %         |          | Org-029     | [NT]  | 54 | 101        | 106        | 5   |          | [NT]     |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %         |          | Org-029     | [NT]  | 54 | 94         | 94         | 0   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %         |          | Org-029     | [NT]  | 54 | 96         | 92         | 4   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %         |          | Org-029     | [NT]  | 54 | 98         | 96         | 2   |          | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %         |          | Org-029     | [NT]  | 54 | 128        | 130        | 2   |          | [NT]     |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %         |          | Org-029     | [NT]  | 54 | 81         | 89         | 9   |          | [NT]     |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 243030

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

## **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 243030 Page | 43 of 44

# **Report Comments**

The PQL has been raised due to the high moisture content in sample/s, resulting in a high dilution factor.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 243030 Page | 44 of 44 R00

## Begin forwarded message:

From: Dilara Valiff < Dilara. Valiff@ghd.com > Date: 20 June 2020 at 9:00:58 am ACST

To: Envirolab Adelaide <adelaide@envirolab.com.au>
Cc: Alex Stenta <astenta@envirolab.com.au>
Subject: Brukunga CFS PFAS analysis request

243036 - A Due: 29/6/20

**CAUTION:** This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

#### Hi Alex

Could you please dearchive and test for PFAS short suite the following samples from the batch for the attached report 243371:

- Water samples DC06A and DC06B
- Soil samples SB01\_0.9-1.1. -116

## Kind regards

# **Dilara Valiff**Senior Environmental Consultant

### **GHD**

#### Proudly employee owned

T: +61 8111 6572 | M: +61 420 959 236 | E: <u>dilara.valiff@ghd.com</u> Level 4 211 Victoria Square Adelaide SA 5000 | <u>www.ghd.com</u>

#### Connect



Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# **CERTIFICATE OF ANALYSIS 243030-A**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                                            |
|--------------------------------------|--------------------------------------------|
| Your Reference                       | <u>12516828</u>                            |
| Number of Samples                    | 121 soil, 31 water, 7 sediment, 4 concrete |
| Date samples received                | 13/05/2020                                 |
| Date completed instructions received | 20/06/2020                                 |

# **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                      |                                                                   |  |
|-------------------------------------|-------------------------------------------------------------------|--|
| Date results requested by           | 29/06/2020                                                        |  |
| Date of Issue                       | 26/06/2020                                                        |  |
| NATA Accreditation Number 2901.     | This document shall not be reproduced except in full.             |  |
| Accredited for compliance with ISO/ | IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |

**Results Approved By** 

Fiona Tan, LC Supervisor

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Soils Short                         |       |              |
|---------------------------------------------|-------|--------------|
| Our Reference                               |       | 243030-A-116 |
| Your Reference                              | UNITS | SB01_0.9-1.1 |
| Date Sampled                                |       | 06/05/2020   |
| Type of sample                              |       | soil         |
| Date prepared                               | -     | 23/06/2020   |
| Date analysed                               | -     | 23/06/2020   |
| Perfluorohexanesulfonic acid - PFHxS        | μg/kg | 62           |
| Perfluorooctanesulfonic acid PFOS           | μg/kg | 2,100        |
| Perfluorooctanoic acid PFOA                 | μg/kg | 14           |
| 6:2 FTS                                     | μg/kg | 0.4          |
| 8:2 FTS                                     | μg/kg | 21           |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 101          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 110          |
| Extracted ISTD 18 O2 PFHxS                  | %     | 100          |
| Extracted ISTD 13 C4 PFOS                   | %     | 94           |
| Extracted ISTD 13 C <sub>4</sub> PFOA       | %     | 84           |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS     | %     | 122          |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS     | %     | 157          |
| Total Positive PFHxS & PFOS                 | μg/kg | 2,100        |
| Total Positive PFOS & PFOA                  | μg/kg | 2,100        |
| Total Positive PFAS                         | μg/kg | 2,200        |

Envirolab Reference: 243030-A

| Moisture       |       |              |
|----------------|-------|--------------|
| Our Reference  |       | 243030-A-116 |
| Your Reference | UNITS | SB01_0.9-1.1 |
| Date Sampled   |       | 06/05/2020   |
| Type of sample |       | soil         |
| Date prepared  | -     | 24/06/2020   |
| Date analysed  | -     | 25/06/2020   |
| Moisture       | %     | 33           |

Envirolab Reference: 243030-A

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 243030-A

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            |     | Du         | plicate    |     | Spike Re   | covery %         |
|----------------------------------------------------|------------|-----------|------------|------------|-----|------------|------------|-----|------------|------------------|
| Test Description                                   | Units      | PQL       | Method     | Blank      | #   | Base       | Dup.       | RPD | LCS-1      | 243030-A-<br>116 |
| Date prepared                                      | -          |           |            | 23/06/2020 | 116 | 23/06/2020 | 23/06/2020 |     | 23/06/2020 | 23/06/2020       |
| Date analysed                                      | -          |           |            | 23/06/2020 | 116 | 23/06/2020 | 23/06/2020 |     | 23/06/2020 | 23/06/2020       |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | 116 | 62         | 58         | 7   | 100        | ##               |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | <0.1       | 116 | 2100       | 2200       | 5   | 103        | ##               |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | 116 | 14         | 13         | 7   | 99         | 58               |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | <0.1       | 116 | 0.4        | 0.4        | 0   | 94         | 102              |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | 116 | 21         | 25         | 17  | 107        | 69               |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 98         | 116 | 101        | 110        | 9   | 98         | ##               |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | 102        | 116 | 110        | 104        | 6   | 105        | 110              |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 108        | 116 | 100        | 101        | 1   | 107        | 89               |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 100        | 116 | 94         | 92         | 2   | 95         | 36               |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | 104        | 116 | 84         | 87         | 4   | 97         | 83               |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 122        | 116 | 122        | 113        | 8   | 119        | 110              |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %          |           | Org-029    | 143        | 116 | 157        | 136        | 14  | 129        | 135              |

Envirolab Reference: 243030-A

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 243030-A

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

## **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 243030-A Page | 7 of 8

# **Report Comments**

PFAS in Soil:

## Percent recovery is not possible to report due to the high concentration of the analytes in the sample/s. However an acceptable recovery was obtained for the LCS.

Percent recovery for PFOA is outside of global acceptance criteria (60%-140%) due to the high concentration of the analytes in the sample/s causing interference. However an acceptable recovery was obtained for the LCS.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 243030-A Page | 8 of 8

#### Jessica Hie

From:

Alex Stenta

Sent:

Monday, 13 July 2020 12:23 PM

To:

Phalak Inthakesone; Fiona Tan; Samplereceipt Distribution Sydney

Subject:

FW: Additional Sample Testing

Hi Guys,

Please see additional testing request for PFAS samples below:

243030-B Due: 20/7/20 Std TAT.

Kind Regards,

Alex Stenta | BD Manager SA | Envirolab Group

Celebrating 15 years of Great Science. Great Service.

7a The Parade Norwood SA 5067
T 08 7087 6800 F 08 8362 1776 M 0406 350 706
E astenta@envirolab.com.au | W www.envirolab.com.au

View reduced sampling bottle provision for PFAS in water | COVID-19 Update

<u>Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link</u>

From: Mei Lyn Herbertt < Mei Lyn. Herbertt@ghd.com>

Sent: Monday, 13 July 2020 11:47 AM

To: Alex Stenta <astenta@envirolab.com.au>
Cc: Dilara Valiff < Dilara. Valiff@ghd.com>

Subject: Additional Sample Testing

**CAUTION:** This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Alex!

PFAS\_short.

Hope you're doing well!

For the CFS job 12516828 can we get leechate testing for the following sludge samples:

15- SS15

17- SS17

27 • SS27

64- SW04 1.0-1.3

85 • SW09\_0.1-0.2

107. SW13

Thanks so much for your help! ©

Kind Regards

Mei Lyn Herbertt BSc(Adv), BSc(Hons) Environmental Scientist

#### **GHD**

Proudly employee owned

T: +61 8 8111 6789 | M: +61 448 416 733 | V: 336789 | meilyn.herbertt@ghd.com Level 4 211 Victoria Square Adelaide SA 5000 Australia | http://www.ghd.com/

#### Connect







Water | Energy & Resources | Environment | Property & Buildings | Transportation



- Please consider the environment before printing this email

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# **CERTIFICATE OF ANALYSIS 243030-B**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Mei Lyn Herbertt, Dilara Valiff  |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                                            |  |  |  |  |  |  |
|--------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| Your Reference                       | <u>12516828</u>                            |  |  |  |  |  |  |
| Number of Samples                    | 121 soil, 31 water, 7 sediment, 4 concrete |  |  |  |  |  |  |
| Date samples received                | 13/05/2020                                 |  |  |  |  |  |  |
| Date completed instructions received | 13/07/2020                                 |  |  |  |  |  |  |

# **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

| Report Details                                                                                       |            |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| Date results requested by                                                                            | 20/07/2020 |  |  |  |  |  |
| Date of Issue                                                                                        | 17/07/2020 |  |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |  |  |  |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |  |  |  |  |

**Results Approved By** 

Phalak Inthakesone, Organics Development Manager, Sydney

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in TCLP Short                                 |          |             |             |             |              |              |
|----------------------------------------------------|----------|-------------|-------------|-------------|--------------|--------------|
| Our Reference                                      |          | 243030-B-15 | 243030-B-17 | 243030-B-27 | 243030-B-64  | 243030-B-85  |
| Your Reference                                     | UNITS    | SS15        | SS17        | SS27        | SW04_1.0-1.3 | SW09_0.1-0.2 |
| Date Sampled                                       |          | 08/05/2020  | 08/05/2020  | 08/05/2020  | 06/05/2020   | 07/05/2020   |
| Type of sample                                     |          | soil        | soil        | soil        | soil         | soil         |
| Date prepared                                      | -        | 15/07/2020  | 15/07/2020  | 15/07/2020  | 15/07/2020   | 15/07/2020   |
| Date analysed                                      | -        | 15/07/2020  | 15/07/2020  | 15/07/2020  | 15/07/2020   | 15/07/2020   |
| pH of soil for fluid# determ.                      | pH units | 6.0         | 7.1         | 3.9         | 8.3          | 8.3          |
| pH of soil TCLP (after HCl)                        | pH units | 1.7         | 1.8         | 1.6         | 4.2          | 4.3          |
| Extraction fluid used                              | -        | 1           | 1           | 1           | 1            | 1            |
| pH of final Leachate                               | pH units | 5.0         | 5.1         | 4.9         | 6.2          | 6.2          |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L     | 0.03        | 0.01        | <0.01       | 0.01         | 0.02         |
| Perfluorooctanesulfonic acid PFOS                  | μg/L     | 0.59        | 0.32        | 0.29        | 0.02         | 0.02         |
| Perfluorooctanoic acid PFOA                        | μg/L     | 0.21        | 0.09        | <0.01       | <0.01        | <0.01        |
| 6:2 FTS                                            | μg/L     | <0.01       | <0.01       | <0.01       | <0.01        | <0.01        |
| 8:2 FTS                                            | μg/L     | <0.02       | <0.02       | <0.02       | <0.02        | <0.02        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %        | 103         | 92          | 102         | 94           | 103          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %        | 97          | 102         | 101         | 95           | 101          |
| Extracted ISTD 18 O2 PFHxS                         | %        | 97          | 100         | 95          | 95           | 95           |
| Extracted ISTD 13 C <sub>4</sub> PFOS              | %        | 99          | 104         | 100         | 103          | 95           |
| Extracted ISTD 13 C4 PFOA                          | %        | 104         | 105         | 100         | 102          | 103          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %        | 110         | 109         | 104         | 105          | 103          |
| Extracted ISTD 13 C2 8:2FTS                        | %        | 120         | 121         | 123         | 127          | 114          |
| Total Positive PFHxS & PFOS                        | μg/L     | 0.61        | 0.33        | 0.29        | 0.03         | 0.04         |
| Total Positive PFOS & PFOA                         | μg/L     | 0.80        | 0.41        | 0.29        | 0.02         | 0.02         |
| Total Positive PFAS                                | μg/L     | 0.82        | 0.42        | 0.29        | 0.03         | 0.04         |

Envirolab Reference: 243030-B

| PFAS in TCLP Short                                 |          |              |  |  |
|----------------------------------------------------|----------|--------------|--|--|
| Our Reference                                      |          | 243030-B-107 |  |  |
| Your Reference                                     | UNITS    | SW13         |  |  |
| Date Sampled                                       |          | 07/05/2020   |  |  |
| Type of sample                                     |          | soil         |  |  |
| Date prepared                                      | -        | 15/07/2020   |  |  |
| Date analysed                                      | -        | 15/07/2020   |  |  |
| pH of soil for fluid# determ.                      | pH units | 8.2          |  |  |
| pH of soil TCLP (after HCl)                        | pH units | 2.7          |  |  |
| Extraction fluid used                              | -        | 1            |  |  |
| pH of final Leachate                               | pH units | 6.2          |  |  |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L     | 0.05         |  |  |
| Perfluorooctanesulfonic acid PFOS                  | μg/L     | 0.08         |  |  |
| Perfluorooctanoic acid PFOA                        | μg/L     | <0.01        |  |  |
| 6:2 FTS                                            | μg/L     | <0.01        |  |  |
| 8:2 FTS                                            | μg/L     | <0.02        |  |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %        | 99           |  |  |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %        | 99           |  |  |
| Extracted ISTD 18 O <sub>2</sub> PFHxS             | %        | 103          |  |  |
| Extracted ISTD 13 C4 PFOS                          | %        | 99           |  |  |
| Extracted ISTD 13 C4 PFOA                          | %        | 99           |  |  |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS            | %        | 109          |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %        | 133          |  |  |
| Total Positive PFHxS & PFOS                        | μg/L     | 0.13         |  |  |
| Total Positive PFOS & PFOA                         | μg/L     | 0.08         |  |  |
| Total Positive PFAS                                | μg/L     | 0.13         |  |  |

Envirolab Reference: 243030-B

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| EXTRACT.7 | Toxicity Characteristic Leaching Procedure (TCLP) using Zero Headspace Extraction (zHE) using AS4439 and USEPA 1311.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Inorg-001 | pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the result water analyses are indicative only, as analysis outside of the APHA storage times.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Inorg-004 | Toxicity Characteristic Leaching Procedure (TCLP) using in house method INORG-004.  Please note that the mass used may be scaled down from the default based on sample mass available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |  |  |  |  |  |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |

Envirolab Reference: 243030-B

| QUALITY (                                          | CONTROL: PFAS in TCLP Short |      |         |            | Duplicate |            |            |     | Spike Recovery % |                 |  |
|----------------------------------------------------|-----------------------------|------|---------|------------|-----------|------------|------------|-----|------------------|-----------------|--|
| Test Description                                   | Units                       | PQL  | Method  | Blank      | #         | Base       | Dup.       | RPD | LCS-W1           | 243030-B-<br>17 |  |
| Date prepared                                      | -                           |      |         | 15/07/2020 | 15        | 15/07/2020 | 15/07/2020 |     | 15/07/2020       | 15/07/2020      |  |
| Date analysed                                      | -                           |      |         | 15/07/2020 | 15        | 15/07/2020 | 15/07/2020 |     | 15/07/2020       | 15/07/2020      |  |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L                        | 0.01 | Org-029 | <0.01      | 15        | 0.03       | 0.02       | 40  | 101              | 102             |  |
| Perfluorooctanesulfonic acid PFOS                  | μg/L                        | 0.01 | Org-029 | <0.01      | 15        | 0.59       | 0.47       | 23  | 101              | 104             |  |
| Perfluorooctanoic acid PFOA                        | μg/L                        | 0.01 | Org-029 | <0.01      | 15        | 0.21       | 0.18       | 15  | 105              | 106             |  |
| 6:2 FTS                                            | μg/L                        | 0.01 | Org-029 | <0.01      | 15        | <0.01      | <0.01      | 0   | 111              | 112             |  |
| 8:2 FTS                                            | μg/L                        | 0.02 | Org-029 | <0.02      | 15        | <0.02      | <0.02      | 0   | 107              | 101             |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %                           |      | Org-029 | 97         | 15        | 103        | 100        | 3   | 102              | 98              |  |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %                           |      | Org-029 | 99         | 15        | 97         | 103        | 6   | 103              | 98              |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %                           |      | Org-029 | 95         | 15        | 97         | 98         | 1   | 95               | 98              |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %                           |      | Org-029 | 92         | 15        | 99         | 104        | 5   | 101              | 100             |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %                           |      | Org-029 | 98         | 15        | 104        | 102        | 2   | 98               | 101             |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %                           |      | Org-029 | 98         | 15        | 110        | 117        | 6   | 97               | 100             |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %                           |      | Org-029 | 119        | 15        | 120        | 120        | 0   | 108              | 110             |  |

Envirolab Reference: 243030-B

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 243030-B

Revision No: R00

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 243030-B Page | 7 of 7

Revision No: R00

ENVÎROLAB ENVIROLAB 3

PRINCHEMENT OF CUSTODY FORM - Client

| [Copyright and Confidential]           | lential]                                       | Ç                    |              | C. Mullenae 18K/21045       | Sept.             | 8                                                                                                                      | $\frac{\sqrt{3}}{3}$ | ठू       | 于                     |                     |                  |                                               |              | ः<br>202                                | े 02 9910 6200                                      |
|----------------------------------------|------------------------------------------------|----------------------|--------------|-----------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------|----------------------|----------|-----------------------|---------------------|------------------|-----------------------------------------------|--------------|-----------------------------------------|-----------------------------------------------------|
| Client: GHD                            |                                                |                      |              |                             | Client            | Project                                                                                                                | Nome/                | mhar/6   | ř,                    |                     |                  |                                               |              | Pert                                    | Perth Lab - MPI                                     |
| Contact Person: Robert Webb            | bert Webb                                      |                      |              |                             |                   | Olonia soloni nambensina etc (le report title):                                                                        | Migiller             | umber/c  | one etc               | (le repo            | ort title)       | •••                                           |              | ូ 08                                    | 9317 2505                                           |
| Project Mgr: Dilara Valiff             | Valiff                                         |                      |              |                             | PO NO             | PO No.: 12516828                                                                                                       | Ş                    |          |                       |                     |                  |                                               |              | Melb                                    | ourne Lab                                           |
| Sampler: Robert Webb                   | ebb                                            |                      |              |                             | Enviro            | Envirolab Quote No.                                                                                                    | NO.                  |          |                       | ā                   | 2420             |                                               |              | ୍ର 25<br>ଜୟ                             | 25 Research Dr                                      |
| Address: 211 Victor                    | Address: 211 Victoria Square, Adelaide SA 5000 |                      |              |                             | Date re           | Date results required                                                                                                  | quired:              |          |                       | sta                 | standard         |                                               |              | מלסום                                   | ide Office                                          |
|                                        |                                                |                      |              |                             | Or cho            | Or choose: standard / same day / 1 day / 2 day / 3 day<br>Note: Inform lab in advance if urgent turnaround is required | indard i             | same d   | lay / 1 d<br>gent tur | ay / 2 d<br>narounc | ay/3d.<br>isrequ | ay<br>ired -                                  |              | 7a Th<br>○ 08                           | Adelaide Office<br>7a The Parade,<br>© 08 7087 6800 |
| Phone:                                 |                                                | Mob:                 |              | 468764489                   |                   | Additional report format: esdat / equis /                                                                              | rt form              | at: esda | t/equi                | 2                   | l                |                                               |              | Brisb<br>20a 1                          | Brisbane Office                                     |
| Email:                                 |                                                |                      |              |                             |                   | Lab Comments:                                                                                                          |                      |          |                       |                     | ı                |                                               |              | ು <b>07</b> :                           | 3266 9532                                           |
|                                        | Robe                                           | Robert.Webb2@ghd.com | ghd.com      |                             | -                 |                                                                                                                        |                      |          |                       |                     |                  |                                               |              | Darwi<br>Unit 2                         | Darwin Office - F<br>Unit 20/119 Reic               |
|                                        | 22                                             | Dilara.Valin@gnd.com | nd.com       |                             |                   |                                                                                                                        |                      |          |                       |                     |                  |                                               |              |                                         |                                                     |
|                                        |                                                | Hance                |              |                             |                   | <b>a</b>                                                                                                               |                      | -        |                       | Tests               | ts Req           | Required                                      |              |                                         |                                                     |
| Envirolab Sample<br>ID                 | Client Sample ID or information                | Depth                | Date sampled | Date sampled Type of sample | Short Suite (wate | PFAS Short Suite<br>(sediment)                                                                                         |                      |          |                       |                     |                  | <u>, , , , , , , , , , , , , , , , , , , </u> |              |                                         |                                                     |
|                                        | SS01                                           |                      | 8/05/2020    | <u>soil</u>                 |                   | 4                                                                                                                      | $\dashv$             | +        | +                     | 1                   | 1                |                                               | 1            | $\downarrow$                            | +                                                   |
| 7,                                     | SS02                                           |                      | 8/05/2020    | soil                        | -                 | 4                                                                                                                      | -                    | $\dashv$ | $\dashv$              |                     |                  | 1                                             | 7            | $\perp$                                 | +                                                   |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | SS03                                           |                      | 8/05/2020    | soil                        | -                 | -                                                                                                                      | +                    | $\dashv$ | $\dashv$              | 1                   |                  |                                               | 577          | 73 3                                    | Services                                            |
| ء                                      | SS04                                           |                      | 8/05/2020    | <u>soil</u>                 | _                 | $\dashv$                                                                                                               | $\dashv$             | $\dashv$ | $\dagger$             | ۲                   | John             | 丁                                             |              | 2 1 BO                                  | IS WOOD                                             |
|                                        | 8805                                           |                      | 8/05/2020    | <u>soil</u>                 |                   | $\dashv$                                                                                                               | _                    | $\dashv$ | $\dashv$              | 1                   |                  |                                               |              | 3 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 30 220                                              |
| 10                                     | SS06                                           |                      | 8/05/2020    | <u>soil</u>                 |                   | -                                                                                                                      |                      | -        | 1                     | , <sub>a</sub>      | Date Receivant   | Var                                           | $\prod$      | \$                                      | 3                                                   |
|                                        | SS07                                           |                      | 8/05/2020    | <u>soií</u>                 |                   | _                                                                                                                      | -                    | 1        | 7                     | 0                   | Received.        | eg e                                          |              | $\downarrow$                            | +                                                   |
| P (2)                                  | SS08                                           |                      | 8/05/2020    | <u>soil</u>                 |                   |                                                                                                                        |                      |          | 1                     |                     | 7                |                                               | _            | $\downarrow$                            | +                                                   |
|                                        | \$809 *                                        |                      | 8/05/2020    | soil                        |                   |                                                                                                                        |                      |          |                       | 8                   |                  |                                               | ~            | +                                       | 1                                                   |
|                                        | SS10                                           |                      | 8/05/2020    | <u>soil</u>                 |                   |                                                                                                                        | -                    | $\dashv$ | $\dashv$              | Security            | 1                | Security                                      | 7            | 4                                       | +                                                   |
|                                        | SS11                                           |                      | 8/05/2020    | <u>soil</u>                 |                   | _                                                                                                                      | $\dashv$             |          |                       | 7                   | 6                | 1000                                          | en/Non⊕      | <u> </u>                                | +                                                   |
|                                        | SS12                                           |                      | 8/05/2020    | soil                        | _                 | -                                                                                                                      | $\dashv$             | -        | 7                     | 7                   | 1                | 1                                             | 4            | +                                       | +                                                   |
|                                        | SS13                                           |                      | 8/05/2020    | <u>soil</u>                 | <u>→</u>          | $\dashv$                                                                                                               | $\dashv$             | $\dashv$ | 1                     | 1                   | 1                |                                               | +            | +                                       | +                                                   |
| 5                                      | SS14                                           |                      | 8/05/2020    | <u>soil</u>                 | <u></u>           | -                                                                                                                      | +                    |          | 7                     | 1                   |                  |                                               | $\downarrow$ | +                                       | +                                                   |
|                                        | SS15                                           |                      | 8/05/2020    | soil                        | `                 | $\dashv$                                                                                                               |                      | +        | 1                     |                     |                  |                                               | +            | +                                       | -                                                   |
|                                        | 3310                                           |                      | 8/05/2020    | soil                        |                   |                                                                                                                        |                      |          | _                     |                     |                  |                                               | 4            | +                                       | +                                                   |

# **ENVIROLAB GROUP**

National phone number 1300 424 344

<u>irth Lab</u> - MPL Laboratories -18 Hayden Crt, Myaree, WA 6154 08 9317 2505 | ⊴lab@mpl.com.au

<u>≱lbourne Lab</u> - Envirolab Services Research Drive, Croydon South, VIC 3136 03 9763 2500 | ○ melbourne@envirolab.com.au

<u>elaide Office</u> - Envirolab Services The Parade, Norwood, SA 5067 08 7087 6800 | > adelaide@envirolab.com.au

<u>sbane Office</u> - Envirolab Services I, 10-20 Depot St, Banyo, QLD 4014 I7 3266 9532 | -- brisbane@envirolab.com.au

<u>win Office</u> - Envirolab Services 120/119 Reichardt Road, Winnellie, NT 0820 8 8987 1201 | ∴ darwin@envirolab.com.au

information about the sample as you can Provide as much

Comments

Environmental Division Sydney
Work Order Reference
ES201698(3)

Telephone: +61-2-8784 8555

Mec sex 180180 116

issue date: 7 October 2019

Page 1 of 5

|              | _         | ,         |           |           |           |                                          | _                     | r         | _                     |           |                |                 |                |            |           |           |           |           |           |           |           |           | ·         | <del></del> |             |             |           |             |           |              |           |           |           |             |             |             | _           |
|--------------|-----------|-----------|-----------|-----------|-----------|------------------------------------------|-----------------------|-----------|-----------------------|-----------|----------------|-----------------|----------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|-----------|-------------|-----------|--------------|-----------|-----------|-----------|-------------|-------------|-------------|-------------|
| 5.7          | 52        |           | S.J.      | LI Q      | X<br>×i   | 14 14 14 14 14 14 14 14 14 14 14 14 14 1 | 2)                    | 5         | <b>(</b> )            | <b>)</b>  | 00 2 h /       | 171,            | A. Lander      | CÀ         | 7 M       | (_)<br>90 | 42        | 36        | 25        | nΣ        | 22        | 78        | (2        | 3           | 24          | 32          | 7.7       | مرد         | 56        | 5.5          | 20        |           | 1 60      | 70          | f (4)       | ~           |             |
| R806         | RB05      | RB04      | RB03      | RB02      | RB01      | DC07                                     | QC12a                 | QC12      | QC11a ో               | QC11      | Use Per/ DC05  | DC04            | DC03           | DC02       | FX07      | FX06      | FX05      | FX04      | FX03      | FX02      | FX01      | FXB01 7   | WB01      | \$\$30      | 8829        | SS28        | SS27      | SS26        | SS25      | SS24         | SS23      | SS22      | SS21      | SS20        | SS19        | SS18        | SS17        |
| 8/05/2020    | 8/05/2020 | 7/05/2020 | 7/05/2020 | 6/05/2020 | 6/05/2020 | 8/05/2020                                | 8/05/2020             | 8/05/2020 | 8/05/2020             | 8/05/2020 | 8/05/2020      | 8/05/2020       | 8/05/2020      | 8/05/2020  | 7/05/2020 | 7/05/2020 | 7/05/2020 | 7/05/2020 | 7/05/2020 | 7/05/2020 | 7/05/2020 | 7/05/2020 | 6/05/2020 | 8/05/2020   | 8/05/2020   | 8/05/2020   | 8/05/2020 | 8/05/2020   | 8/05/2020 | 8/05/2020    | 8/05/2020 | 8/05/2020 | 8/05/2020 | 8/05/2020   | 8/05/2020   | 8/05/2020   | 8/05/2020   |
| <u>water</u> | water     | water     | water     | water     | water     | water, sediment                          | sediment              | sediment  | <u>water</u>          | water S   | water_sediment | water, sediment | water sediment | water, eec |           |           | water     | <u>soil</u> | <u>soil</u> | <u>soil</u> | soil      | <u>soil</u> | soil      | <u>soil</u>  | soil      | soil      | soil      | <u>soil</u> | <u>soil</u> | <u>soil</u> | <u>soil</u> |
| <u>-</u>     | _         |           |           | 1         |           | -                                        |                       |           |                       |           |                | -<br>- \        | 1              |            |           |           | -         | <u> </u>  |           | _         |           | -         |           |             | _           |             | 1         | 1           |           |              |           |           |           |             | <b>→</b>    |             | _           |
|              |           |           |           |           |           |                                          |                       |           |                       |           | A.             | isy sediment?   | 3 sediment     | Part       |           |           |           |           |           |           |           |           |           |             |             |             |           |             |           |              |           |           |           |             |             |             |             |
|              |           |           |           |           |           |                                          |                       |           |                       |           |                |                 |                |            |           |           |           |           |           |           |           |           |           |             |             |             |           |             |           |              |           |           |           |             |             |             |             |
|              |           |           |           |           |           |                                          |                       |           |                       |           |                |                 |                |            |           |           |           |           |           |           |           |           |           |             |             |             |           |             |           |              |           |           |           |             |             |             |             |
|              |           |           |           |           |           |                                          | Please forward to ALS |           | Please forward to ALS |           |                |                 |                |            |           |           |           |           |           |           |           |           |           |             |             | 10          | 200       | C. MUJEM    | EUS JUNI  | pelly wither |           |           |           |             |             |             |             |

|              |              |              |                     |              |                |              |             |              |              | Τ            | T            | €                     | }          |              |              | ,             |              |              |              |              |              |              |             |              |               | (            | (3)                   |           |              |             |              |              |              |                |           |               |           |           |           |
|--------------|--------------|--------------|---------------------|--------------|----------------|--------------|-------------|--------------|--------------|--------------|--------------|-----------------------|------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|---------------|--------------|-----------------------|-----------|--------------|-------------|--------------|--------------|--------------|----------------|-----------|---------------|-----------|-----------|-----------|
| <u>်</u>     | 193<br>125   | <br> <br>    | ) () ()<br>() () () | (48)<br>(5)  | Z              |              | 1           | \$<;<br>✓    | 00           | 50           | 03           |                       | نيد<br>عار | 2            | ارد<br>نسبه  | <u>ئ</u><br>ب | À            | ئ.<br>سىد    | V            | 37           | ند           | S            | 3           | <i>5</i> ?   | 2             | 56           | ş                     | Z         | 2            | نی<br>نرپ   | ترّ          | 5"           | ૈ            | ا<br>هر        | 2         | ر<br>ال       | S         | 2         | ).<br>    |
| SW01_1.9-2.0 | SW01_0.1-0.3 | SW09_5.5-5.7 | SW09_4.0-4.2        | SW09_2.0-2.2 | SW09_1.6-1.8 ' | SW09_0.1-0.2 | SW08_4.95-5 | SW08_4.0-4.1 | SW08_2,3-2.4 | SW08_0.5-0.6 | SW07_4.2-4.3 | QC06a                 | QC06       | SW07_2.5-2.8 | SW07_1.0-1.2 | SW07_0.2-0.3  | SW06_4.3-4.4 | SW06_4.1-4.2 | SW06_0.5-0.7 | SW05_3.4-3.6 | SW05_2.0-2.2 | SW05_1.0-1.1 | SW05_0-0,2  | SW04_4.5-4.6 | SW04_3.85_3.9 | SW04_2.0-2.1 | QC04a                 | QC04      | SW04_1.0-1.3 | SW04_0-0.2  | SW03_4.8-4.9 | SW03_1.5-1.7 | SW03_0,5-0.7 | SW03_0-0.2     | TB02      | ТВ01          | FB03      | F802      | F801      |
| 7/05/2020    | 7/05/2020    | 7/05/2020    | 7/05/2020           | 7/05/2020    | 7/05/2020      | 7/05/2020    | 7/05/2020   | 7/05/2020    | 7/05/2020    | 7/05/2020    | 7/05/2020    | 7/05/2020             | 7/05/2020  | 7/05/2020    | 7/05/2020    | 7/05/2020     | 6/05/2020    | 6/05/2020    | 6/05/2020    | 6/05/2020    | 6/05/2020    | 6/05/2020    | 6/05/2020   | 6/05/2020    | 6/05/2020     | 6/05/2020    | 6/05/2020             | 6/05/2020 | 6/05/2020    | 6/05/2020   | 6/05/2020    | 6/05/2020    | 6/05/2020    | 6/05/2020      | 7/05/2020 | 6/05/2020     | 8/05/2020 | 7/05/2020 | 6/05/2020 |
| <u>soil</u>  | soil         | <u>soil</u>  | <u>soil</u>         | <u>soil</u>  | soil           | soil         | soil        | <u>soil</u>  | soil         | soil         | soil         | <u>soil</u>           | soil       | soil         | soil         | SOH           | soil         | <u>soil</u>  | soil         | <u>soil</u>  | <u>soil</u>  | <u>soil</u>  | <u>soil</u> | SOIL         | soll          | <u>soil</u>  | <u>soil</u>           | soil      | soil         | <u>soil</u> | soil         | <u>soil</u>  | <u>soil</u>  | <u>soil</u>    | water     | water         | water     | water     | water     |
| 1            | 1            | 1            |                     |              | 1              |              |             |              | د            |              |              |                       |            | 1            |              | 1             | 1            | 1            |              |              |              | -1           |             | 1            |               |              | 1                     | 1         | 1            |             |              | 1            |              | 1              | 1         | 1             | -1        | 3         | 1         |
|              |              |              |                     |              |                |              |             |              |              |              |              |                       |            |              |              |               |              |              |              |              |              |              |             |              |               |              |                       |           |              |             |              |              |              |                |           |               |           |           |           |
|              |              |              |                     |              |                |              |             |              |              |              |              |                       |            |              |              |               |              |              |              |              |              |              |             |              |               |              |                       |           |              |             |              |              |              |                |           |               |           |           |           |
|              |              |              |                     |              |                |              |             |              |              |              |              |                       |            |              |              |               |              |              |              |              |              |              |             |              |               |              |                       |           |              |             |              |              |              |                |           |               |           |           |           |
|              |              |              |                     |              |                |              |             |              |              |              |              |                       |            |              |              |               |              |              |              |              |              |              |             |              |               |              |                       |           |              |             |              |              |              |                |           |               |           |           |           |
|              |              |              |                     |              |                |              |             |              |              |              |              |                       |            |              |              |               |              |              |              |              |              |              |             |              |               |              |                       |           |              |             |              |              |              |                |           |               |           |           |           |
|              |              |              |                     |              |                |              |             |              |              |              |              | Please forward to ALS |            |              |              |               |              |              |              |              |              |              |             |              |               |              | Please forward to ALS |           |              |             |              |              | 181          | C: MC/         | السله     | 1001111111100 |           |           |           |
|              |              |              |                     |              |                | l            | 1           |              | 1            |              |              | 1                     | <u>1</u>   |              |              |               |              |              | J            |              |              |              |             |              | _1            |              |                       |           |              |             | ]            |              | 0 0 x        | کا<br>کا<br>کا |           | Z<br>S        | -         |           |           |

Page 3 of 5

Issue date: 7 October 2019

|              |               | 4                     | 4          |              |              |              |              |              |                    |                    |            |           | 7           | 117         | معید<br>برونو<br>محمد | <u>ا</u>  | ိုင္           | <u></u><br>つ | <u>ت</u><br>للا | 300         | (            | or)                   |             |              |              |              |            |              |              |              |                      |              |              |              | 3                     | )           |
|--------------|---------------|-----------------------|------------|--------------|--------------|--------------|--------------|--------------|--------------------|--------------------|------------|-----------|-------------|-------------|-----------------------|-----------|----------------|--------------|-----------------|-------------|--------------|-----------------------|-------------|--------------|--------------|--------------|------------|--------------|--------------|--------------|----------------------|--------------|--------------|--------------|-----------------------|-------------|
|              | े             | ا ۵                   | <u> </u>   | ند           | لد           | NV.          | 700          | NA           | 15                 | 7                  | Ī          | てつ        |             | اميرا       |                       |           | 1 <sup>8</sup> | <u> </u>     | . A             | £.          | Ş            | ١                     | 104         | 107          | ্র           | Ŏ.           | 3          | د<br>ور      | S)           | ور<br>شهد    | <u>ه</u>             | 3            | 2            | 2            | L                     | 2           |
| SB03_0.4-0.6 | SB02_0,8-0.95 | SB02_0.6-0.8          | QC02       | SB02_0.1-0.3 | SB02_0.1-0.3 | SB01_3.0-3.2 | SB01_2.3-2.8 | SB01_1.7-1.9 | SB01_0.9-1.1 🐧 🗞 🟠 | SB01_0.2-0.4 10.4  | SB01_0-0.2 | SW20      | SW19        | SW18        | SW17                  | SW16      | SW15           | SW14         | SW13            | SW12        | SW11_3.0-3.2 | QC08a                 | GC08        | SW11_2.0-2.3 | SW11_1.3-1.5 | SW11_0.4-0.5 | SW11_0-0.1 | SW10_2,7-2.8 | SW10_1.5-1.7 | SW10_0.8-0.9 | SW10_0-0.2           | SW02_1.4-1.5 | SW02_0.9-1.1 | SW02_0.1-0.3 | QC07a                 | QC07        |
| 6/05/2020    | \ 6/05/2020   | 6/05/2020             | 6/05/2020  | 6/05/2020    | 6/05/2020    | 6/05/2020    | 6/05/2020    | 6/05/2020    | -1,0               | - C. G \ 6/05/2020 | 6/05/2020  | 7/05/2020 | 7/05/2020   | 7/05/2020   | 7/05/2020             | 7/05/2020 | 7/05/2020      | 7/05/2020    | 7/05/2020       | 7/05/2020   | 7/05/2020    | 7/05/2020             | 7/05/2020   | 7/05/2020    | 7/05/2020    | 7/05/2020    | 7/05/2020  | 7/05/2020    | 7/05/2020    | 7/05/2020    | 7/05/2020            | 7/05/2020    | 7/05/2020    | 7/05/2020    | 7/05/2020             | 7/05/2020   |
| <u>soll</u>  | <u>sol</u>    | SOI                   | <u>sol</u> | <u>soil</u>  | soil         | soil         | <u>soil</u>  | <u>soil</u>  | soil               | SOE                | <u>soi</u> | soil      | <u>soil</u> | <u>soil</u> | <u>soji</u>           | soil      | soil           | soil         | soil            | <u>soil</u> | soil         | soil                  | <u>soil</u> | soil         | soil         | soil         | soil       | <u>soil</u>  | <u>soil</u>  | soil         | <u>soil</u>          | <u>soil</u>  | soil         | <u>soil</u>  | <u>soil</u>           | <u>soil</u> |
|              |               |                       |            |              |              |              |              |              |                    |                    | 1          |           |             |             |                       |           |                |              |                 |             |              | 1                     |             |              |              |              | 1          |              |              |              |                      |              |              |              |                       |             |
|              |               | Please forward to ALS |            |              |              |              |              |              |                    |                    |            |           | 5           |             |                       |           |                |              |                 |             |              | Please forward to ALS |             |              |              |              |            | 181          | W 3          | Manghor      | Meling hished by Eux |              |              |              | Please forward to ALS |             |

C505/12

Page 4 of 5

| 17   17                                            | m 302 V00 | 153            | Signature:               | Date & Time: | Print Name:                    | Relinquis        |                              |                 |           |           |           |                 |                 | I<br>S      | 5          | 14           | (i)       | چ          |              |              |              |               |           |                |               |              | (            | (a)         |             |              |              | K            | 20)       |             |              |             |              |              |
|----------------------------------------------------|-----------|----------------|--------------------------|--------------|--------------------------------|------------------|------------------------------|-----------------|-----------|-----------|-----------|-----------------|-----------------|-------------|------------|--------------|-----------|------------|--------------|--------------|--------------|---------------|-----------|----------------|---------------|--------------|--------------|-------------|-------------|--------------|--------------|--------------|-----------|-------------|--------------|-------------|--------------|--------------|
| 6/05/2020 soli   1   1   1   1   1   1   1   1   1 | 0.00      | , 3m,          | 9:                       |              | ne:                            | shed by (C G     | P                            | 7               | Z P       | 75        | 3         | A CO            | -€<br>-€        |             |            |              | aleston,  | 7<br>  4   | 15           | S<br>F       | در           | ,55<br>(0)    | 2         | 10<br>10<br>10 | i ja          | 77.4         | × × ×        | 1           | ر.<br>در    |              | 130          | -<br>つ<br>タ  | Andrew A  |             | الم<br>المرا | ()<br>()    | 727          | وب<br>اعر    |
|                                                    | 7         | 5-0.3<br>5-1.7 | 1/05/2020                | l            | Robert Webb                    | HD               | lease tick the box if observ | Creek_4         | QC14a     | QC14      | OC13a     | Creek_6<br>OC13 | Creek_5         | <u> </u>    | _          | SB07_0.4-0.6 | QC03a     | SB07_0-0.2 | SB06_1.9-2.1 | SB06_1.0-1.2 | SB06_0.4-0.6 | SB06_0,23-0,4 | }         | . 1            | SB06_Concrete | SB05_3.1-3.3 | SB05_1.7-1.9 | QC01a       | QC01        | SB05_0.8-1.0 | SB05_0.3-0.4 | SB05_0.1-0.2 | QC05a     | QC05        | SB04_0-0.2   | SB03_3-3.2  | SB03_2.3-2.8 | SB03_1.7-1.9 |
|                                                    |           |                |                          |              |                                |                  | ed settled sec               |                 |           |           |           |                 |                 | ~           | 7          |              |           |            |              |              |              |               | 7         |                |               |              |              |             |             |              |              |              |           |             |              |             |              |              |
|                                                    |           |                |                          |              |                                |                  | liment preser                | 8/05/2020       | 8/05/2020 | 8/05/2020 | 8/05/2020 | 8/05/2020       | 8/05/2020       | 6/05/2020   | 6/05/2020  | 6/05/2020    | 6/05/2020 | 6/05/2020  | 6/05/2020    | 6/05/2020    | 6/05/2020    | 6/05/2020     | 6/05/2020 | 6/05/2020      | 6/05/2020     | 6/05/2020    | 6/05/2020    | 6/05/2020   | 6/05/2020   | 6/05/2020    | 6/05/2020    | 6/05/2020    | 6/05/2020 | 6/05/2020   | 6/05/2020    | 6/05/2020   | 6/05/2020    | 6/05/2020    |
|                                                    |           | infoll myl     | Signature:               | Date & Time: | Print Name:                    | Received by (Cor | it in water samples          | water, sediment | sediment  | sediment  | water     | water, sediment | water, sediment | <u>soil</u> | soil       | soil         | soil      | soil Soil  | <u>soil</u>  | <u>soil</u>  | <u>soil</u>  | soil          | concrete  | concrete       | concrete      | soil         | <u>soil</u>  | <u>soil</u> | <u>soil</u> | soii         | <u>soil</u>  | soil         | soil      | <u>soil</u> | soil         | <u>soil</u> | soil         | soil         |
|                                                    |           | Madi           |                          |              |                                | mpany):          | s is to be in                |                 |           |           | -         |                 |                 |             | <b>→</b> . | _3           | - A       |            |              | 3-           | 3            |               |           |                |               |              |              |             |             | 1            |              |              |           | _           | 1            |             |              |              |
|                                                    |           | ed.            |                          |              |                                |                  | cluded in t                  |                 |           | 1         |           |                 |                 |             |            | +            |           |            |              |              |              |               | 1         |                | _             |              |              |             |             |              |              |              |           |             |              |             |              |              |
|                                                    |           |                |                          |              |                                |                  | he extraction                | -               |           | +         |           |                 |                 |             |            |              |           |            |              |              |              |               |           | -              | -             |              |              |             |             |              |              |              |           |             |              |             |              |              |
| Lab Use Only Cooling: Security:                    | での        |                | TAT Req - SAME day / 1 / | Temperature: | Job number:                    |                  | on and/or analysis           |                 |           |           |           |                 |                 |             |            |              |           |            |              |              |              |               |           |                |               |              |              |             |             |              |              |              |           |             |              |             |              |              |
|                                                    |           |                | 2 / 3 / 4 / STD          | Security :   | Cooling: Ice / Ice pack / None | Lab Use Only     |                              |                 |           |           |           |                 |                 |             |            |              |           |            |              |              |              |               | +         |                |               |              |              |             |             |              |              |              |           |             |              | WP.II       |              |              |



### **CERTIFICATE OF ANALYSIS**

Page

: 1 of 6

**Work Order** : ES2016983

: GHD PTY LTD Laboratory

: Environmental Division Sydney Contact : DILARA VALIFF Contact : Angus Harding

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : 2/11 VICTORIA SQUARE

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8111 6600 Telephone : +61 2 8784 8555

Project Date Samples Received : 12516828 : 18-May-2020 15:00 Order number : 12516828 **Date Analysis Commenced** : 21-May-2020

C-O-C number Issue Date : 25-May-2020 12:31

Sampler : Robert Webb

Site

Quote number : EN/005/19

No. of samples received : 10 No. of samples analysed : 8

Accreditation No. 825 Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** 

#### Signatories

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position          | Accreditation Category             |
|----------------|-------------------|------------------------------------|
| Ankit Joshi    | Inorganic Chemist | Sydney Inorganics, Smithfield, NSW |
| Franco Lentini | LCMS Coordinator  | Sydney Inorganics, Smithfield, NSW |
| Franco Lentini | LCMS Coordinator  | Sydney Organics, Smithfield, NSW   |

 Page
 : 2 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

 Page
 : 3 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Analytical Results

| Sub-Matrix: SEDIMENT<br>(Matrix: SOIL)       |                        | Clie         | ent sample ID  | QC11a             | QC04a             | QC06a             | QC08a             | QC02a             |
|----------------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                              | C                      | lient sampli | ng date / time | 08-May-2020 00:00 | 06-May-2020 00:00 | 07-May-2020 00:00 | 07-May-2020 00:00 | 06-May-2020 00:00 |
| Compound                                     | CAS Number             | LOR          | Unit           | ES2016983-001     | ES2016983-003     | ES2016983-004     | ES2016983-006     | ES2016983-007     |
|                                              |                        |              |                | Result            | Result            | Result            | Result            | Result            |
| EA055: Moisture Content (Dried @ 1           | 05-110°C)              |              |                |                   |                   |                   |                   |                   |
| Moisture Content                             |                        | 0.1          | %              | 31.4              | 47.0              | 36.5              | 60.2              | 5.9               |
| EP231A: Perfluoroalkyl Sulfonic Aci          | ds                     |              |                |                   |                   |                   |                   |                   |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5               | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.0002       | mg/kg          | <0.0002           | 0.0004            | 0.0006            | <0.0002           | 0.0002            |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.0002       | mg/kg          | 0.0043            | 0.0007            | 0.0013            | <0.0002           | 0.0013            |
| EP231B: Perfluoroalkyl Carboxylic            | Acids                  |              |                |                   |                   |                   |                   |                   |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.001        | mg/kg          | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.0002       | mg/kg          | <0.0002           | <0.0002           | 0.0002            | <0.0002           | <0.0002           |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <0.0002           | <0.0002           | <0.0002           |
| EP231D: (n:2) Fluorotelomer Sulfon           | nic Acids              |              |                |                   |                   |                   |                   |                   |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| 6:2 Fluorotelomer sulfonic acid (6:2 FTS)    | 27619-97-2             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <0.0005           | <0.0005           | <0.0005           |
| EP231P: PFAS Sums                            |                        |              |                |                   |                   |                   |                   |                   |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.0002       | mg/kg          | 0.0043            | 0.0011            | 0.0019            | <0.0002           | 0.0015            |
| Sum of PFAS (WA DER List)                    |                        | 0.0002       | mg/kg          | 0.0043            | 0.0011            | 0.0021            | <0.0002           | 0.0015            |
| EP231S: PFAS Surrogate                       |                        |              |                |                   |                   |                   |                   |                   |
| 13C4-PFOS                                    |                        | 0.0002       | %              | 96.0              | 106               | 105               | 96.0              | 104               |
| 13C8-PFOA                                    |                        | 0.0002       | %              | 106               | 109               | 117               | 102               | 110               |

 Page
 : 4 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Analytical Results

| Sub-Matrix: SEDIMENT (Matrix: SOIL)          |                        | Clie         | ent sample ID  | QC05a             | QC03a             | <br> |  |
|----------------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|------|--|
| (Matrix: COIL)                               | C                      | lient sampli | ng date / time | 06-May-2020 00:00 | 06-May-2020 00:00 | <br> |  |
| Compound                                     | CAS Number             | LOR          | Unit           | ES2016983-008     | ES2016983-010     | <br> |  |
| ·                                            |                        |              |                | Result            | Result            | <br> |  |
| EA055: Moisture Content (Dried @ 10          | 05-110°C)              |              |                |                   |                   |      |  |
| Moisture Content                             |                        | 0.1          | %              | 13.5              | 15.3              | <br> |  |
| EP231A: Perfluoroalkyl Sulfonic Acid         | is                     |              |                |                   |                   |      |  |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5               | 0.0002       | mg/kg          | 0.0003            | 0.0004            | <br> |  |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.0002       | mg/kg          | 0.0044            | 0.0154            | <br> |  |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.0002       | mg/kg          | 0.0280            | 0.178             | <br> |  |
| EP231B: Perfluoroalkyl Carboxylic A          | Acids                  |              |                |                   |                   |      |  |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.001        | mg/kg          | <0.001            | 0.001             | <br> |  |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.0002       | mg/kg          | 0.0009            | 0.0018            | <br> |  |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.0002       | mg/kg          | 0.0013            | 0.0020            | <br> |  |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.0002       | mg/kg          | 0.0007            | 0.0008            | <br> |  |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.0002       | mg/kg          | 0.0031            | 0.0033            | <br> |  |
| EP231D: (n:2) Fluorotelomer Sulfoni          | c Acids                |              |                |                   |                   |      |  |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.0005       | mg/kg          | 0.0108            | 0.0012            | <br> |  |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| EP231P: PFAS Sums                            |                        |              |                |                   |                   |      |  |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.0002       | mg/kg          | 0.0324            | 0.193             | <br> |  |
| Sum of PFAS (WA DER List)                    |                        | 0.0002       | mg/kg          | 0.0495            | 0.204             | <br> |  |
| EP231S: PFAS Surrogate                       |                        |              |                |                   |                   |      |  |
| 13C4-PFOS                                    |                        | 0.0002       | %              | 95.5              | 96.5              | <br> |  |
| 13C8-PFOA                                    |                        | 0.0002       | %              | 102               | 106               | <br> |  |

 Page
 : 5 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)            |                        | Clie         | ent sample ID  | QC12a             | <br> | <br> |
|----------------------------------------------|------------------------|--------------|----------------|-------------------|------|------|
| (Maurix. WATER)                              | CI                     | lient sampli | ng date / time | 08-May-2020 00:00 | <br> | <br> |
| Compound                                     | CAS Number             | LOR          | Unit           | ES2016983-002     | <br> | <br> |
|                                              |                        |              |                | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acid         | s                      |              |                |                   |      |      |
| Perfluorobutane sulfonic acid                | 375-73-5               | 0.02         | μg/L           | 0.11              | <br> | <br> |
| (PFBS)                                       |                        |              |                |                   |      |      |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.02         | μg/L           | 2.23              | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.01         | μg/L           | 0.98              | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic A          | cids                   |              |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.1          | μg/L           | <0.1              | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.02         | μg/L           | 0.12              | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.02         | μg/L           | 0.35              | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.02         | μg/L           | 0.12              | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.01         | μg/L           | 0.19              | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonio         | c Acids                |              |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.05         | μg/L           | <0.05             | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2             | 0.05         | μg/L           | <0.05             | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.05         | μg/L           | <0.05             | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.05         | μg/L           | <0.05             | <br> | <br> |
| EP231P: PFAS Sums                            |                        |              |                |                   |      |      |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.01         | μg/L           | 3.21              | <br> | <br> |
| Sum of PFAS (WA DER List)                    |                        | 0.01         | μg/L           | 4.10              | <br> | <br> |
| EP231S: PFAS Surrogate                       |                        |              |                |                   |      |      |
| 13C4-PFOS                                    |                        | 0.02         | %              | 103               | <br> | <br> |
| 13C8-PFOA                                    |                        | 0.02         | %              | 108               | <br> | <br> |

 Page
 : 6 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Surrogate Control Limits

| Sub-Matrix: SEDIMENT   |            | Recovery | Limits (%) |
|------------------------|------------|----------|------------|
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |
| Sub-Matrix: WATER      |            | Recovery | Limits (%) |
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |



#### **QUALITY CONTROL REPORT**

: 25-May-2020

**Work Order** : **ES2016983** Page : 1 of 7

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

Contact : DILARA VALIFF Contact : Angus Harding

Address : 2/11 VICTORIA SQUARE Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 08 8111 6600 Telephone : +61 2 8784 8555

Project: 12516828Date Samples Received: 18-May-2020Order number: 12516828Date Analysis Commenced: 21-May-2020

C-O-C number : ---- Issue Date

Sampler : Robert Webb

No. of samples received : 10

No. of samples analysed : 8

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

 Multiple Report (MR) and between Control College (1992) Report Property and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

ADELAIDE SA. AUSTRALIA 5000

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: EN/005/19

Signatories

Site Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit JoshiInorganic ChemistSydney Inorganics, Smithfield, NSWFranco LentiniLCMS CoordinatorSydney Inorganics, Smithfield, NSWFranco LentiniLCMS CoordinatorSydney Organics, Smithfield, NSW

 Page
 : 2 of 7

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                         |                                                   |             | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |  |  |
|----------------------|-------------------------|---------------------------------------------------|-------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID | Client sample ID        | Method: Compound                                  | CAS Number  | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| EA055: Moisture Co   | ntent (Dried @ 105-110° | °C) (QC Lot: 3034509)                             |             |                                   |       |                 |                  |         |                     |  |  |
| ES2016983-004        | QC06a                   | EA055: Moisture Content                           |             | 0.1                               | %     | 36.5            | 35.6             | 2.55    | 0% - 20%            |  |  |
| ES2017065-006        | Anonymous               | EA055: Moisture Content                           |             | 0.1                               | %     | 19.1            | 17.6             | 8.32    | 0% - 20%            |  |  |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC | Lot: 3036572)                                     |             |                                   |       |                 |                  |         |                     |  |  |
| EM2008355-004        | Anonymous               | EP231X: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5    | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)     | 355-46-4    | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorooctane sulfonic acid (PFOS)      | 1763-23-1   | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
| ES2016983-003        | QC04a                   | EP231X: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5    | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)     | 355-46-4    | 0.0002                            | mg/kg | 0.0004          | 0.0005           | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorooctane sulfonic acid (PFOS)      | 1763-23-1   | 0.0002                            | mg/kg | 0.0007          | 0.0007           | 0.00    | No Limit            |  |  |
| EP231B: Perfluoro    | alkyl Carboxylic Acids( | QC Lot: 3036572)                                  |             |                                   |       |                 |                  |         |                     |  |  |
| EM2008355-004        | Anonymous               | EP231X: Perfluoropentanoic acid (PFPeA)           | 2706-90-3   | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)            | 307-24-4    | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)           | 375-85-9    | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorooctanoic acid (PFOA)             | 335-67-1    | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)             | 375-22-4    | 0.001                             | mg/kg | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
| ES2016983-003        | QC04a                   | EP231X: Perfluoropentanoic acid (PFPeA)           | 2706-90-3   | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)            | 307-24-4    | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)           | 375-85-9    | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorooctanoic acid (PFOA)             | 335-67-1    | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |  |  |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)             | 375-22-4    | 0.001                             | mg/kg | <0.001          | <0.001           | 0.00    | No Limit            |  |  |
| EP231D: (n:2) Fluo   | rotelomer Sulfonic Acid | s (QC Lot: 3036572)                               |             |                                   |       |                 |                  |         |                     |  |  |
| EM2008355-004        | Anonymous               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.0005                            | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |  |  |

 Page
 : 3 of 7

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: SOIL     |                         |                                                     |             |        | Laboratory Duplicate (DUP) Report |                 |                        |         |                     |  |  |  |  |
|----------------------|-------------------------|-----------------------------------------------------|-------------|--------|-----------------------------------|-----------------|------------------------|---------|---------------------|--|--|--|--|
| Laboratory sample ID | Client sample ID        | Method: Compound                                    | CAS Number  | LOR    | Unit                              | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |  |  |  |  |
| EP231D: (n:2) Fluor  | rotelomer Sulfonic Acid | ds (QC Lot: 3036572) - continued                    |             |        |                                   |                 |                        |         |                     |  |  |  |  |
| EM2008355-004        | Anonymous               | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005 | mg/kg                             | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005 | mg/kg                             | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg                             | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |  |  |
| ES2016983-003        | QC04a                   | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.0005 | mg/kg                             | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005 | mg/kg                             | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005 | mg/kg                             | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg                             | <0.0005         | <0.0005                | 0.00    | No Limit            |  |  |  |  |
| Sub-Matrix: WATER    |                         | ,                                                   |             | l l    |                                   | Laboratory I    | Duplicate (DUP) Report |         |                     |  |  |  |  |
| Laboratory sample ID | Client sample ID        | Method: Compound                                    | CAS Number  | LOR    | Unit                              | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |  |  |  |  |
|                      | Ikyl Sulfonic Acids (QC |                                                     |             |        |                                   |                 |                        | (- //   |                     |  |  |  |  |
| ES2017131-001        | Anonymous               | EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.01   | μg/L                              | <0.01           | <0.01                  | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.02   | μg/L                              | 0.20            | 0.21                   | 0.00    | 0% - 50%            |  |  |  |  |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.02   | μg/L                              | 1.20            | 1.10                   | 8.38    | 0% - 20%            |  |  |  |  |
| ES2016983-002        | QC12a                   | EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.01   | μg/L                              | 0.98            | 0.84                   | 15.2    | 0% - 20%            |  |  |  |  |
|                      |                         | EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.02   | μg/L                              | 0.11            | 0.11                   | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.02   | μg/L                              | 2.23            | 2.36                   | 5.29    | 0% - 20%            |  |  |  |  |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids  | (QC Lot: 3036215)                                   |             |        |                                   |                 |                        |         |                     |  |  |  |  |
| ES2017131-001        | Anonymous               | EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.01   | μg/L                              | <0.01           | <0.01                  | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.02   | μg/L                              | 0.10            | 0.10                   | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.02   | μg/L                              | 0.21            | 0.21                   | 0.00    | 0% - 50%            |  |  |  |  |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.02   | μg/L                              | 0.06            | 0.06                   | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.1    | μg/L                              | <0.1            | <0.1                   | 0.00    | No Limit            |  |  |  |  |
| ES2016983-002        | QC12a                   | EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.01   | μg/L                              | 0.19            | 0.17                   | 10.2    | 0% - 50%            |  |  |  |  |
|                      |                         | EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.02   | μg/L                              | 0.12            | 0.12                   | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.02   | μg/L                              | 0.35            | 0.36                   | 0.00    | 0% - 50%            |  |  |  |  |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.02   | μg/L                              | 0.12            | 0.11                   | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.1    | μg/L                              | <0.1            | <0.1                   | 0.00    | No Limit            |  |  |  |  |
| EP231D: (n:2) Fluor  | rotelomer Sulfonic Acid |                                                     |             |        |                                   |                 |                        |         |                     |  |  |  |  |
| ES2017131-001        | Anonymous               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05   | μg/L                              | <0.05           | <0.05                  | 0.00    | No Limit            |  |  |  |  |
|                      |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05   | μg/L                              | <0.05           | <0.05                  | 0.00    | No Limit            |  |  |  |  |

 Page
 : 4 of 7

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER    |                            |                                                     |             | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |  |  |  |  |
|----------------------|----------------------------|-----------------------------------------------------|-------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|--|--|--|--|
| Laboratory sample ID | Client sample ID           | Method: Compound                                    | CAS Number  | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |  |  |  |
| EP231D: (n:2) Fluore | otelomer Sulfonic Acids (Q | C Lot: 3036215) - continued                         |             |                                   |      |                 |                  |         |                     |  |  |  |  |  |
| ES2017131-001        | Anonymous                  | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |  |  |  |  |  |
|                      |                            | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |  |  |  |  |  |
| ES2016983-002        | QC12a                      | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |  |  |  |  |  |
|                      |                            | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |  |  |  |  |  |
|                      |                            | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |  |  |  |  |  |
|                      |                            | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05                              | μg/L | <0.05           | <0.05            | 0.00    | No Limit            |  |  |  |  |  |

 Page
 : 5 of 7

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                    |             | Method Blank (MB) |       | Laboratory Control Spike (LCS | S) Report     |                               |           |            |
|-----------------------------------------------------|-------------|-------------------|-------|-------------------------------|---------------|-------------------------------|-----------|------------|
|                                                     |             |                   |       | Report                        | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                    | CAS Number  | LOR               | Unit  | Result                        | Concentration | LCS                           | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 3036  | 572)        |                   |       |                               |               |                               |           |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.0002            | mg/kg | <0.0002                       | 0.00125 mg/kg | 93.6                          | 72.0      | 128        |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.0002            | mg/kg | <0.0002                       | 0.00125 mg/kg | 94.4                          | 67.0      | 130        |
| EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.0002            | mg/kg | <0.0002                       | 0.00125 mg/kg | 94.4                          | 68.0      | 136        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 30  | 036572)     |                   |       |                               |               |                               |           |            |
| EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.001             | mg/kg | <0.001                        | 0.00625 mg/kg | 116                           | 71.0      | 135        |
| EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.0002            | mg/kg | <0.0002                       | 0.00125 mg/kg | 113                           | 69.0      | 132        |
| EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.0002            | mg/kg | <0.0002                       | 0.00125 mg/kg | 114                           | 70.0      | 132        |
| EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.0002            | mg/kg | <0.0002                       | 0.00125 mg/kg | 106                           | 71.0      | 131        |
| EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.0002            | mg/kg | <0.0002                       | 0.00125 mg/kg | 113                           | 69.0      | 133        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot   | : 3036572)  |                   |       |                               |               |                               |           |            |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.0005            | mg/kg | <0.0005                       | 0.00125 mg/kg | 93.2                          | 62.0      | 145        |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005            | mg/kg | <0.0005                       | 0.00125 mg/kg | 107                           | 64.0      | 140        |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005            | mg/kg | <0.0005                       | 0.00125 mg/kg | 111                           | 65.0      | 137        |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005            | mg/kg | <0.0005                       | 0.00125 mg/kg | 120                           | 69.2      | 143        |
| Sub-Matrix: WATER                                   |             |                   |       | Method Blank (MB)             |               | Laboratory Control Spike (LCS | S) Report |            |
| Sub-Iviatrix. WATER                                 |             |                   |       | Report                        | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                    | CAS Number  | LOR               | Unit  | Result                        | Concentration | LCS                           | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 3036  | (215)       |                   |       |                               |               |                               |           |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.02              | μg/L  | <0.02                         | 0.25 μg/L     | 118                           | 72.0      | 130        |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.02              | μg/L  | <0.02                         | 0.25 μg/L     | 106                           | 68.0      | 131        |
| EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.01              | μg/L  | <0.01                         | 0.25 μg/L     | 118                           | 65.0      | 140        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3   | 036215)     |                   |       |                               |               |                               |           |            |
| EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.1               | μg/L  | <0.1                          | 1.25 μg/L     | 98.1                          | 73.0      | 129        |
| EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.02              | μg/L  | <0.02                         | 0.25 μg/L     | 122                           | 72.0      | 129        |
| EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.02              | μg/L  | <0.02                         | 0.25 μg/L     | 122                           | 72.0      | 129        |
| EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.02              | μg/L  | <0.02                         | 0.25 μg/L     | 128                           | 72.0      | 130        |
| EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.01              | μg/L  | <0.01                         | 0.25 μg/L     | 129                           | 71.0      | 133        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot   | : 3036215)  |                   |       |                               |               |                               |           |            |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05              | μg/L  | <0.05                         | 0.25 μg/L     | 109                           | 63.0      | 143        |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05              | μg/L  | <0.05                         | 0.25 μg/L     | 114                           | 64.0      | 140        |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05              | μg/L  | <0.05                         | 0.25 μg/L     | 112                           | 67.0      | 138        |
| · ,                                                 | 120226-60-0 | 0.05              | +     | <0.05                         | 0.25 μg/L     | 115                           | 71.4      | 144        |

 Page
 : 6 of 7

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: SOIL                                                                    |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                | Matrix Spike (MS) Report                                                                                                          |                                                              |                                                              |                                                      |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|--|
|                                                                                    |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                | Spike                                                                                                                             | SpikeRecovery(%)                                             | Recovery L                                                   | imits (%)                                            |  |
| aboratory sample ID                                                                | Client sample ID                                                                                                                             | Method: Compound                                                                                                                                                                                                                                                                                                                                                                  | CAS Number                                                                                     | Concentration                                                                                                                     | MS                                                           | Low                                                          | High                                                 |  |
| P231A: Perfluoro                                                                   | palkyl Sulfonic Acids (QCLot: 3036572)                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |                                                                                                                                   |                                                              |                                                              |                                                      |  |
| EM2008355-004                                                                      | Anonymous                                                                                                                                    | EP231X: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                      | 375-73-5                                                                                       | 0.00125 mg/kg                                                                                                                     | 108                                                          | 72.0                                                         | 128                                                  |  |
|                                                                                    | ,                                                                                                                                            | EP231X: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                     | 355-46-4                                                                                       | 0.00125 mg/kg                                                                                                                     | 106                                                          | 67.0                                                         | 130                                                  |  |
|                                                                                    |                                                                                                                                              | EP231X: Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                      | 1763-23-1                                                                                      | 0.00125 mg/kg                                                                                                                     | 112                                                          | 68.0                                                         | 136                                                  |  |
| EP231B: Perfluor                                                                   | oalkyl Carboxylic Acids (QCLot: 3036572)                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |                                                                                                                                   |                                                              |                                                              |                                                      |  |
| EM2008355-004                                                                      | Anonymous                                                                                                                                    | EP231X: Perfluorobutanoic acid (PFBA)                                                                                                                                                                                                                                                                                                                                             | 375-22-4                                                                                       | 0.00625 mg/kg                                                                                                                     | 123                                                          | 71.0                                                         | 135                                                  |  |
|                                                                                    | aren, meas                                                                                                                                   | EP231X: Perfluoropentanoic acid (PFPeA)                                                                                                                                                                                                                                                                                                                                           | 2706-90-3                                                                                      | 0.00125 mg/kg                                                                                                                     | 117                                                          | 69.0                                                         | 132                                                  |  |
|                                                                                    |                                                                                                                                              | EP231X: Perfluorohexanoic acid (PFHxA)                                                                                                                                                                                                                                                                                                                                            | 307-24-4                                                                                       | 0.00125 mg/kg                                                                                                                     | 119                                                          | 70.0                                                         | 132                                                  |  |
|                                                                                    |                                                                                                                                              | EP231X: Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                           | 375-85-9                                                                                       | 0.00125 mg/kg                                                                                                                     | 115                                                          | 71.0                                                         | 131                                                  |  |
|                                                                                    |                                                                                                                                              | EP231X: Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                             | 335-67-1                                                                                       | 0.00125 mg/kg                                                                                                                     | 116                                                          | 69.0                                                         | 133                                                  |  |
| ED221D: (p:2) Elu                                                                  | orotelomer Sulfonic Acids (QCLot: 3036572)                                                                                                   | El 2017. I cilidolocatariole dola (i i ext)                                                                                                                                                                                                                                                                                                                                       |                                                                                                | gg                                                                                                                                |                                                              |                                                              |                                                      |  |
| EM2008355-004                                                                      | Anonymous                                                                                                                                    | EDOMAN, 4.0 Elyspatalary and lifering skid (4.0 ETO)                                                                                                                                                                                                                                                                                                                              | 757124-72-4                                                                                    | 0.00125 mg/kg                                                                                                                     | 106                                                          | 62.0                                                         | 145                                                  |  |
| ZIVIZ006355-004                                                                    | Anonymous                                                                                                                                    | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                                                                                                                                                                                                                                                                                                                                 | 27619-97-2                                                                                     | 0.00125 mg/kg                                                                                                                     | 118                                                          | 64.0                                                         | 140                                                  |  |
|                                                                                    |                                                                                                                                              | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                                                                                                   | 115                                                          |                                                              | 137                                                  |  |
|                                                                                    |                                                                                                                                              | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                                                                                                                                                                                                                                                                                                                                 | 39108-34-4<br>120226-60-0                                                                      | 0.00125 mg/kg                                                                                                                     | 121                                                          | 65.0<br>69.2                                                 | 143                                                  |  |
|                                                                                    |                                                                                                                                              | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                                                                                                                                                                                                                                                                                                                               | 120220-00-0                                                                                    | 0.00125 mg/kg                                                                                                                     | 121                                                          | 09.2                                                         | 143                                                  |  |
|                                                                                    |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |                                                                                                                                   |                                                              |                                                              |                                                      |  |
| Sub-Matrix: WATER                                                                  |                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                                                                                                   | trix Spike (MS) Report                                       |                                                              |                                                      |  |
|                                                                                    |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                | Spike                                                                                                                             | SpikeRecovery(%)                                             | Recovery L                                                   |                                                      |  |
|                                                                                    | Client sample ID                                                                                                                             | Method: Compound                                                                                                                                                                                                                                                                                                                                                                  | CAS Number                                                                                     |                                                                                                                                   |                                                              | Recovery L<br>Low                                            | imits (%)<br>High                                    |  |
| aboratory sample ID                                                                | Client sample ID palkyl Sulfonic Acids (QCLot: 3036215)                                                                                      | Method: Compound                                                                                                                                                                                                                                                                                                                                                                  | CAS Number                                                                                     | Spike                                                                                                                             | SpikeRecovery(%)                                             |                                                              |                                                      |  |
| aboratory sample ID<br>EP231A: Perfluoro                                           |                                                                                                                                              | Method: Compound  EP231X: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                    | CAS Number<br>375-73-5                                                                         | Spike                                                                                                                             | SpikeRecovery(%)                                             |                                                              | · , ,                                                |  |
| aboratory sample ID                                                                | palkyl Sulfonic Acids (QCLot: 3036215)                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                | Spike<br>Concentration                                                                                                            | SpikeRecovery(%) MS                                          | Low                                                          | High                                                 |  |
| aboratory sample ID<br>EP231A: Perfluoro                                           | palkyl Sulfonic Acids (QCLot: 3036215)                                                                                                       | EP231X: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                      | 375-73-5                                                                                       | Spike Concentration  0.25 µg/L                                                                                                    | SpikeRecovery(%) MS  127                                     | <b>Low</b> 72.0                                              | High                                                 |  |
| aboratory sample ID<br>EP231A: Perfluoro                                           | palkyl Sulfonic Acids (QCLot: 3036215)                                                                                                       | EP231X: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                      | 375-73-5                                                                                       | Spike Concentration  0.25 µg/L                                                                                                    | SpikeRecovery(%) MS  127 # Not                               | <b>Low</b> 72.0                                              | High                                                 |  |
| aboratory sample ID<br>EP231A: Perfluoro<br>ES2016983-002                          | palkyl Sulfonic Acids (QCLot: 3036215)                                                                                                       | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                        | 375-73-5<br>355-46-4                                                                           | Spike Concentration  0.25 µg/L 0.25 µg/L                                                                                          | SpikeRecovery(%) MS  127 # Not Determined                    | 72.0<br>68.0                                                 | 130<br>131                                           |  |
| aboratory sample ID<br>EP231A: Perfluoro<br>ES2016983-002<br>EP231B: Perfluor      | palkyl Sulfonic Acids (QCLot: 3036215) QC12a                                                                                                 | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS) EP231X: Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                           | 375-73-5<br>355-46-4                                                                           | Spike Concentration  0.25 µg/L 0.25 µg/L                                                                                          | SpikeRecovery(%) MS  127 # Not Determined                    | 72.0<br>68.0                                                 | 130<br>131                                           |  |
| aboratory sample ID<br>EP231A: Perfluoro<br>ES2016983-002<br>EP231B: Perfluor      | oalkyl Sulfonic Acids (QCLot: 3036215)  QC12a  oalkyl Carboxylic Acids (QCLot: 3036215)                                                      | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS)  EP231X: Perfluorooctane sulfonic acid (PFOS)  EP231X: Perfluorobutanoic acid (PFBA)                                                                                                                                                                                                   | 375-73-5<br>355-46-4<br>1763-23-1                                                              | Spike Concentration  0.25 µg/L  0.25 µg/L  0.25 µg/L                                                                              | SpikeRecovery(%) MS  127 # Not Determined 80.2               | 72.0<br>68.0<br>65.0                                         | 130<br>131<br>140                                    |  |
| aboratory sample ID<br>EP231A: Perfluoro<br>ES2016983-002<br>EP231B: Perfluor      | oalkyl Sulfonic Acids (QCLot: 3036215)  QC12a  oalkyl Carboxylic Acids (QCLot: 3036215)                                                      | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS)  EP231X: Perfluorooctane sulfonic acid (PFOS)  EP231X: Perfluorobutanoic acid (PFBA) EP231X: Perfluoropentanoic acid (PFPeA)                                                                                                                                                           | 375-73-5<br>355-46-4<br>1763-23-1<br>375-22-4                                                  | Spike Concentration  0.25 μg/L  0.25 μg/L  0.25 μg/L  1.25 μg/L                                                                   | SpikeRecovery(%) MS  127 # Not Determined 80.2               | 72.0<br>68.0<br>65.0                                         | 130<br>131<br>140                                    |  |
| aboratory sample ID<br>EP231A: Perfluoro<br>ES2016983-002<br>EP231B: Perfluor      | oalkyl Sulfonic Acids (QCLot: 3036215)  QC12a  oalkyl Carboxylic Acids (QCLot: 3036215)                                                      | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS)  EP231X: Perfluoroctane sulfonic acid (PFOS)  EP231X: Perfluorobutanoic acid (PFBA) EP231X: Perfluoropentanoic acid (PFPeA) EP231X: Perfluorohexanoic acid (PFPAA)                                                                                                                     | 375-73-5<br>355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3                                     | Spike Concentration  0.25 μg/L  0.25 μg/L  0.25 μg/L  1.25 μg/L  0.25 μg/L                                                        | SpikeRecovery(%) MS  127 # Not Determined 80.2  94.3 126     | 72.0<br>68.0<br>65.0<br>73.0<br>72.0                         | 130<br>131<br>140<br>129<br>129<br>129               |  |
| aboratory sample ID<br>EP231A: Perfluoro<br>ES2016983-002                          | oalkyl Sulfonic Acids (QCLot: 3036215)  QC12a  oalkyl Carboxylic Acids (QCLot: 3036215)                                                      | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS)  EP231X: Perfluorooctane sulfonic acid (PFOS)  EP231X: Perfluorobutanoic acid (PFBA) EP231X: Perfluoropentanoic acid (PFPeA)                                                                                                                                                           | 375-73-5<br>355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4                         | Spike Concentration  0.25 μg/L 0.25 μg/L  0.25 μg/L  1.25 μg/L  0.25 μg/L  0.25 μg/L                                              | SpikeRecovery(%) MS  127 # Not Determined 80.2  94.3 126 126 | 72.0<br>68.0<br>65.0<br>73.0<br>72.0<br>72.0                 | 130<br>131<br>140<br>129<br>129<br>129<br>130        |  |
| aboratory sample ID EP231A: Perfluoro ES2016983-002 EP231B: Perfluor ES2016983-002 | oalkyl Sulfonic Acids (QCLot: 3036215)  QC12a  oalkyl Carboxylic Acids (QCLot: 3036215)  QC12a                                               | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS)  EP231X: Perfluorooctane sulfonic acid (PFOS)  EP231X: Perfluorobutanoic acid (PFBA) EP231X: Perfluoropentanoic acid (PFPeA) EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluorohexanoic acid (PFHxA)                                                                             | 375-73-5<br>355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9             | Spike Concentration  0.25 μg/L 0.25 μg/L  0.25 μg/L  1.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L                        | # Not Determined 80.2  94.3 126 126 126                      | 72.0<br>68.0<br>65.0<br>73.0<br>72.0<br>72.0                 | 130<br>131<br>140<br>129<br>129                      |  |
| EP231D: (n:2) Flu                                                                  | oalkyl Sulfonic Acids (QCLot: 3036215)  QC12a  oalkyl Carboxylic Acids (QCLot: 3036215)                                                      | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS)  EP231X: Perfluorooctane sulfonic acid (PFOS)  EP231X: Perfluorobutanoic acid (PFBA) EP231X: Perfluoropentanoic acid (PFPeA) EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluoroctanoic acid (PFHpA) EP231X: Perfluorooctanoic acid (PFOA) | 375-73-5<br>355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9             | Spike Concentration  0.25 μg/L  0.25 μg/L  1.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L            | # Not Determined 80.2  94.3 126 126 126                      | 72.0<br>68.0<br>65.0<br>73.0<br>72.0<br>72.0                 | 130<br>131<br>140<br>129<br>129<br>129<br>130        |  |
| aboratory sample ID EP231A: Perfluore ES2016983-002 EP231B: Perfluor ES2016983-002 | palkyl Sulfonic Acids (QCLot: 3036215)  QC12a  poalkyl Carboxylic Acids (QCLot: 3036215)  QC12a  porotelomer Sulfonic Acids (QCLot: 3036215) | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS)  EP231X: Perfluoroctane sulfonic acid (PFOS)  EP231X: Perfluorobutanoic acid (PFBA) EP231X: Perfluoropentanoic acid (PFPeA) EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluoroctanoic acid (PFHpA) EP231X: Perfluoroctanoic acid (PFOA)  EP231X: Perfluoroctanoic acid (PFOA)    | 375-73-5<br>355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9<br>335-67-1 | Spike Concentration  0.25 μg/L  0.25 μg/L  1.25 μg/L  0.25 μg/L | # Not Determined 80.2 94.3 126 126 126 106                   | 72.0<br>68.0<br>65.0<br>73.0<br>72.0<br>72.0<br>72.0<br>71.0 | 130<br>131<br>140<br>129<br>129<br>129<br>130<br>133 |  |
| aboratory sample ID EP231A: Perfluoro ES2016983-002 EP231B: Perfluor ES2016983-002 | palkyl Sulfonic Acids (QCLot: 3036215)  QC12a  poalkyl Carboxylic Acids (QCLot: 3036215)  QC12a  porotelomer Sulfonic Acids (QCLot: 3036215) | EP231X: Perfluorobutane sulfonic acid (PFBS) EP231X: Perfluorohexane sulfonic acid (PFHxS)  EP231X: Perfluorooctane sulfonic acid (PFOS)  EP231X: Perfluorobutanoic acid (PFBA) EP231X: Perfluoropentanoic acid (PFPeA) EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluoroctanoic acid (PFHpA) EP231X: Perfluorooctanoic acid (PFOA) | 375-73-5<br>355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9<br>335-67-1 | Spike Concentration  0.25 μg/L  0.25 μg/L  1.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L  0.25 μg/L            | # Not Determined 80.2  94.3 126 126 126 106                  | 72.0<br>68.0<br>65.0<br>73.0<br>72.0<br>72.0<br>72.0<br>71.0 | 130<br>131<br>140<br>129<br>129<br>129<br>130<br>133 |  |

 Page
 : 7 of 7

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828





# QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2016983** Page : 1 of 6

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : DILARA VALIFF
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 18-May-2020

 Site
 : Issue Date
 : 25-May-2020

Sampler : Robert Webb No. of samples received : 10
Order number : 12516828 No. of samples analysed : 8

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers: Frequency of Quality Control Samples**

NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

| Compound Group Name                   | Laboratory Sample ID | Client Sample ID | Analyte         | CAS Number | Data       | L | Limits | Comment                          |
|---------------------------------------|----------------------|------------------|-----------------|------------|------------|---|--------|----------------------------------|
| Matrix Spike (MS) Recoveries          |                      |                  |                 |            |            |   |        |                                  |
| EP231A: Perfluoroalkyl Sulfonic Acids | ES2016983002         | QC12a            | Perfluorohexane | 355-46-4   | Not        |   |        | MS recovery not determined,      |
|                                       |                      |                  | sulfonic acid   |            | Determined |   |        | background level greater than or |
|                                       |                      |                  | (PFHxS)         |            |            |   |        | equal to 4x spike level.         |

#### **Outliers: Analysis Holding Time Compliance**

Matrix: SOIL

| Matrixi COIL                     |              |                |                          |         |               |                  |         |  |
|----------------------------------|--------------|----------------|--------------------------|---------|---------------|------------------|---------|--|
| Method                           |              |                | Extraction / Preparation |         | Analysis      |                  |         |  |
| Container / Client Sample ID(s)  |              | Date extracted | Due for extraction       | Days    | Date analysed | Due for analysis | Days    |  |
|                                  |              |                |                          | overdue |               |                  | overdue |  |
| EA055: Moisture Content (Dried @ | 0 105-110°C) |                |                          |         |               |                  |         |  |
| HDPE Soil Jar                    |              |                |                          |         |               |                  |         |  |
| QC04a,                           | QC02a,       |                |                          |         | 21-May-2020   | 20-May-2020      | 1       |  |
| QC05a,                           | QC03a        |                |                          |         |               |                  |         |  |

#### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

| Matrix: SOIL                       |           |             |                | Evaluation             | on: $\star$ = Holding time breach; $\star$ = within holding time |               |                  |            |  |
|------------------------------------|-----------|-------------|----------------|------------------------|------------------------------------------------------------------|---------------|------------------|------------|--|
| Method                             |           | Sample Date | Ex             | traction / Preparation |                                                                  | Analysis      |                  |            |  |
| Container / Client Sample ID(s)    |           |             | Date extracted | Due for extraction     | Evaluation                                                       | Date analysed | Due for analysis | Evaluation |  |
| EA055: Moisture Content (Dried @ 1 | 05-110°C) |             |                |                        |                                                                  |               |                  |            |  |
| HDPE Soil Jar (EA055)              |           |             |                |                        |                                                                  |               |                  |            |  |
| QC04a,                             | QC02a,    | 06-May-2020 |                |                        |                                                                  | 21-May-2020   | 20-May-2020      | ×          |  |
| QC05a,                             | QC03a     |             |                |                        |                                                                  |               |                  |            |  |
| HDPE Soil Jar (EA055)              |           |             |                |                        |                                                                  |               |                  |            |  |
| QC06a,                             | QC08a     | 07-May-2020 |                |                        |                                                                  | 21-May-2020   | 21-May-2020      | ✓          |  |
| HDPE Soil Jar (EA055)              |           |             |                |                        |                                                                  |               |                  |            |  |
| QC11a                              |           | 08-May-2020 |                |                        |                                                                  | 21-May-2020   | 22-May-2020      | ✓          |  |

 Page
 : 3 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Matrix: SOIL                            |        |             | _              |                         | Evaluation | n: 🗴 = Holding time | e breach ; ✓ = Withi | n holding time |  |  |
|-----------------------------------------|--------|-------------|----------------|-------------------------|------------|---------------------|----------------------|----------------|--|--|
| Method                                  |        | Sample Date | E              | ktraction / Preparation |            | Analysis            |                      |                |  |  |
| Container / Client Sample ID(s)         |        |             | Date extracted | Due for extraction      | Evaluation | Date analysed       | Due for analysis     | Evaluation     |  |  |
| EP231A: Perfluoroalkyl Sulfonic Acids   |        |             |                |                         |            |                     |                      |                |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC04a,                                  | QC02a, | 06-May-2020 | 23-May-2020    | 02-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| QC05a,                                  | QC03a  |             |                |                         |            |                     |                      |                |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC06a,                                  | QC08a  | 07-May-2020 | 23-May-2020    | 03-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC11a                                   |        | 08-May-2020 | 23-May-2020    | 04-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| EP231B: Perfluoroalkyl Carboxylic Acids |        |             |                |                         |            |                     |                      |                |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC04a,                                  | QC02a, | 06-May-2020 | 23-May-2020    | 02-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| QC05a,                                  | QC03a  |             |                |                         |            |                     |                      |                |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC06a,                                  | QC08a  | 07-May-2020 | 23-May-2020    | 03-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC11a                                   |        | 08-May-2020 | 23-May-2020    | 04-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Ac | ids    |             |                |                         |            |                     |                      |                |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC04a,                                  | QC02a, | 06-May-2020 | 23-May-2020    | 02-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| QC05a,                                  | QC03a  |             |                |                         |            |                     |                      |                |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC06a,                                  | QC08a  | 07-May-2020 | 23-May-2020    | 03-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC11a                                   |        | 08-May-2020 | 23-May-2020    | 04-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| EP231P: PFAS Sums                       |        |             |                |                         |            |                     |                      |                |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC04a,                                  | QC02a, | 06-May-2020 | 23-May-2020    | 02-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| QC05a,                                  | QC03a  |             |                |                         |            |                     |                      |                |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC06a,                                  | QC08a  | 07-May-2020 | 23-May-2020    | 03-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| HDPE Soil Jar (EP231X)                  |        |             |                |                         |            |                     |                      |                |  |  |
| QC11a                                   |        | 08-May-2020 | 23-May-2020    | 04-Nov-2020             | ✓          | 24-May-2020         | 02-Jul-2020          | ✓              |  |  |
| Matrix: WATER                           |        |             |                |                         | Evaluation | n: × = Holding time | e breach ; ✓ = Withi | n holding tim  |  |  |
| Method                                  |        | Sample Date | E              | ktraction / Preparation |            |                     | Analysis             |                |  |  |
| Container / Client Sample ID(s)         |        |             | Date extracted | Due for extraction      | Evaluation | Date analysed       | Due for analysis     | Evaluation     |  |  |
| EP231A: Perfluoroalkyl Sulfonic Acids   |        |             |                |                         |            |                     | •                    |                |  |  |
| HDPE (no PTFE) (EP231X)                 |        |             |                |                         |            |                     |                      |                |  |  |
| QC12a                                   |        | 08-May-2020 | 23-May-2020    | 04-Nov-2020             | ✓          | 24-May-2020         | 04-Nov-2020          | ✓              |  |  |
| EP231B: Perfluoroalkyl Carboxylic Acids |        |             |                |                         |            |                     |                      |                |  |  |
| HDPE (no PTFE) (EP231X)                 |        |             |                |                         |            |                     |                      |                |  |  |
| QC12a                                   |        | 08-May-2020 | 23-May-2020    | 04-Nov-2020             | ✓          | 24-May-2020         | 04-Nov-2020          | ✓              |  |  |

 Page
 : 4 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828

QC12a



Matrix: WATER Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Extraction / Preparation Analysis Sample Date Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP231D: (n:2) Fluorotelomer Sulfonic Acids HDPE (no PTFE) (EP231X) QC12a 08-May-2020 23-May-2020 04-Nov-2020 24-May-2020 04-Nov-2020 EP231P: PFAS Sums HDPE (no PTFE) (EP231X)

08-May-2020

23-May-2020

04-Nov-2020

24-May-2020

04-Nov-2020

 Page
 : 5 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                         |        |    |         | Evaluation | n: × = Quality Co | ntrol frequency i | not within specification ; ✓ = Quality Control frequency within specification |
|------------------------------------------------------|--------|----|---------|------------|-------------------|-------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                          |        | С  | ount    |            | Rate (%)          |                   | Quality Control Specification                                                 |
| Analytical Methods                                   | Method | QC | Regular | Actual     | Expected          | Evaluation        |                                                                               |
| Laboratory Duplicates (DUP)                          |        |    |         |            |                   |                   |                                                                               |
| Moisture Content                                     | EA055  | 2  | 20      | 10.00      | 10.00             | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2  | 20      | 10.00      | 10.00             | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |        |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |        |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |        |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 20      | 5.00       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix: WATER                                        |        |    |         | Evaluation | n: × = Quality Co | ntrol frequency i | not within specification; ✓ = Quality Control frequency within specification  |
| Quality Control Sample Type                          |        | С  | ount    |            | Rate (%)          |                   | Quality Control Specification                                                 |
| Analytical Methods                                   | Method | QC | Regular | Actual     | Expected          | Evaluation        |                                                                               |
| Laboratory Duplicates (DUP)                          |        |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2  | 13      | 15.38      | 10.00             | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |        |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 13      | 7.69       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |        |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 13      | 7.69       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |        |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 13      | 7.69       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |

 Page
 : 6 of 6

 Work Order
 : ES2016983

 Client
 : GHD PTY LTD

 Project
 : 12516828



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                        | EA055  | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X | SOIL   | In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                    |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                     | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sample Extraction for PFAS in solid matrices            | ORG73  | SOIL   | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                                                                                         |
| Solid Phase Extraction (SPE) for PFAS in water          | ORG72  | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                 |

|    | ENVIROLAB              | ENVÎROLAB  EMPÎ  . entiaj                                              | CHA          | AIN C           | F CUS               | TC                          | )D                             | ΥF                 | 0           | RM        | i -       | Cli                          | en      | t        |        | Nat<br><u>Syd</u><br>12 A<br>① 0: | ional pl<br>ney La<br>Ishley :<br>2 9910 | hone n<br><u>b</u> - Env<br>St, Cha<br>6200 | _                                       | 300 42<br>Service:<br>I, NSW<br>ey@en | 4 344<br>s                                                    |
|----|------------------------|------------------------------------------------------------------------|--------------|-----------------|---------------------|-----------------------------|--------------------------------|--------------------|-------------|-----------|-----------|------------------------------|---------|----------|--------|-----------------------------------|------------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------|
|    | Client: GHD            |                                                                        |              |                 |                     | Glinat                      | Dania                          | 4.01               | (No. or b)  | -10"-     |           |                              |         |          | -      | 16-1                              | 8 Havd                                   | en Crt.                                     | .aborate<br>, Myare                     | e, WA 6                               | 3154                                                          |
|    | Contact Person: Se     | an Sparrow                                                             |              |                 | <del></del>         | Client                      | t Projec                       | t Name             | Numb        | er/Site e | etc (ie r | report ti                    | tie):   |          |        | 000                               | 8 9317                                   | 2505                                        | lab@                                    | mpl.co                                | m.au                                                          |
|    | Project Mgr: Dilara    |                                                                        |              |                 |                     | PO N                        | o.: 125                        | 16828              |             |           |           |                              |         |          |        | Mell                              | boume                                    | Lab - E                                     | Envirola                                | b Serv                                | ices                                                          |
|    | Sampler: Sean Spar     |                                                                        |              |                 |                     |                             |                                | ote No             |             |           |           |                              |         |          |        | 25 H                              | (esearc<br>3 9763 :                      | 2500   3                                    | e, Croyo<br>[]] melb                    | ourne@                                | uth, VIC 3136<br>@envirolab.com.au                            |
|    |                        | ia Square, Adelaide, SA 5000                                           |              |                 |                     | Date<br>Or ch               | results<br>oose:<br>Inform     | require<br>standar | d:<br>d/sam |           |           | stan<br>/ 2 day /<br>ound is |         | d - surc | harges | 7a T<br>② 0                       | he Par<br>8 7087                         | ade, No<br>6800   1                         | Envirola<br>prwood<br>Cadela<br>Envirol | , SA 50<br>ide@e                      | 67<br>nvirolab.com.au                                         |
|    | Phone:                 |                                                                        | Mob:         |                 | 0498260626          | -                           |                                | port fo            | rmat: E     | SDAT      |           |                              |         |          |        | 20a.                              | 10-20                                    | Depot:                                      | St. Ban                                 | vo. QLE                               | D 4014<br>envirolab.com.au                                    |
| -  | 2                      | GHDLabReports@ghd.com<br>Sean.Sparrow@ghd.com<br>Dilara.Valiff@ghd.com | <u>m</u>     |                 |                     | Lab C                       | Comme                          | nts:               |             |           |           |                              |         |          |        | <u>Dan</u><br>Unit                | win Off<br>20/119                        | ice - Er                                    | nvirolab<br>ardt Ro                     | Service<br>ad, Wi                     |                                                               |
|    |                        | Sample infor                                                           | mation       |                 |                     |                             |                                |                    |             |           |           | Test                         | ts Requ | ired     |        |                                   |                                          | -                                           |                                         |                                       | Comments                                                      |
|    | Envirolab Sample<br>ID | Client Sample ID or information                                        | Depth        | Date<br>sampled | Type of sample      | PFAS Short<br>Suite (water) | PFAS Short<br>Suite (sediment) | Hold               |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       | Provide as much<br>information about the<br>sample as you can |
|    |                        | TB02                                                                   |              | 18/05/2020      | water               | 1                           | 1                              |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | 2                      | DC06                                                                   |              | 18/05/2020      | <u>water</u>        | 1                           |                                |                    | T           |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | 3                      | QA16                                                                   |              | 18/05/2020      | water               | 1                           |                                | -                  |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | 1                      | QA16A                                                                  |              | 18/05/2020      | <u>water</u>        | 1                           |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       | please forward to ALS                                         |
| 4- | 14,56                  | DC06A                                                                  |              | 18/05/2020      | water, sediment     |                             |                                | 1                  |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | Ь                      | QA17                                                                   |              | 18/05/2020      | sediment            |                             |                                | 1                  |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | 7                      | QA17A `                                                                |              | 18/05/2020      | . <u>sediment</u>   |                             |                                | 1                  |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
| J  | >8,9€                  | Sed DC06B                                                              |              | 18/05/2020      | water, sediment     | L.                          |                                | 1                  |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
| •  | 10                     | RB02                                                                   |              | 18/05/2020      | <u>water</u>        | 1                           |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    |                        | FX08                                                                   |              | 18/05/2020      | <u>water</u>        | 1                           |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | 12                     | FX09                                                                   |              | 18/05/2020      | water               |                             |                                | 1                  |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | 13                     | FX10                                                                   |              | 18/05/2020      | water               |                             |                                | 1                  |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | 14                     | FX11                                                                   |              | 18/05/2020      | water               |                             |                                | 1                  |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | 15                     | FX12                                                                   |              | 18/05/2020      | water               |                             |                                | 1                  |             |           |           |                              |         |          |        | ,                                 |                                          |                                             |                                         |                                       |                                                               |
|    | 16                     | FX13                                                                   |              | 18/05/2020      | water               | 1                           |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
| I  | 17                     | FXB2                                                                   |              | 18/05/2020      | <u>water</u>        | 1                           |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | 18                     | QA18                                                                   |              | 18/05/2020      | water               | 1                           |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       | _                                                             |
|    |                        | QA18A                                                                  |              | 18/05/2020      | water               | 1                           |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       | please forward to ALS                                         |
|    | 19                     | DD01                                                                   |              | 18/05/2020      | <u>water</u>        | 1                           |                                |                    |             |           |           | 1                            |         |          |        |                                   |                                          |                                             | 1                                       | ·                                     |                                                               |
|    | 20                     | QA19                                                                   |              | 18/05/2020      | water               | 1                           |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    |                        | QA19A                                                                  |              | 18/05/2020      | water               | 1                           |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       | please forward to ALS                                         |
|    | -24                    |                                                                        |              |                 |                     |                             |                                |                    |             |           |           |                              |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    |                        | Please tick the box if observed                                        | settled sedi | ment present    | in water samples is | to be                       | include                        | d in the           | extrac      | tion an   | d/or an   | alysis                       |         |          |        |                                   |                                          |                                             |                                         |                                       |                                                               |
|    | Relinquished by (Co    | mpany):                                                                | GHD Pty Lt   | d_              | Received by (Comp   |                             | EV                             |                    | 10          |           |           | ,,                           |         |          |        |                                   | La                                       | b Use                                       | Only                                    |                                       | ,                                                             |
| l  | Print Name:            | Sean Sparrow                                                           |              |                 | Print Name:         | Vir                         | 93                             | lan                | 70          |           |           | Job nu                       | mber:   | - 1      | 243    | 371                               |                                          | Coolir                                      | g: Ice                                  | loe pa                                | ck / None                                                     |
| l  | Date & Time:           | 19/05/2020 0:00                                                        |              | 2:00:00 PM      | Date & Time:        | $u_0$                       | <u>757</u>                     | 2024               | 1/2         | 230       |           | Tempe                        | rature: |          |        | 10                                | 0                                        | Secur                                       | ity seal:                               | (Întact                               | / Broken / None                                               |

Issue date: 7 October 2019

Signature:

Signature:

TAT Req - SAME day / 1 / 2 / 3 / 4 / STD



**Envirolab Services Pty Ltd** 

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 243371**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                      |
|--------------------------------------|----------------------|
| Your Reference                       | <u>12516828</u>      |
| Number of Samples                    | 18 water, 2 sediment |
| Date samples received                | 21/05/2020           |
| Date completed instructions received | 21/05/2020           |

### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                                       |            |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|--|--|--|
| Date results requested by                                                                            | 29/05/2020 |  |  |  |
| Date of Issue                                                                                        | 27/05/2020 |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |  |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |  |  |

**Results Approved By** 

Fiona Tan, LC Supervisor

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Waters Short                               |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243371-1   | 243371-2   | 243371-3   | 243371-10  | 243371-11  |
| Your Reference                                     | UNITS | TB02       | DC06       | QA16       | RB02       | FX08       |
| Date Sampled                                       |       | 18/05/2020 | 18/05/2020 | 18/05/2020 | 18/05/2020 | 18/05/2020 |
| Type of sample                                     |       | water      | water      | water      | water      | water      |
| Date prepared                                      | -     | 22/05/2020 | 22/05/2020 | 22/05/2020 | 22/05/2020 | 22/05/2020 |
| Date analysed                                      | -     | 22/05/2020 | 22/05/2020 | 22/05/2020 | 22/05/2020 | 22/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.01      | 0.07       | 0.07       | <0.01      | 0.13       |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.01      | 0.17       | 0.07       | <0.01      | 0.82       |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | 0.04       |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | 0.11       |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | 0.1        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 96         | 102        | 105        | 102        | 101        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 108        | 106        | 106        | 100        | 103        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 100        | 96         | 100        | 97         | 103        |
| Extracted ISTD 13 C4 PFOS                          | %     | 94         | 86         | 88         | 97         | 98         |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 120        | 101        | 117        | 120        | 123        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 115        | 92         | 114        | 113        | 147        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | 76         | 63         | 77         | 98         | 115        |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.01      | 0.24       | 0.14       | <0.01      | 0.95       |
| Total Positive PFOA & PFOS                         | μg/L  | <0.01      | 0.17       | 0.07       | <0.01      | 0.86       |
| Total Positive PFAS                                | μg/L  | <0.01      | 0.24       | 0.14       | <0.01      | 1.2        |

| PFAS in Waters Short                               |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 243371-16  | 243371-17  | 243371-18  | 243371-19  | 243371-20  |
| Your Reference                                     | UNITS | FX13       | FXB2       | QA18       | DD01       | QA19       |
| Date Sampled                                       |       | 18/05/2020 | 18/05/2020 | 18/05/2020 | 18/05/2020 | 18/05/2020 |
| Type of sample                                     |       | water      | water      | water      | water      | water      |
| Date prepared                                      | -     | 22/05/2020 | 22/05/2020 | 22/05/2020 | 22/05/2020 | 22/05/2020 |
| Date analysed                                      | -     | 22/05/2020 | 22/05/2020 | 22/05/2020 | 22/05/2020 | 22/05/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.06       | <0.01      | 0.05       | <0.01      | <0.01      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.42       | <0.01      | 0.33       | <0.01      | <0.01      |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.01       | <0.01      | 0.01       | <0.01      | <0.01      |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 98         | 100        | 94         | 102        | 105        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 104        | 103        | 108        | 104        | 106        |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 110        | 96         | 101        | 109        | 105        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 102        | 95         | 98         | 96         | 96         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 143        | 118        | 130        | 121        | 129        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 178        | 123        | 151        | 120        | 145        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 101        | 103        | 103        | 87         | 85         |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.48       | <0.01      | 0.39       | <0.01      | <0.01      |
| Total Positive PFOA & PFOS                         | μg/L  | 0.44       | <0.01      | 0.35       | <0.01      | <0.01      |
| Total Positive PFAS                                | μg/L  | 0.49       | <0.01      | 0.40       | <0.01      | <0.01      |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY CONTROL: PFAS in Waters Short              |       |      |         |            | Duplicate |            |            |     |            | Spike Recovery % |  |  |
|----------------------------------------------------|-------|------|---------|------------|-----------|------------|------------|-----|------------|------------------|--|--|
| Test Description                                   | Units | PQL  | Method  | Blank      | #         | Base       | Dup.       | RPD | LCS-W1     | 243371-2         |  |  |
| Date prepared                                      | -     |      |         | 22/05/2020 | 1         | 22/05/2020 | 22/05/2020 |     | 22/05/2020 | 22/05/2020       |  |  |
| Date analysed                                      | -     |      |         | 22/05/2020 | 1         | 22/05/2020 | 22/05/2020 |     | 22/05/2020 | 22/05/2020       |  |  |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.01 | Org-029 | <0.01      | 1         | <0.01      | <0.01      | 0   | 103        | 106              |  |  |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.01 | Org-029 | <0.01      | 1         | <0.01      | <0.01      | 0   | 112        | 106              |  |  |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.01 | Org-029 | <0.01      | 1         | <0.01      | <0.01      | 0   | 108        | 109              |  |  |
| 6:2 FTS                                            | μg/L  | 0.01 | Org-029 | <0.01      | 1         | <0.01      | <0.01      | 0   | 102        | 95               |  |  |
| 8:2 FTS                                            | μg/L  | 0.02 | Org-029 | <0.02      | 1         | <0.02      | <0.02      | 0   | 94         | 124              |  |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     |      | Org-029 | 97         | 1         | 96         | 102        | 6   | 103        | 100              |  |  |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     |      | Org-029 | 102        | 1         | 108        | 103        | 5   | 96         | 106              |  |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     |      | Org-029 | 89         | 1         | 100        | 96         | 4   | 93         | 97               |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     |      | Org-029 | 91         | 1         | 94         | 86         | 9   | 91         | 86               |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     |      | Org-029 | 88         | 1         | 120        | 125        | 4   | 93         | 100              |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |      | Org-029 | 90         | 1         | 115        | 134        | 15  | 102        | 98               |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |      | Org-029 | 91         | 1         | 76         | 82         | 8   | 108        | 65               |  |  |

| QUALITY CO                                        |       | Du   |         | Spike Recovery % |    |            |            |     |      |      |
|---------------------------------------------------|-------|------|---------|------------------|----|------------|------------|-----|------|------|
| Test Description                                  | Units | PQL  | Method  | Blank            | #  | Base       | Dup.       | RPD | [NT] | [NT] |
| Date prepared                                     | -     |      |         | [NT]             | 20 | 22/05/2020 | 22/05/2020 |     |      | [NT] |
| Date analysed                                     | -     |      |         | [NT]             | 20 | 22/05/2020 | 22/05/2020 |     |      | [NT] |
| Perfluorohexanesulfonic acid - PFHxS              | μg/L  | 0.01 | Org-029 | [NT]             | 20 | <0.01      | <0.01      | 0   |      | [NT] |
| Perfluorooctanesulfonic acid PFOS                 | μg/L  | 0.01 | Org-029 | [NT]             | 20 | <0.01      | <0.01      | 0   |      | [NT] |
| Perfluorooctanoic acid PFOA                       | μg/L  | 0.01 | Org-029 | [NT]             | 20 | <0.01      | <0.01      | 0   |      | [NT] |
| 6:2 FTS                                           | μg/L  | 0.01 | Org-029 | [NT]             | 20 | <0.01      | <0.01      | 0   |      | [NT] |
| 8:2 FTS                                           | μg/L  | 0.02 | Org-029 | [NT]             | 20 | <0.02      | <0.02      | 0   |      | [NT] |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %     |      | Org-029 | [NT]             | 20 | 105        | 100        | 5   |      | [NT] |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA       | %     |      | Org-029 | [NT]             | 20 | 106        | 106        | 0   |      | [NT] |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %     |      | Org-029 | [NT]             | 20 | 105        | 103        | 2   |      | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %     |      | Org-029 | [NT]             | 20 | 96         | 97         | 1   |      | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %     |      | Org-029 | [NT]             | 20 | 129        | 131        | 2   | [NT] | [NT] |

| QUALITY CONTROL: PFAS in Waters Short              |       |     |         |       |    | Duplicate |      |     |      | covery % |
|----------------------------------------------------|-------|-----|---------|-------|----|-----------|------|-----|------|----------|
| Test Description                                   | Units | PQL | Method  | Blank | #  | Base      | Dup. | RPD | [NT] | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |     | Org-029 | [NT]  | 20 | 145       | 142  | 2   | [NT] | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |     | Org-029 | [NT]  | 20 | 85        | 90   | 6   | [NT] | [NT]     |

Envirolab Reference: 243371

Page | 6 of 9 Revision No: R00

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 243371 Page | 8 of 9

Revision No:

R00

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 243371 Page | 9 of 9

Revision No: R00

# Begin forwarded message:

From: Dilara Valiff < Dilara. Valiff@ghd.com> Date: 20 June 2020 at 9:00:58 am ACST

To: Envirolab Adelaide <adelaide@envirolab.com.au>

Cc: Alex Stenta <astenta@envirolab.com.au>
Subject: Brukunga CFS PFAS analysis request

243371-A Due: 29/6/20

**CAUTION:** This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

## Hi Alex

Could you please dearchive and test for PFAS short suite the following samples from the batch for the attached report 243371:

Water samples DC06A and DC06B

Soil samples SB01 0.9-1.1.

# Kind regards

# Dilara Valiff Senior Environmental Consultant

#### **GHD**

# Proudly employee owned

T: +61 8111 6572 | M: +61 420 959 236 | E: <u>dilara.valiff@ghd.com</u> Level 4 211 Victoria Square Adelaide SA 5000 | <u>www.ghd.com</u>

# Connect



Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# **CERTIFICATE OF ANALYSIS 243371-A**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                      |
|--------------------------------------|----------------------|
| Your Reference                       | <u>12516828</u>      |
| Number of Samples                    | 18 water, 2 sediment |
| Date samples received                | 21/05/2020           |
| Date completed instructions received | 20/06/2020           |

# **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

| Report Details                        |                                                                  |
|---------------------------------------|------------------------------------------------------------------|
| Date results requested by             | 29/06/2020                                                       |
| Date of Issue                         | 24/06/2020                                                       |
| NATA Accreditation Number 2901. The   | nis document shall not be reproduced except in full.             |
| Accredited for compliance with ISO/IE | EC 17025 - Testing. Tests not covered by NATA are denoted with * |

**Results Approved By** 

Fiona Tan, LC Supervisor

**Authorised By** 

Nancy Zhang, Laboratory Manager

Envirolab Reference: 243371-A Revision No: R00



| PFAS in Waters Short                               |       |            |            |
|----------------------------------------------------|-------|------------|------------|
| Our Reference                                      |       | 243371-A-4 | 243371-A-8 |
| Your Reference                                     | UNITS | DC06A      | DC06B      |
| Date Sampled                                       |       | 18/05/2020 | 18/05/2020 |
| Type of sample                                     |       | water      | water      |
| Date prepared                                      | -     | 23/06/2020 | 23/06/2020 |
| Date analysed                                      | -     | 23/06/2020 | 23/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.07       | 0.06       |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.09       | 0.08       |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 105        | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 101        | 105        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 107        | 113        |
| Extracted ISTD 13 C4 PFOS                          | %     | 100        | 102        |
| Extracted ISTD 13 C4 PFOA                          | %     | 103        | 105        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 117        | 136        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 121        | 109        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.16       | 0.14       |
| Total Positive PFOA & PFOS                         | μg/L  | 0.09       | 0.08       |
| Total Positive PFAS                                | μg/L  | 0.16       | 0.14       |

Envirolab Reference: 243371-A

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 243371-A Page | 3 of 6

| QUALITY C                                          | ONTROL: P | FAS in W | aters Short |            |      | Du   | plicate |      | Spike Red  | covery % |
|----------------------------------------------------|-----------|----------|-------------|------------|------|------|---------|------|------------|----------|
| Test Description                                   | Units     | PQL      | Method      | Blank      | #    | Base | Dup.    | RPD  | LCS-1      | [NT]     |
| Date prepared                                      | -         |          |             | 23/06/2020 | [NT] |      | [NT]    | [NT] | 23/06/2020 |          |
| Date analysed                                      | -         |          |             | 23/06/2020 | [NT] |      | [NT]    | [NT] | 23/06/2020 |          |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L      | 0.01     | Org-029     | <0.01      | [NT] |      | [NT]    | [NT] | 94         |          |
| Perfluorooctanesulfonic acid PFOS                  | μg/L      | 0.01     | Org-029     | <0.01      | [NT] |      | [NT]    | [NT] | 97         |          |
| Perfluorooctanoic acid PFOA                        | μg/L      | 0.01     | Org-029     | <0.01      | [NT] |      | [NT]    | [NT] | 95         |          |
| 6:2 FTS                                            | μg/L      | 0.01     | Org-029     | <0.01      | [NT] |      | [NT]    | [NT] | 96         |          |
| 8:2 FTS                                            | μg/L      | 0.02     | Org-029     | <0.02      | [NT] |      | [NT]    | [NT] | 95         |          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %         |          | Org-029     | 101        | [NT] |      | [NT]    | [NT] | 100        |          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %         |          | Org-029     | 104        | [NT] |      | [NT]    | [NT] | 102        |          |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %         |          | Org-029     | 125        | [NT] |      | [NT]    | [NT] | 117        |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %         |          | Org-029     | 114        | [NT] |      | [NT]    | [NT] | 110        |          |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %         |          | Org-029     | 113        | [NT] |      | [NT]    | [NT] | 103        |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %         |          | Org-029     | 125        | [NT] |      | [NT]    | [NT] | 104        |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %         |          | Org-029     | 119        | [NT] |      | [NT]    | [NT] | 123        |          |

Envirolab Reference: 243371-A

| Result Definiti | Result Definitions                        |  |  |  |  |  |
|-----------------|-------------------------------------------|--|--|--|--|--|
| NT              | Not tested                                |  |  |  |  |  |
| NA              | Test not required                         |  |  |  |  |  |
| INS             | Insufficient sample for this test         |  |  |  |  |  |
| PQL             | Practical Quantitation Limit              |  |  |  |  |  |
| <               | Less than                                 |  |  |  |  |  |
| >               | Greater than                              |  |  |  |  |  |
| RPD             | Relative Percent Difference               |  |  |  |  |  |
| LCS             | Laboratory Control Sample                 |  |  |  |  |  |
| NS              | Not specified                             |  |  |  |  |  |
| NEPM            | National Environmental Protection Measure |  |  |  |  |  |
| NR              | Not Reported                              |  |  |  |  |  |

Envirolab Reference: 243371-A

| <b>Quality C</b>         | ontro  | ol Definitions                                                                                                                                                                                                                   |
|--------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                        | Blank  | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Dup                      | licate | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix                   | Spike  | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Labor<br>Control Sa | •      | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate S              | Spike  | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

# **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 243371-A Page | 6 of 6

# **Andrew (Fitzy) Fitzsimons**

From:

Alex Stenta

Sent:

Monday, 29 June 2020 12:32 PM

To:

Jessica Hie

Cc:

Samplereceipt Distribution Sydney

Subject:

FW: Results for Registration 243030-A 12516828

**Attachments:** 

243371-COC.pdf

Follow Up Flag:

Follow up

Flag Status:

Flagged

243371-B Due: 6/7/20

Hi Jess,

Please see COC for 243371 additional testing for PFAS samples instead.

Kind Regards,

Alex Stenta | BD Manager SA | Envirolab Group

Celebrating 15 years of Great Science. Great Service.

7a The Parade Norwood SA 5067

T 08 7087 6800 F 08 8362 1776 M 0406 350 706

E astenta@envirolab.com.au | W www.envirolab.com.au

View reduced sampling bottle provision for PFAS in water | COVID-19 Update

Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link

From: Rob Webb < Robert. Webb2@ghd.com> Sent: Monday, 29 June 2020 11:56 AM

To: Alex Stenta <astenta@envirolab.com.au>

Cc: Envirolab Adelaide <adelaide@envirolab.com.au>; Dilara Valiff <Dilara.Valiff@ghd.com>

Subject: RE: Results for Registration 243030-A 12516828

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Alex,

In the attached COCs there should have been two sediment samples at labelled DC06a and DC06b (lab report 243371). Are we able to get these two samples analysed for PFAS short suite?

Regards,

**Robert Webb Environmental Engineer** 



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# **CERTIFICATE OF ANALYSIS 243371-B**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Robert Webb                      |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                      |
|--------------------------------------|----------------------|
| Your Reference                       | <u>12516828</u>      |
| Number of Samples                    | 18 water, 2 sediment |
| Date samples received                | 21/05/2020           |
| Date completed instructions received | 21/05/2020           |

# **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                     |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|
| Date results requested by                                                             | 06/07/2020                                                          |  |  |  |
| Date of Issue                                                                         | 02/07/2020                                                          |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                     |  |  |  |
| Accredited for compliance with ISC                                                    | D/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |

Results Approved By

Manju Dewendrage, Chemist

Phalak Inthakesone, Organics Development Manager, Sydney

**Authorised By** 

Nancy Zhang, Laboratory Manager

Envirolab Reference: 243371-B Revision No: R00



| PFAS in Soils Short                                |       |            |            |
|----------------------------------------------------|-------|------------|------------|
| Our Reference                                      |       | 243371-B-5 | 243371-B-9 |
| Your Reference                                     | UNITS | DC06A      | DC06B      |
| Date Sampled                                       |       | 18/05/2020 | 18/05/2020 |
| Type of sample                                     |       | sediment   | sediment   |
| Date prepared                                      | -     | 30/06/2020 | 30/06/2020 |
| Date analysed                                      | -     | 30/06/2020 | 30/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 0.8        | 0.5        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 28         | 15         |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.5       | <0.2       |
| 6:2 FTS                                            | μg/kg | <0.5       | <0.2       |
| 8:2 FTS                                            | μg/kg | <1         | <1         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 100        | 95         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 90         | 86         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 83         | 74         |
| Extracted ISTD 13 C4 PFOS                          | %     | 86         | 79         |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 92         | 56         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 149        | 55         |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | 99         | 31         |
| Total Positive PFHxS & PFOS                        | μg/kg | 29         | 15         |
| Total Positive PFOS & PFOA                         | μg/kg | 28         | 15         |
| Total Positive PFAS                                | μg/kg | 29         | 15         |

Envirolab Reference: 243371-B

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference  |       | 243371-B-5 | 243371-B-9 |
| Your Reference | UNITS | DC06A      | DC06B      |
| Date Sampled   |       | 18/05/2020 | 18/05/2020 |
| Type of sample |       | sediment   | sediment   |
| Date prepared  | -     | 30/06/2020 | 30/06/2020 |
| Date analysed  | -     | 01/07/2020 | 01/07/2020 |
| Moisture       | %     | 80         | 52         |

Envirolab Reference: 243371-B

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 243371-B Page | 4 of 8

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            |      | Du   | plicate |      | Spike Red  | overy % |
|----------------------------------------------------|------------|-----------|------------|------------|------|------|---------|------|------------|---------|
| Test Description                                   | Units      | PQL       | Method     | Blank      | #    | Base | Dup.    | RPD  | LCS-1      | [NT]    |
| Date prepared                                      | -          |           |            | 30/06/2020 | [NT] |      | [NT]    | [NT] | 30/06/2020 |         |
| Date analysed                                      | -          |           |            | 30/06/2020 | [NT] |      | [NT]    | [NT] | 30/06/2020 |         |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | [NT] |      | [NT]    | [NT] | 101        |         |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | <0.1       | [NT] |      | [NT]    | [NT] | 102        |         |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | [NT] |      | [NT]    | [NT] | 100        |         |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | <0.1       | [NT] |      | [NT]    | [NT] | 93         |         |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | [NT] |      | [NT]    | [NT] | 97         |         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 98         | [NT] |      | [NT]    | [NT] | 92         |         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | 101        | [NT] |      | [NT]    | [NT] | 100        |         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 105        | [NT] |      | [NT]    | [NT] | 100        |         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 109        | [NT] |      | [NT]    | [NT] | 105        |         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | 105        | [NT] |      | [NT]    | [NT] | 99         |         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 108        | [NT] |      | [NT]    | [NT] | 103        |         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | 91         | [NT] |      | [NT]    | [NT] | 88         |         |

Envirolab Reference: 243371-B

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 243371-B

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

# **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 243371-B Page | 7 of 8

# **Report Comments**

PFAS in Soil: The PQLs have been raised due to the high moisture content.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 243371-B Page | 8 of 8

ENVIROLAB Environe Environe

# **CHAIN OF CUSTODY FORM - Client**

# National phone number 1300 424 344 **ENVIROLAB GROUP**

Melbourne Lab - Envirolab Services 25 Research Drive, Croydon South, VIC 3136 ⊕ 03 9763 2500 | ∴ melbourne@ervirolab.com.au Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067 © 08 7087 6800 | : adelaide@envirolab.com.au Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 © 07 3268 9532 | hisbane@envirolab.com.au <u>Darwin Office</u> - Envirolab Services Unit 20/119 Reichardt Road, Winnellie, NT 0820 © 08 8967 1201 | ∷darwin@envirolab.com.au Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 ⊕ 02 9910 6200 | sydney@envirolab.com.au Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 © 08 9317 2505 | Hab@mpl.com.au Or choose: standard / same day / 1 day / 2 day / 3 day Note: inform lab in advance if urgent turnaround is required - surcharges Client Project Name/Number/Site etc (ie report title): dditional report format: ESDA1 Envirolab Quote No. : Date results required PIOH O No.: 12516828 PFAS Short uite (sediment) PFAS Short Suite (water) Type of sample 0498260626 Date sampled Depth GHDLabReports@ghd.com Sean Sparrow@ghd.com Dilara.Valiff@ghd.com Address: 211 Victoria Square, Adelaide, SA 5000 Client Sample ID or Contact Person: Sean Sparrow [Copyright and Confidential] Project Mgr. Dilara Valiff Sampler: Sean Sparrow Envirolab Sample Client: GHD

Phone: Email:

|                                |         |   | Comments                                                |
|--------------------------------|---------|---|---------------------------------------------------------|
|                                |         |   | Provide as much information about the sample as you can |
| Environmental Division         |         |   |                                                         |
| Sydney<br>Work Order Reference |         | , |                                                         |
| ES2017792                      | $\prod$ |   | please forward to ALS                                   |
|                                |         |   |                                                         |
|                                |         |   |                                                         |
|                                |         |   |                                                         |
|                                |         |   |                                                         |
|                                |         |   |                                                         |
|                                |         |   |                                                         |
| Telephone: + 61-2-8764 { 555   |         |   |                                                         |

| _    |      |  |
|------|------|--|
|      |      |  |
| <br> | ne ' |  |

water, sediment

18/05/2020

QA16A DC06A QA17

1000

water water

18/05/2020

Ω

18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020 18/05/2020

water, sediment sediment

DC06B

9 6520

. ک

RB02 FX08 FX09

Q

water

water

water

water

water water water

water

FX10

FX11 FX12 FX13 FXB2 QA18 water

water

water

QA18A

DD01 QA19

10

3

١

water

Telephone: +61-2-8764 £5

please forward to ALS

please forward to ALS

Security seal (intact / Broken / None Cooling: Ice / Ide pack / None Lab Use Only 74337 femperature: Job number: Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis Hing Yan 70 Received by (Company): 2:00:00 PM Date & Time: Print Name: GHD Pty Ltd (@CS TARINA Helen Wong Sean Sparrow 19/05/2020 0:00 Relinquished by (Company):

Solf We 15/20 (540 Page 10/1

TAT Req - SAME day / 1 / 2 / 3 / 4 / STD

Signature:

Date & Time:

Signature

Print Name:

Pate 8 time: 22-5-20 10:06

Issue date: 7 October 2019



# **CERTIFICATE OF ANALYSIS**

Work Order : **ES2017792** 

: GHD PTY LTD

Contact : SEAN SPARROW

Address : 2/11 VICTORIA SQUARE

ADELAIDE SA, AUSTRALIA 5000

Telephone : ---

Client

Project : 12516828 Order number : 12516828

C-O-C number : ----

Sampler : SEAN SPARROW

Site

Quote number : EN/005/19

No. of samples received : 3

No. of samples analysed : 3

Page : 1 of 4

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 22-May-2020 15:10

Date Analysis Commenced : 27-May-2020

: 28-May-2020 10:31



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW

 Page
 : 2 of 4

 Work Order
 : ES2017792

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

 Page
 : 3 of 4

 Work Order
 : ES2017792

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)            |                        | Clie        | ent sample ID  | QA16A             | QA18A             | QA19A             | <br> |
|----------------------------------------------|------------------------|-------------|----------------|-------------------|-------------------|-------------------|------|
|                                              | CI                     | ient sampli | ng date / time | 18-May-2020 00:00 | 18-May-2020 00:00 | 18-May-2020 00:00 | <br> |
| Compound                                     | CAS Number             | LOR         | Unit           | ES2017792-001     | ES2017792-002     | ES2017792-003     | <br> |
|                                              |                        |             |                | Result            | Result            | Result            | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids        | :                      |             |                |                   |                   |                   |      |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5               | 0.02        | μg/L           | <0.02             | <0.02             | <0.02             | <br> |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.02        | μg/L           | 0.08              | 0.06              | <0.02             | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.01        | μg/L           | 0.11              | 0.40              | <0.01             | <br> |
| EP231B: Perfluoroalkyl Carboxylic Ac         | ids                    |             |                |                   |                   |                   |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.1         | μg/L           | <0.1              | <0.1              | <0.1              | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.02        | μg/L           | <0.02             | <0.02             | <0.02             | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.02        | μg/L           | 0.06              | 0.06              | <0.02             | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.02        | μg/L           | <0.02             | <0.02             | <0.02             | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.01        | μg/L           | <0.01             | 0.01              | <0.01             | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonic         | Acids                  |             |                |                   |                   |                   |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.05        | μg/L           | <0.05             | <0.05             | <0.05             | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2             | 0.05        | μg/L           | <0.05             | <0.05             | <0.05             | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.05        | μg/L           | <0.05             | <0.05             | <0.05             | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.05        | μg/L           | <0.05             | <0.05             | <0.05             | <br> |
| EP231P: PFAS Sums                            |                        |             |                |                   |                   |                   |      |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.01        | μg/L           | 0.19              | 0.46              | <0.01             | <br> |
| Sum of PFAS (WA DER List)                    |                        | 0.01        | μg/L           | 0.25              | 0.53              | <0.01             | <br> |
| EP231S: PFAS Surrogate                       |                        |             |                |                   |                   |                   |      |
| 13C4-PFOS                                    |                        | 0.02        | %              | 112               | 117               | 115               | <br> |
| 13C8-PFOA                                    |                        | 0.02        | %              | 83.4              | 87.0              | 85.2              | <br> |

 Page
 : 4 of 4

 Work Order
 : ES2017792

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Surrogate Control Limits

| Sub-Matrix: WATER      |            | Recovery Limits (%) |      |  |  |
|------------------------|------------|---------------------|------|--|--|
| Compound               | CAS Number | Low                 | High |  |  |
| EP231S: PFAS Surrogate |            |                     |      |  |  |
| 13C4-PFOS              |            | 60                  | 120  |  |  |
| 13C8-PFOA              |            | 60                  | 120  |  |  |



: GHD PTY LTD

# **QUALITY CONTROL REPORT**

Work Order : ES2017792

Contact : SEAN SPARROW

Address : 2/11 VICTORIA SQUARE Address

ADELAIDE SA, AUSTRALIA 5000

Telephone : ----

Project : 12516828 Order number : 12516828

C-O-C number · ---

Sampler : SEAN SPARROW

Site

Quote number : EN/005/19

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 4

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 22-May-2020

Date Analysis Commenced : 27-May-2020

Issue Date : 28-May-2020



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW

 Page
 : 2 of 4

 Work Order
 : ES2017792

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

# Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                              |                                                     |             |      |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------------|-----------------------------------------------------|-------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID             | Method: Compound                                    | CAS Number  | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC Lot: | 3042989)                                            |             |      |      |                 |                        |         |                     |
| ES2017792-001        | QA16A                        | EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.01 | μg/L | 0.11            | 0.13                   | 17.6    | 0% - 50%            |
|                      |                              | EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                              | EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.02 | μg/L | 0.08            | 0.08                   | 0.00    | No Limit            |
| EP231B: Perfluoroa   | ılkyl Carboxylic Acids (QC L | .ot: 3042989)                                       |             |      |      |                 |                        |         |                     |
| ES2017792-001        | QA16A                        | EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                              | EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                              | EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.02 | μg/L | 0.06            | 0.06                   | 0.00    | No Limit            |
|                      |                              | EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                              | EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.1  | μg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acids (Q   | C Lot: 3042989)                                     |             |      |      |                 |                        |         |                     |
| ES2017792-001        | QA16A                        | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                              | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                              | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                              | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |

 Page
 : 3 of 4

 Work Order
 : ES2017792

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                   |             |      |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |
|-----------------------------------------------------|-------------|------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|
|                                                     |             |      |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |
| Method: Compound                                    | CAS Number  | LOR  | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 30429 | 989)        |      |      |                   |                                       |                    |          |            |  |
| EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.02 | μg/L | <0.02             | 0.25 μg/L                             | 106                | 72.0     | 130        |  |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.02 | μg/L | <0.02             | 0.25 μg/L                             | 114                | 68.0     | 131        |  |
| EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.01 | μg/L | <0.01             | 0.25 μg/L                             | 115                | 65.0     | 140        |  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 30  | )42989)     |      |      |                   |                                       |                    |          |            |  |
| EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.1  | μg/L | <0.1              | 1.25 μg/L                             | 106                | 73.0     | 129        |  |
| EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.02 | μg/L | <0.02             | 0.25 μg/L                             | 112                | 72.0     | 129        |  |
| EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.02 | μg/L | <0.02             | 0.25 μg/L                             | 108                | 72.0     | 129        |  |
| EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.02 | μg/L | <0.02             | 0.25 μg/L                             | 125                | 72.0     | 130        |  |
| EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.01 | μg/L | <0.01             | 0.25 μg/L                             | 125                | 71.0     | 133        |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:  | : 3042989)  |      |      |                   |                                       |                    |          |            |  |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05 | μg/L | <0.05             | 0.25 μg/L                             | 114                | 63.0     | 143        |  |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05 | μg/L | <0.05             | 0.25 μg/L                             | 121                | 64.0     | 140        |  |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05 | μg/L | <0.05             | 0.25 μg/L                             | 124                | 67.0     | 138        |  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05             | 0.25 μg/L                             | 115                | 71.4     | 144        |  |

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                            |                                               |            | Ma            |                  |            |           |
|----------------------|--------------------------------------------|-----------------------------------------------|------------|---------------|------------------|------------|-----------|
|                      |                                            |                                               |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                           | Method: Compound                              | CAS Number | Concentration | MS               | Low        | High      |
| EP231A: Perfluoro    | palkyl Sulfonic Acids (QCLot: 3042989)     |                                               |            |               |                  |            |           |
| ES2017792-002        | QA18A                                      | EP231X: Perfluorobutane sulfonic acid (PFBS)  | 375-73-5   | 0.25 μg/L     | 120              | 72.0       | 130       |
|                      |                                            | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4   | 0.25 μg/L     | 130              | 68.0       | 131       |
|                      |                                            | EP231X: Perfluorooctane sulfonic acid (PFOS)  | 1763-23-1  | 0.25 μg/L     | 99.2             | 65.0       | 140       |
| EP231B: Perfluor     | oalkyl Carboxylic Acids (QCLot: 3042989)   |                                               |            |               |                  |            |           |
| ES2017792-002        | QA18A                                      | EP231X: Perfluorobutanoic acid (PFBA)         | 375-22-4   | 1.25 μg/L     | 119              | 73.0       | 129       |
|                      |                                            | EP231X: Perfluoropentanoic acid (PFPeA)       | 2706-90-3  | 0.25 μg/L     | 114              | 72.0       | 129       |
|                      |                                            | EP231X: Perfluorohexanoic acid (PFHxA)        | 307-24-4   | 0.25 μg/L     | 102              | 72.0       | 129       |
|                      |                                            | EP231X: Perfluoroheptanoic acid (PFHpA)       | 375-85-9   | 0.25 μg/L     | 116              | 72.0       | 130       |
|                      |                                            | EP231X: Perfluorooctanoic acid (PFOA)         | 335-67-1   | 0.25 μg/L     | 114              | 71.0       | 133       |
| EP231D: (n:2) Flu    | orotelomer Sulfonic Acids (QCLot: 3042989) |                                               |            |               |                  |            |           |

 Page
 : 4 of 4

 Work Order
 : ES2017792

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER                                                       |                  | Matrix Spike (MS) Report                            |             |               |                  |            |           |
|-------------------------------------------------------------------------|------------------|-----------------------------------------------------|-------------|---------------|------------------|------------|-----------|
|                                                                         |                  |                                                     |             | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID                                                    | Client sample ID | Method: Compound                                    | CAS Number  | Concentration | MS               | Low        | High      |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3042989) - continued |                  |                                                     |             |               |                  |            |           |
| ES2017792-002                                                           | QA18A            | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.25 μg/L     | 101              | 63.0       | 143       |
|                                                                         |                  | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.25 μg/L     | 118              | 64.0       | 140       |
|                                                                         |                  | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.25 μg/L     | 108              | 67.0       | 138       |
|                                                                         |                  | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.25 μg/L     | 99.2             | 71.4       | 144       |



# QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2017792** Page : 1 of 4

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : SEAN SPARROW
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 22-May-2020

 Site
 : Issue Date
 : 28-May-2020

Sampler : SEAN SPARROW No. of samples received : 3
Order number : 12516828 No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

# **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

# **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

# **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

 Page
 : 2 of 4

 Work Order
 : ES2017792

 Client
 : GHD PTY LTD

 Project
 : 12516828



### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type                          |    | Count   |        | e (%)    | Quality Control Specification  |
|------------------------------------------------------|----|---------|--------|----------|--------------------------------|
| Method                                               | QC | Regular | Actual | Expected |                                |
| Laboratory Duplicates (DUP)                          |    |         |        |          |                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | 1  | 13      | 7.69   | 10.00    | NEPM 2013 B3 & ALS QC Standard |

# **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

| Matrix: WATER                              |        |             |                          |                    | Evaluation | : * = Holding time | breach; ✓ = withi | n nolaing time. |
|--------------------------------------------|--------|-------------|--------------------------|--------------------|------------|--------------------|-------------------|-----------------|
| Method                                     | Method |             | Extraction / Preparation |                    |            | Analysis           |                   |                 |
| Container / Client Sample ID(s)            |        |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis  | Evaluation      |
| EP231A: Perfluoroalkyl Sulfonic Acids      |        |             |                          |                    |            |                    |                   |                 |
| HDPE (no PTFE) (EP231X)<br>QA16A,<br>QA19A | QA18A, | 18-May-2020 | 27-May-2020              | 14-Nov-2020        | ✓          | 27-May-2020        | 14-Nov-2020       | ✓               |
| EP231B: Perfluoroalkyl Carboxylic Acids    |        |             |                          |                    |            |                    |                   |                 |
| HDPE (no PTFE) (EP231X)<br>QA16A,<br>QA19A | QA18A, | 18-May-2020 | 27-May-2020              | 14-Nov-2020        | ✓          | 27-May-2020        | 14-Nov-2020       | ✓               |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids | s      |             |                          |                    |            |                    |                   |                 |
| HDPE (no PTFE) (EP231X)<br>QA16A,<br>QA19A | QA18A, | 18-May-2020 | 27-May-2020              | 14-Nov-2020        | ✓          | 27-May-2020        | 14-Nov-2020       | ✓               |
| EP231P: PFAS Sums                          |        |             |                          |                    |            |                    |                   |                 |
| HDPE (no PTFE) (EP231X)<br>QA16A,<br>QA19A | QA18A, | 18-May-2020 | 27-May-2020              | 14-Nov-2020        | ✓          | 27-May-2020        | 14-Nov-2020       | ✓               |

 Page
 : 3 of 4

 Work Order
 : ES2017792

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: **x** = Quality Control frequency not within specification;  $\checkmark$  = Quality Control frequency within specification.

| Quality Control Sample Type                          |        | Count |         | Rate (%) |          |            | Quality Control Specification  |
|------------------------------------------------------|--------|-------|---------|----------|----------|------------|--------------------------------|
| Analytical Methods                                   | Method | OC    | Reaular | Actual   | Expected | Evaluation |                                |
| Laboratory Duplicates (DUP)                          |        |       |         |          |          |            |                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1     | 13      | 7.69     | 10.00    | غد         | NEPM 2013 B3 & ALS QC Standard |
| Laboratory Control Samples (LCS)                     |        |       |         |          |          |            |                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1     | 13      | 7.69     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Method Blanks (MB)                                   |        |       |         |          |          |            |                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1     | 13      | 7.69     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)                                   |        |       |         |          |          |            |                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1     | 13      | 7.69     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |

 Page
 : 4 of 4

 Work Order
 : ES2017792

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                     | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Solid Phase Extraction (SPE) for PFAS in water          | ORG72  | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                 |



# **CHAIN OF CUSTODY FORM - Client**

#### Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 ① 02 9910 6200 | Sydney@envirolab.com.au [Copyright and Confidential] Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 Client Project Name/Number/Site etc (ie report title): Client: GHD Pty Ltd Ф 08 9317 2505 | ⊠ lab@mpl.com.au Contact Person: Sean Sparrow Melbourne Lab - Envirolab Services PO No.: 12516828 25 Research Drive, Croydon South, VIC 3136 Project Mgr: Dilara Valiff ⊕ 03 9763 2500 | M melbourne@envirolab.com.au Sampler: Sean Sparrow Envirolab Quote No. : Date results required: standard Adelaide Office - Envirolab Services Address: 211 Victoria Square, Adelaide, SA 5000 7a The Parade, Norwood, SA 5067 Or choose: standard / same day / 1 day / 2 day / 3 day ① 08 7087 6800 | ≥ adelaide@envirolab.com.au Note: Inform lab in advance if urgent turnaround is required -Brisbane Office - Envirolab Services surcharges apply 20a, 10-20 Depot St, Banyo, QLD 4014 Additional report format: esdat / equis / Phone: Mob: 0498 260 626 ① 07 3266 9532 | ≥ brisbane@envirolab.com.au GHDLabReports@ghd.com Lab Comments: Email: **Darwin Office - Envirolab Services** Sean.Sparrow@ghd.com Unit 20/119 Reichardt Road, Winnellie, NT 0820 Dilara.Valiff@ghd.com Sample information Tests Required Comments : PFAS Short Suite (sediment) Suite Provide as much PFAS Agirt **Envirolab Sample** Client Sample ID or Date Depth Type of sample information about the information sampled ID sample as you can DC08 9/06/2020 water, sediment water, sediment **QA20** 9/06/2020 AG QA20A 9/06/2020 water Please forward to ALS **TB03** 9/06/2020 5 <u>water</u> Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis Lab Use Only **GHD Pty Ltd** Received by (Company): Relinquished by (Company): Job number: 고나나여색2 Cooling Ice Lice pack / None Sean Sparrow Print Name: **Print Name:** 12/06/20 Temperature: 2.1 'C Security seal (Intact / Broken / None 12/06/2020 Date & Time: Date & Time: 000 TAT Req - SAME day / 1 / 2 / 3 / 4 / 870) Signature: Signature:

ELS Syomy Grup, 16.06.2020, 12.15

**ENVIROLAB GROUP** 

National phone number 1300 424 344



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# **CERTIFICATE OF ANALYSIS 244942**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Sean Sparrow, Dilara Valiff      |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                     |
|--------------------------------------|---------------------|
| Your Reference                       | <u>12516828</u>     |
| Number of Samples                    | 3 Water, 2 Sediment |
| Date samples received                | 16/06/2020          |
| Date completed instructions received | 16/06/2020          |

# **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                                       |            |  |  |
|------------------------------------------------------------------------------------------------------|------------|--|--|
| Date results requested by                                                                            | 23/06/2020 |  |  |
| Date of Issue                                                                                        | 22/06/2020 |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |  |

Results Approved By

Alexander Mitchell Maclean, Senior Chemist Fiona Tan, LC Supervisor

**Authorised By** 

Nancy Zhang, Laboratory Manager

Envirolab Reference: 244942 Revision No: R00



| PFAS in Waters Short                               |       |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|
| Our Reference                                      |       | 244942-1   | 244942-3   | 244942-5   |
| Your Reference                                     | UNITS | DC08       | QA20       | TB03       |
| Date Sampled                                       |       | 09/06/2020 | 09/06/2020 | 09/06/2020 |
| Type of sample                                     |       | Water      | Water      | Water      |
| Date prepared                                      | -     | 17/06/2020 | 17/06/2020 | 17/06/2020 |
| Date analysed                                      | -     | 17/06/2020 | 17/06/2020 | 17/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.06       | 0.06       | <0.01      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.08       | 0.07       | <0.01      |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 109        | 105        | 105        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 108        | 109        | 98         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 121        | 121        | 108        |
| Extracted ISTD 13 C4 PFOS                          | %     | 102        | 106        | 102        |
| Extracted ISTD 13 C4 PFOA                          | %     | 129        | 133        | 146        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 155        | 190        | 187        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | 87         | 98         | 86         |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.14       | 0.13       | <0.01      |
| Total Positive PFOA & PFOS                         | μg/L  | 0.08       | 0.07       | <0.01      |
| Total Positive PFAS                                | μg/L  | 0.14       | 0.13       | <0.01      |

Envirolab Reference: 244942 Revision No: R00

| PFAS in Soils Short                         |       |            |            |
|---------------------------------------------|-------|------------|------------|
| Our Reference                               |       | 244942-2   | 244942-4   |
| Your Reference                              | UNITS | DC08       | QA20       |
| Date Sampled                                |       | 09/06/2020 | 09/06/2020 |
| Type of sample                              |       | Sediment   | Sediment   |
| Date prepared                               | -     | 17/06/2020 | 17/06/2020 |
| Date analysed                               | -     | 17/06/2020 | 17/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS        | μg/kg | 2.1        | 1.7        |
| Perfluorooctanesulfonic acid PFOS           | μg/kg | 65         | 53         |
| Perfluorooctanoic acid PFOA                 | μg/kg | 1.0        | 0.6        |
| 6:2 FTS                                     | μg/kg | <0.5       | <0.5       |
| 8:2 FTS                                     | μg/kg | <1         | <1         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 98         | 101        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 84         | 87         |
| Extracted ISTD 18 O <sub>2</sub> PFHxS      | %     | 74         | 75         |
| Extracted ISTD 13 C4 PFOS                   | %     | 81         | 84         |
| Extracted ISTD 13 C4 PFOA                   | %     | 84         | 80         |
| Extracted ISTD 13 C2 6:2FTS                 | %     | 94         | 93         |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS     | %     | 84         | 73         |
| Total Positive PFHxS & PFOS                 | μg/kg | 68         | 55         |
| Total Positive PFOS & PFOA                  | μg/kg | 66         | 54         |
| Total Positive PFAS                         | μg/kg | 69         | 56         |

Envirolab Reference: 244942

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference  |       | 244942-2   | 244942-4   |
| Your Reference | UNITS | DC08       | QA20       |
| Date Sampled   |       | 09/06/2020 | 09/06/2020 |
| Type of sample |       | Sediment   | Sediment   |
| Date prepared  | -     | 17/06/2020 | 17/06/2020 |
| Date analysed  | -     | 18/06/2020 | 18/06/2020 |
| Moisture       | %     | 74         | 67         |

Envirolab Reference: 244942 Revision No: R00

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 244942

| QUALITY C                                          | ONTROL: PI | aters Short |         |            | Duplicate |            | Spike Recovery % |     |            |            |
|----------------------------------------------------|------------|-------------|---------|------------|-----------|------------|------------------|-----|------------|------------|
| Test Description                                   | Units      | PQL         | Method  | Blank      | #         | Base       | Dup.             | RPD | LCS-W1     | 244942-3   |
| Date prepared                                      | -          |             |         | 17/06/2020 | 1         | 17/06/2020 | 17/06/2020       |     | 17/06/2020 | 17/06/2020 |
| Date analysed                                      | -          |             |         | 17/06/2020 | 1         | 17/06/2020 | 17/06/2020       |     | 17/06/2020 | 17/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.01        | Org-029 | <0.01      | 1         | 0.06       | 0.06             | 0   | 95         | 79         |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.01        | Org-029 | <0.01      | 1         | 0.08       | 0.08             | 0   | 98         | 98         |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.01        | Org-029 | <0.01      | 1         | <0.01      | <0.01            | 0   | 97         | 96         |
| 6:2 FTS                                            | μg/L       | 0.01        | Org-029 | <0.01      | 1         | <0.01      | <0.01            | 0   | 95         | 92         |
| 8:2 FTS                                            | μg/L       | 0.02        | Org-029 | <0.02      | 1         | <0.02      | <0.02            | 0   | 92         | 88         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |             | Org-029 | 100        | 1         | 109        | 103              | 6   | 100        | 102        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |             | Org-029 | 103        | 1         | 108        | 106              | 2   | 102        | 109        |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |             | Org-029 | 104        | 1         | 121        | 123              | 2   | 106        | 118        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |             | Org-029 | 106        | 1         | 102        | 107              | 5   | 103        | 101        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |             | Org-029 | 104        | 1         | 129        | 131              | 2   | 103        | 130        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |             | Org-029 | 111        | 1         | 155        | 171              | 10  | 114        | 177        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |             | Org-029 | 87         | 1         | 87         | 87               | 0   | 96         | 88         |

Envirolab Reference: 244942 Revision No: R00

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|-----------|------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL       | Method     | Blank      | # | Base       | Dup.       | RPD | LCS-1      | 244942-4   |
| Date prepared                                      | -          |           |            | 17/06/2020 | 2 | 17/06/2020 | 17/06/2020 |     | 17/06/2020 | 17/06/2020 |
| Date analysed                                      | -          |           |            | 17/06/2020 | 2 | 17/06/2020 | 17/06/2020 |     | 17/06/2020 | 17/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | 2.1        | 1.9        | 10  | 111        | 100        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | 65         | 59         | 10  | 123        | ##         |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | 1.0        | 1.0        | 0   | 101        | 100        |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | <0.5       | <0.5       | 0   | 99         | 99         |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | 2 | <1         | <1         | 0   | 114        | 109        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 98         | 2 | 98         | 100        | 2   | 97         | 95         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | 87         | 2 | 84         | 90         | 7   | 90         | 90         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 98         | 2 | 74         | 81         | 9   | 96         | 76         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 115        | 2 | 81         | 87         | 7   | 118        | 85         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | 125        | 2 | 84         | 87         | 4   | 120        | 82         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 123        | 2 | 94         | 101        | 7   | 116        | 96         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | 131        | 2 | 84         | 84         | 0   | 123        | 79         |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 244942

Revision No: R00

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 244942 Page | 9 of 10

Revision No: R00

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

PFAS in Soil:

PQLs raised due to the high moisture content of the samples.

Envirolab Reference: 244942 Page | 10 of 10 Revision No: R00



| ENVIROLAB                    | ENVIROLAB                                                              | CHZ    | CHAIN OF CI     |                 | TODY FOR                                                       | JSTODY FORM - Client                                                                                                     | ENVIROLAB GROUP National phone number 1300 424 344                                                                          |
|------------------------------|------------------------------------------------------------------------|--------|-----------------|-----------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| and a                        |                                                                        |        | <b>)</b>        |                 |                                                                |                                                                                                                          | Sydney Lab - Envirolab Services<br>12 Ashley St, Chatswood, NSW 2067<br>⊕ 02 9910 6200   ⊠ sydney@envirolab.com.au          |
| [Copyright and Confidential] | dentialj                                                               |        |                 |                 |                                                                |                                                                                                                          | Perth Lab - MPL Laboratories                                                                                                |
| Client: GHD Pty Ltd          | P                                                                      |        |                 |                 | Client Project Name/Number/Site etc (ie report title):         | er/Site etc (ie report title):                                                                                           | 16-18 Hayden Crt, Myaree, WA 6154<br>○ 08 9317 2505 1 ⊠ Jah@mnl.com.au                                                      |
| Contact Person: Sean Sparrow | ean Sparrow                                                            |        | -               | -               |                                                                |                                                                                                                          |                                                                                                                             |
| Project Mgr: Dilara Valiff   | Valiff                                                                 |        |                 |                 | PO No.: 12516828                                               |                                                                                                                          | Melbourne Lab - Envirolab Services 25 Research Drive, Croydon South, VIC 3136                                               |
| Sampler: Sean Sparrow        | ırrow                                                                  |        |                 |                 | Envirolab Quote No. :                                          |                                                                                                                          | ☼ 03 9763 2500   № melbourne@envirolab.com.au                                                                               |
| Address: 211 Victo           | Address: 211 Victoria Square, Adelaide, SA 5000                        |        |                 |                 | Date results required:                                         | standard                                                                                                                 | Adelaide Office - Envirolab Services                                                                                        |
|                              |                                                                        |        |                 |                 | Or choose: standard / sam<br>Note: Inform lab in advance i     | Or choose: standard / same day / 1 day / 2 day / 3 day<br>Note: inform lab in advance if urgent turnaround is required - | 7a The Parade, Nowood, SA 5067                                                                                              |
|                              |                                                                        |        |                 |                 | surcharges apply                                               |                                                                                                                          | Brisbane Office - Envirolab Services                                                                                        |
| Phone:                       |                                                                        | Mob:   | 0498 260 626    |                 | Additional report format: esdat / equis                        | ssdat / equis /                                                                                                          | 20a, 10-20 Depot St, Banyo, QLD 4014                                                                                        |
| Email:                       | GHDLabReports@ghd.com<br>Sean.Sparrow@ghd.com<br>Dilara.Valiff@ghd.com | EI     |                 |                 | Lab Comments:                                                  |                                                                                                                          | Darwin Office - Envirolab Services Unit 20/14) Reicheraft Road, Winnellie, NT 0820  ⊕ 8887 1204   ⊠ daawin@envirolab com au |
|                              | Sample information                                                     | nation |                 |                 |                                                                | Tests Recuired                                                                                                           | Comments                                                                                                                    |
| Envirolab Sample<br>ID       | Client Sample ID or information                                        | Depth  | Date<br>sampled | Type of sample  | esting high SAH'<br>(watew)<br>esting horic SAH<br>(finemibes) |                                                                                                                          | Provide as much information about the sample as you can                                                                     |
|                              | DC08                                                                   |        | 9/06/2020       | water, sediment | 1                                                              |                                                                                                                          |                                                                                                                             |
| 74                           | -QA20                                                                  | r      | 9/06/2020       | water, sediment | -                                                              |                                                                                                                          |                                                                                                                             |

water water

QA20A TB03

ACS

9/06/2020 9/06/2020

<u>දි</u>

adali.

A

C. MAKIEWA <u>C</u> (Seg

という

ā

Reling Mished

| ١. |
|----|

Security seal (mact / Broken / None Cooling Tee Dice pack / None TAT Req - SAME day / 1 / 2 / 3 / 4 / (STD) Job number: 244912 Temperature: ユバン Kec-Scylle (2/6/20 1355 Issue date: 7 October 2019 12 Job 120 Received by (Company):  $\mathcal{E}(S)$ Print Name: Date & Time: Signature: GHD Pty Ltd Sean Sparrow 12/06/2020 Relinquished by (Company): Date & Time: Print Name: Signature:

ELS Syoung Baup, 16.06.2020, 12.15.

Form 302\_V006

Page 1 of 1



## **CERTIFICATE OF ANALYSIS**

Work Order : ES2021003

: GHD PTY LTD

Contact : SEAN SPARROW

Address : LEVEL 15. 133 CASTLEREAGH STREET

SYDNEY NSW, AUSTRALIA 2000

Telephone : ---

Client

Project : 12516828 Order number : 12516828

C-O-C number : ----Sampler : ----

Site

Quote number : EN/005/19

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 17-Jun-2020 17:55

Date Analysis Commenced : 24-Jun-2020

Issue Date 25-Jun-2020 12:54



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW

 Page
 : 2 of 5

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

 Page
 : 3 of 5

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



## Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)                |            | Clie       | ent sample ID   | QA20A             | <br> | <br> |
|--------------------------------------------------|------------|------------|-----------------|-------------------|------|------|
|                                                  | Cli        | ent sampli | ing date / time | 09-Jun-2020 00:00 | <br> | <br> |
| Compound                                         | CAS Number | LOR        | Unit            | ES2021003-001     | <br> | <br> |
|                                                  |            |            |                 | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids            |            |            |                 |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)             | 375-73-5   | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluoropentane sulfonic acid (PFPeS)           | 2706-91-4  | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)            | 355-46-4   | 0.02       | μg/L            | 0.09              | <br> | <br> |
| Perfluoroheptane sulfonic acid (PFHpS)           | 375-92-8   | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)             | 1763-23-1  | 0.01       | μg/L            | 0.15              | <br> | <br> |
| Perfluorodecane sulfonic acid (PFDS)             | 335-77-3   | 0.02       | μg/L            | <0.02             | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Acid           | ds         |            |                 |                   |      |      |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.1        | μg/L            | <0.1              | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.02       | μg/L            | 0.04              | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.01       | μg/L            | <0.01             | <br> | <br> |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluoroundecanoic acid (PFUnDA)                | 2058-94-8  | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluorododecanoic acid (PFDoDA)                | 307-55-1   | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluorotridecanoic acid (PFTrDA)               | 72629-94-8 | 0.02       | μg/L            | <0.02             | <br> | <br> |
| Perfluorotetradecanoic acid (PFTeDA)             | 376-06-7   | 0.05       | μg/L            | <0.05             | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamides              |            |            |                 |                   |      |      |
| Perfluorooctane sulfonamide (FOSA)               | 754-91-6   | 0.02       | μg/L            | <0.02             | <br> | <br> |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.05       | μg/L            | <0.05             | <br> | <br> |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)  | 4151-50-2  | 0.05       | μg/L            | <0.05             | <br> | <br> |

 Page
 : 4 of 5

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



## Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)                               |                        | Clie        | ent sample ID  | QA20A             | <br> | <br> |
|-----------------------------------------------------------------|------------------------|-------------|----------------|-------------------|------|------|
|                                                                 | Cli                    | ient sampli | ng date / time | 09-Jun-2020 00:00 | <br> | <br> |
| Compound                                                        | CAS Number             | LOR         | Unit           | ES2021003-001     | <br> | <br> |
|                                                                 |                        |             |                | Result            | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamides                             | - Continued            |             |                |                   |      |      |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.05        | μg/L           | <0.05             | <br> | <br> |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.05        | μg/L           | <0.05             | <br> | <br> |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.02        | μg/L           | <0.02             | <br> | <br> |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.02        | μg/L           | <0.02             | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonic                            | Acids                  |             |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.05        | μg/L           | <0.05             | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.05        | μg/L           | <0.05             | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                       | 39108-34-4             | 0.05        | μg/L           | <0.05             | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.05        | μg/L           | <0.05             | <br> | <br> |
| EP231P: PFAS Sums                                               |                        |             |                |                   |      |      |
| Sum of PFAS                                                     |                        | 0.01        | μg/L           | 0.28              | <br> | <br> |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.01        | μg/L           | 0.24              | <br> | <br> |
| Sum of PFAS (WA DER List)                                       |                        | 0.01        | μg/L           | 0.28              | <br> | <br> |
| EP231S: PFAS Surrogate                                          |                        |             |                |                   |      |      |
| 13C4-PFOS                                                       |                        | 0.02        | %              | 114               | <br> | <br> |
| 13C8-PFOA                                                       |                        | 0.02        | %              | 109               | <br> | <br> |

 Page
 : 5 of 5

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Surrogate Control Limits

| Sub-Matrix: WATER      |            | Recovery | Limits (%) |
|------------------------|------------|----------|------------|
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |



#### **QUALITY CONTROL REPORT**

Work Order : ES2021003

: GHD PTY LTD

Contact : SEAN SPARROW

Address : LEVEL 15. 133 CASTLEREAGH STREET

SYDNEY NSW. AUSTRALIA 2000

Telephone : ----

Client

Project : 12516828 Order number : 12516828

C-O-C number : ----Sampler : ----

Site

Quote number : EN/005/19

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 17-Jun-2020

Date Analysis Commenced : 24-Jun-2020 Issue Date : 25-Jun-2020



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW

 Page
 : 2 of 7

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                         |                                                |            |      |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------|------------------------------------------------|------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                               | CAS Number | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC | C Lot: 3097130)                                |            |      |      |                 |                        |         |                     |
| EM2010513-004        | Anonymous               | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
| ES2021002-002        | Anonymous               | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
| EP231B: Perfluoro    | alkyl Carboxylic Acids  | (QC Lot: 3097130)                              |            |      |      |                 |                        |         |                     |
| EM2010513-004        | Anonymous               | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7   | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4   | 0.1  | μg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES2021002-002        | Anonymous               | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |

 Page
 : 3 of 7

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER    |                          |                                              |             |      |      | Laboratory I    | Duplicate (DUP) Report |         |                    |
|----------------------|--------------------------|----------------------------------------------|-------------|------|------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                             | CAS Number  | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (% |
| P231B: Perfluoroa    | alkyl Carboxylic Acids ( | QC Lot: 3097130) - continued                 |             |      |      |                 |                        |         |                    |
| ES2021002-002        | Anonymous                | EP231X: Perfluoropentanoic acid (PFPeA)      | 2706-90-3   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | EP231X: Perfluorohexanoic acid (PFHxA)       | 307-24-4    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | EP231X: Perfluoroheptanoic acid (PFHpA)      | 375-85-9    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | EP231X: Perfluorononanoic acid (PFNA)        | 375-95-1    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | EP231X: Perfluorodecanoic acid (PFDA)        | 335-76-2    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | EP231X: Perfluoroundecanoic acid (PFUnDA)    | 2058-94-8   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | EP231X: Perfluorododecanoic acid (PFDoDA)    | 307-55-1    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | EP231X: Perfluorotridecanoic acid (PFTrDA)   | 72629-94-8  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7    | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                          | EP231X: Perfluorobutanoic acid (PFBA)        | 375-22-4    | 0.1  | μg/L | <0.1            | <0.1                   | 0.00    | No Limit           |
| P231C: Perfluoroa    | Ikyl Sulfonamides (QC I  | _ot: 3097130)                                |             |      |      |                 |                        |         |                    |
| EM2010513-004        | Anonymous                | EP231X: Perfluorooctane sulfonamide (FOSA)   | 754-91-6    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      | , , , , , ,              | EP231X: N-Methyl perfluorooctane             | 2355-31-9   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | sulfonamidoacetic acid (MeFOSAA)             |             |      |      |                 |                        |         |                    |
|                      |                          | EP231X: N-Ethyl perfluorooctane              | 2991-50-6   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | sulfonamidoacetic acid (EtFOSAA)             |             |      |      |                 |                        |         |                    |
|                      |                          | EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8  | 0.05 | μg/L | <0.05           | <0.05                  |         | No Limit           |
|                      |                          | (MeFOSA)                                     |             |      |      |                 |                        |         |                    |
|                      |                          | EP231X: N-Ethyl perfluorooctane sulfonamide  | 4151-50-2   | 0.05 | μg/L | <0.05           | <0.05                  |         | No Limit           |
|                      |                          | (EtFOSA)                                     |             |      |      |                 |                        |         |                    |
|                      |                          | EP231X: N-Methyl perfluorooctane             | 24448-09-7  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                          | sulfonamidoethanol (MeFOSE)                  |             |      |      |                 |                        |         |                    |
|                      |                          | EP231X: N-Ethyl perfluorooctane              | 1691-99-2   | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                          | sulfonamidoethanol (EtFOSE)                  |             |      |      |                 |                        |         |                    |
| S2021002-002         | Anonymous                | EP231X: Perfluorooctane sulfonamide (FOSA)   | 754-91-6    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | EP231X: N-Methyl perfluorooctane             | 2355-31-9   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | sulfonamidoacetic acid (MeFOSAA)             |             |      |      |                 |                        |         |                    |
|                      |                          | EP231X: N-Ethyl perfluorooctane              | 2991-50-6   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit           |
|                      |                          | sulfonamidoacetic acid (EtFOSAA)             |             |      |      |                 |                        |         |                    |
|                      |                          | EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                          | (MeFOSA)                                     |             |      |      |                 |                        |         |                    |
|                      |                          | EP231X: N-Ethyl perfluorooctane sulfonamide  | 4151-50-2   | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                          | (EtFOSA)                                     |             |      |      |                 |                        |         |                    |
|                      |                          | EP231X: N-Methyl perfluorooctane             | 24448-09-7  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                          | sulfonamidoethanol (MeFOSE)                  | 4004.00.0   | 0.05 |      | 0.05            | 0.05                   |         | A1 11 11           |
|                      |                          | EP231X: N-Ethyl perfluorooctane              | 1691-99-2   | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                          | sulfonamidoethanol (EtFOSE)                  |             |      |      |                 |                        |         |                    |
| <u> </u>             | rotelomer Sulfonic Acids | G (QC Lot: 3097130)                          |             |      |      |                 |                        |         |                    |
| EM2010513-004        | Anonymous                | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 | 757124-72-4 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit           |
|                      |                          | FTS)                                         |             |      |      |                 |                        |         |                    |

 Page
 : 4 of 7

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER    |                         |                                                     |             |      |      | Laboratory L    | Ouplicate (DUP) Report |         |                     |
|----------------------|-------------------------|-----------------------------------------------------|-------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                    | CAS Number  | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231D: (n:2) Fluoi  | rotelomer Sulfonic Acid | ds (QC Lot: 3097130) - continued                    |             |      |      |                 |                        |         |                     |
| EM2010513-004        | Anonymous               | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | µg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
| ES2021002-002        | Anonymous               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05 | µg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
| EP231P: PFAS Sum     | s (QC Lot: 3097130)     |                                                     |             |      |      |                 |                        |         |                     |
| EM2010513-004        | Anonymous               | EP231X: Sum of PFAS                                 |             | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| ES2021002-002        | Anonymous               | EP231X: Sum of PFAS                                 |             | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |

 Page
 : 5 of 7

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                                 |             |      |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|-------------------------------------------------------------------|-------------|------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                   |             |      |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                                  | CAS Number  | LOR  | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 309713              | 0)          |      |      |                   |               |                              |           |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 89.6                         | 72.0      | 130        |
| EP231X: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4   | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 104                          | 71.0      | 127        |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 96.6                         | 68.0      | 131        |
| EP231X: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 97.6                         | 69.0      | 134        |
| EP231X: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1   | 0.01 | μg/L | <0.01             | 0.25 μg/L     | 101                          | 65.0      | 140        |
| EP231X: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 101                          | 53.0      | 142        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 309)              | 7130)       |      |      |                   |               |                              |           |            |
| EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.1  | μg/L | <0.1              | 1.25 μg/L     | 96.0                         | 73.0      | 129        |
| EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3   | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 106                          | 72.0      | 129        |
| EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 97.8                         | 72.0      | 129        |
| EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 105                          | 72.0      | 130        |
| EP231X: Perfluorooctanoic acid (PFOA)                             | 335-67-1    | 0.01 | μg/L | <0.01             | 0.25 μg/L     | 99.8                         | 71.0      | 133        |
| EP231X: Perfluorononanoic acid (PFNA)                             | 375-95-1    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 100                          | 69.0      | 130        |
| EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 98.6                         | 71.0      | 129        |
| EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8   | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 93.6                         | 69.0      | 133        |
| EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 108                          | 72.0      | 134        |
| EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8  | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 108                          | 65.0      | 144        |
| EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.05 | μg/L | <0.05             | 0.625 μg/L    | 115                          | 71.0      | 132        |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3097130               | ))          |      |      |                   |               |                              |           |            |
| EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 96.4                         | 67.0      | 137        |
| EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.05 | μg/L | <0.05             | 0.625 μg/L    | 114                          | 68.0      | 141        |
| EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.05 | μg/L | <0.05             | 0.625 μg/L    | 106                          | 62.6      | 147        |
| EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.05 | μg/L | <0.05             | 0.625 μg/L    | 107                          | 66.0      | 145        |
| EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.05 | μg/L | <0.05             | 0.625 μg/L    | 108                          | 57.6      | 145        |
| EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 109                          | 65.0      | 136        |
| EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.02 | μg/L | <0.02             | 0.25 μg/L     | 96.2                         | 61.0      | 135        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3              | 097130)     |      |      |                   |               |                              |           |            |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.05 | μg/L | <0.05             | 0.25 μg/L     | 111                          | 63.0      | 143        |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.05 | μg/L | <0.05             | 0.25 μg/L     | 107                          | 64.0      | 140        |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.05 | μg/L | <0.05             | 0.25 μg/L     | 97.0                         | 67.0      | 138        |

 Page
 : 6 of 7

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER                                   |                                                                         |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                           |     |               |     |  |  |  |  |  |
|-----------------------------------------------------|-------------------------------------------------------------------------|------|-------------------|---------------------------------------|---------------------------|-----|---------------|-----|--|--|--|--|--|
|                                                     |                                                                         |      | Report            | Spike                                 | Spike Recovery (%) Recove |     | ry Limits (%) |     |  |  |  |  |  |
| Method: Compound                                    | CAS Number                                                              | LOR  | Unit              | Result                                | Concentration             | LCS | Low High      |     |  |  |  |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot   | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3097130) - continued |      |                   |                                       |                           |     |               |     |  |  |  |  |  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0                                                             | 0.05 | μg/L              | <0.05                                 | 0.25 μg/L                 | 101 | 71.4          | 144 |  |  |  |  |  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: WATER    |                                          | Matrix Spike (MS) Report                                          |                        |               |            |           |      |
|---------------------|------------------------------------------|-------------------------------------------------------------------|------------------------|---------------|------------|-----------|------|
|                     |                                          |                                                                   | Spike SpikeRecovery(%) |               | Recovery L | imits (%) |      |
| aboratory sample ID | Client sample ID                         | Method: Compound                                                  | CAS Number             | Concentration | MS         | Low       | High |
| P231A: Perfluoro    | palkyl Sulfonic Acids (QCLot: 3097130)   |                                                                   |                        |               |            |           |      |
| ES2021002-001       | Anonymous                                | EP231X: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5               | 0.25 μg/L     | 96.8       | 72.0      | 130  |
|                     |                                          | EP231X: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4              | 0.25 μg/L     | 114        | 71.0      | 127  |
|                     |                                          | EP231X: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4               | 0.25 μg/L     | 103        | 68.0      | 131  |
|                     |                                          | EP231X: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8               | 0.25 μg/L     | 113        | 69.0      | 134  |
|                     |                                          | EP231X: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1              | 0.25 μg/L     | 91.4       | 65.0      | 140  |
|                     |                                          | EP231X: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3               | 0.25 μg/L     | 111        | 53.0      | 142  |
| P231B: Perfluor     | oalkyl Carboxylic Acids (QCLot: 3097130) |                                                                   |                        |               |            |           |      |
| S2021002-001        | Anonymous                                | EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4               | 1.25 μg/L     | 106        | 73.0      | 129  |
|                     |                                          | EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3              | 0.25 μg/L     | 119        | 72.0      | 129  |
|                     |                                          | EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4               | 0.25 μg/L     | 110        | 72.0      | 129  |
|                     |                                          | EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9               | 0.25 μg/L     | 115        | 72.0      | 130  |
|                     | EP231X: Perfluorooctanoic acid (PFOA)    | 335-67-1                                                          | 0.25 μg/L              | 108           | 71.0       | 133       |      |
|                     | EP231X: Perfluorononanoic acid (PFNA)    | 375-95-1                                                          | 0.25 μg/L              | 116           | 69.0       | 130       |      |
|                     |                                          | EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2               | 0.25 μg/L     | 115        | 71.0      | 129  |
|                     |                                          | EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8              | 0.25 μg/L     | 99.0       | 69.0      | 133  |
|                     |                                          | EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1               | 0.25 μg/L     | 121        | 72.0      | 134  |
|                     |                                          | EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8             | 0.25 μg/L     | 114        | 65.0      | 144  |
|                     |                                          | EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7               | 0.625 μg/L    | 119        | 71.0      | 132  |
| P231C: Perfluoro    | palkyl Sulfonamides (QCLot: 3097130)     |                                                                   |                        |               |            |           |      |
| S2021002-001        | Anonymous                                | EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6               | 0.25 μg/L     | 108        | 67.0      | 137  |
|                     |                                          | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8             | 0.625 μg/L    | 133        | 68.0      | 141  |
|                     |                                          | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2              | 0.625 μg/L    | 110        | 62.6      | 147  |
|                     |                                          | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7             | 0.625 μg/L    | 120        | 66.0      | 145  |
|                     |                                          | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2              | 0.625 μg/L    | 111        | 57.6      | 145  |
|                     |                                          | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9              | 0.25 μg/L     | 122        | 65.0      | 136  |

 Page
 : 7 of 7

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



144

Matrix Spike (MS) Report Sub-Matrix: WATER SpikeRecovery(%) Spike Recovery Limits (%) Laboratory sample ID Client sample ID CAS Number Concentration MS Low High Method: Compound EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3097130) - continued ES2021002-001 Anonymous EP231X: N-Ethyl perfluorooctane sulfonamidoacetic 2991-50-6 0.25 µg/L 111 61.0 135 acid (EtFOSAA) EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3097130) ES2021002-001 757124-72-4 143 Anonymous 0.25 µg/L 118 63.0 EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 27619-97-2 0.25 µg/L 111 64.0 140 EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 39108-34-4 67.0 138 EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) 0.25 µg/L 102

EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)

120226-60-0

0.25 µg/L

81.0

71.4



# QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2021003** Page : 1 of 4

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : SEAN SPARROW
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 17-Jun-2020

 Site
 : Issue Date
 : 25-Jun-2020

Sampler : ---- No. of samples received : 1
Order number : 12516828 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 4

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



## **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **WATER**Evaluation: × = Holding time breach; ✓ = Within holding time.

|                                            |             |                |                        |            |               |                  | 0          |
|--------------------------------------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|
| Method                                     | Sample Date | Ex             | traction / Preparation |            |               |                  |            |
| Container / Client Sample ID(s)            |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |
| EP231A: Perfluoroalkyl Sulfonic Acids      |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QA20A              | 09-Jun-2020 | 24-Jun-2020    | 06-Dec-2020            | ✓          | 24-Jun-2020   | 06-Dec-2020      | ✓          |
| EP231B: Perfluoroalkyl Carboxylic Acids    |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QA20A              | 09-Jun-2020 | 24-Jun-2020    | 06-Dec-2020            | ✓          | 24-Jun-2020   | 06-Dec-2020      | ✓          |
| EP231C: Perfluoroalkyl Sulfonamides        |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QA20A              | 09-Jun-2020 | 24-Jun-2020    | 06-Dec-2020            | ✓          | 24-Jun-2020   | 06-Dec-2020      | <b>√</b>   |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QA20A              | 09-Jun-2020 | 24-Jun-2020    | 06-Dec-2020            | ✓          | 24-Jun-2020   | 06-Dec-2020      | ✓          |
| EP231P: PFAS Sums                          |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QA20A              | 09-Jun-2020 | 24-Jun-2020    | 06-Dec-2020            | ✓          | 24-Jun-2020   | 06-Dec-2020      | <b>✓</b>   |

 Page
 : 3 of 4

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: **x** = Quality Control frequency not within specification; **y** = Quality Control frequency within specification.

| Quality Control Sample Type                          |        | C  | ount    |        | Rate (%) |            | Quality Control Specification  |  |  |  |
|------------------------------------------------------|--------|----|---------|--------|----------|------------|--------------------------------|--|--|--|
| Analytical Methods                                   | Method | QC | Reaular | Actual | Expected | Evaluation |                                |  |  |  |
| Laboratory Duplicates (DUP)                          |        |    |         |        |          |            |                                |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2  | 19      | 10.53  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Laboratory Control Samples (LCS)                     |        |    |         |        |          |            |                                |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Method Blanks (MB)                                   |        |    |         |        |          |            |                                |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Matrix Spikes (MS)                                   |        |    |         |        |          |            |                                |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |

 Page
 : 4 of 4

 Work Order
 : ES2021003

 Client
 : GHD PTY LTD

 Project
 : 12516828



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                     | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Solid Phase Extraction (SPE) for PFAS in water          | ORG72  | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                 |

| COVIDOL OD | ยกงู้นี้งาล |
|------------|-------------|
| ENVIROLAB  | @<br>സ്ഥി   |

| [Copyright and Confid                                                                       | empl dential)                      | CH            | AIN C           | OF CUS                  | TC               | )D       | Y F     | FO                   | RN           | 1 -      | CI                                               | ier       | t          |             | Nat<br><u>Syd</u><br>12 /<br>© 0 | ional p<br>Iney La<br>Ashley<br>2 9910 | hone m<br><u>b</u> - Env<br>St, Cha<br>6200   i | -                    | i300 42<br>Service<br>I, NSW<br>ey@en | 24 344<br>es                                                      |
|---------------------------------------------------------------------------------------------|------------------------------------|---------------|-----------------|-------------------------|------------------|----------|---------|----------------------|--------------|----------|--------------------------------------------------|-----------|------------|-------------|----------------------------------|----------------------------------------|-------------------------------------------------|----------------------|---------------------------------------|-------------------------------------------------------------------|
| Client: GHD Pty Ltd                                                                         | <u> </u>                           |               |                 |                         | Client           | Projec   | t Name  | /Numb                | or/Sito      | oto (io  | ronost                                           | iii la la |            |             | 16-1                             | 18 Hay                                 | den Crt                                         | .aborate<br>, Myaree | e, WA                                 | 6154                                                              |
| Contact Person: Se                                                                          |                                    |               |                 |                         | Circin           | 755      |         | 20                   |              |          | report                                           | uue):     |            |             | Ø 0                              | 8 9317                                 | 2505                                            | ⊠ lab@               | mpl.co                                | om.au                                                             |
| Project Mgr: Dilara                                                                         |                                    |               | <u> </u>        |                         | PO N             | o.: 1251 |         | <u> </u>             | <del> </del> | 1000     |                                                  | _         |            | -           |                                  |                                        |                                                 | Envirola             |                                       |                                                                   |
| Sampler: Sean Sparrow                                                                       |                                    |               |                 |                         |                  | olab Qu  |         | . 10                 | 954          | 00:      | 2 1                                              | 7 .       | -          |             |                                  |                                        |                                                 |                      |                                       | outh, VIC 3136<br>@envirolab.com.au                               |
| Address:                                                                                    |                                    |               |                 |                         |                  | results  |         |                      | (-)(         |          |                                                  | ndard     |            |             | 1                                |                                        | -                                               | Envirola             |                                       | _                                                                 |
|                                                                                             | Level 4 211 Victoria Squa          | are, Adelaide | SA 5000         |                         |                  |          |         | rd / sam<br>dvance i |              |          |                                                  |           |            | arges       | 7a ¹<br>⊙ 0                      | The Par<br>8 7087                      | rade, N<br>6800   1                             | orwood<br>⊠ adela    | , SA 50<br>aide@e                     | 067<br>envirolab.com.au                                           |
| Phone:                                                                                      | <del></del>                        | Mob:          | 0498 260 62     | 6                       |                  | ional re | port fo | rmat: e              | sdat /       | equis /  |                                                  |           |            | -           |                                  |                                        |                                                 | Envirol:<br>St. Ban  |                                       | rvices<br>.D 4014                                                 |
| Email: GHDLabReports@ghd.com sean.sparrow@ghd.com dilara.valiff@ghd.com  Sample information |                                    |               |                 |                         | Lab C            | ommer    | nts:    | •                    |              |          |                                                  |           |            |             | <u>Dar</u><br>Uni                | win Off<br>t 20/11:                    | i <u>ce</u> - Er<br>Reich                       | nvirolab<br>ardt Ro  | Servi                                 | envirolab.com.au<br>ices<br>/innellie, NT 0820<br>nvirolab.com.au |
|                                                                                             | Sample info                        | rmation       |                 |                         |                  |          |         |                      |              |          | Tes                                              | sts Req   | uired      |             |                                  |                                        |                                                 |                      |                                       | Comments                                                          |
| Envirolab Sample<br>ID                                                                      | Client Sample ID or<br>information | Depth         | Date<br>sampled | Type of sample          | PFAS Short Suite | Ħ        | TDS     | Metals (8 Suite)     |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       | Provide as much information about the sample as you can           |
| 11                                                                                          | GW01                               |               | 15/06/2020      | water                   | Х                |          |         |                      |              |          |                                                  |           | :          |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
| 2                                                                                           | QA20                               |               | 15/06/2020      | water                   | х                |          |         |                      | -            |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
| Vr2                                                                                         | QA20A                              |               | 15/06/2020      | <u>water</u>            | х                | L        |         | L_                   |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       | Please forward to ALS                                             |
| 3                                                                                           | GW06                               |               | 15/06/2020      | water                   | Х                |          |         |                      |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
| 4                                                                                           | KAN23                              |               | 15/06/2020      | <u>water</u>            | х                | x        | Χ.      | x                    |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       | Metals sample was not filtered in the field                       |
| NB                                                                                          | GW03                               |               | 15/06/2020      | <u>water</u>            | Х                |          |         |                      |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
| ラ                                                                                           | GW05                               |               | 15/06/2020      | <u>water</u>            | Х                | ,        |         |                      |              |          |                                                  |           | 1          |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
| 6                                                                                           | H15                                |               | 16/06/2020      | water                   | х                | х        | x       | х                    |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       | Metals sample was not filtered in the field                       |
| ች                                                                                           | C04a                               |               | 16/06/2020      | water                   | х                | х        | _x_     | х                    |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       | Metals sample was not filtered in the field                       |
| ලි                                                                                          | GW03                               |               | 16/06/2020      | water                   | х                |          |         |                      |              |          |                                                  | Ī         |            |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
| <u> </u>                                                                                    | GW04                               |               | 16/06/2020      | <u>water</u>            | х                |          |         |                      |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
| NG                                                                                          | GW05                               |               | 16/06/2020      | water                   | х                |          |         |                      |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
| 10                                                                                          | TB05                               |               | 16/06/2020      | <u>water</u>            | х                |          |         |                      |              | ·        |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
|                                                                                             | R805                               | <u> </u>      | 16/06/2020      | water                   | х                |          |         |                      |              |          |                                                  |           |            |             |                                  |                                        |                                                 |                      |                                       |                                                                   |
|                                                                                             | Disease tiek the boy if above      | 4             | 4               |                         | <u> </u>         | <u> </u> | <u></u> | <u> </u>             |              | L_       | <u> </u>                                         |           | <u> </u>   |             |                                  | <u> </u>                               |                                                 |                      |                                       |                                                                   |
| Relinquished by (Co                                                                         | Please tick the box if observed    | setuea seai   |                 |                         |                  |          | in the  | extract              | tion and     | d/or an  | alysis                                           |           |            | _           |                                  |                                        | <del></del>                                     |                      |                                       |                                                                   |
| Print Name:                                                                                 | Sean Sparrow                       |               |                 | Received by (Comp       |                  |          | - (     |                      |              |          | <del>                                     </del> |           | 20         | <del></del> |                                  | -                                      | b Use                                           | <u> </u>             |                                       |                                                                   |
|                                                                                             | 17/06/2020                         |               |                 | Print Name:             | HA.              | SY       | 2       | <u>0</u> (=          | 52           | 16       |                                                  |           | <u> 24</u> | <u>5 (</u>  |                                  |                                        |                                                 |                      |                                       | ack 7 None                                                        |
| Date & Time:<br>Signature:                                                                  | 1110012020                         |               |                 | Date & Time: Signature: |                  | 101      | wi      | ر رو                 | <u>U 5.</u>  | 100      |                                                  | erature   |            |             |                                  |                                        |                                                 | ty seal:             | Intact                                | / Broken / None                                                   |
| eyma                                                                                        | 2.120                              | · F 00        |                 | Signature. 219          | OUX.             |          | ·       |                      |              | <u> </u> |                                                  | eq - SA   | ME da      | //1/        |                                  |                                        |                                                 | 2 2 2                | _                                     | 110:50                                                            |

Form 302\_V006 Formpley 6W02 15.06.2020 12 Thereof. 6W07 16.06.2020, 13

ELS Syd. - 18.06.2020, 10:59

Issue date: 7 October 2019



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 245176**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Sean Sparrow                     |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |              |
|--------------------------------------|--------------|
| Your Reference                       | CFS Brukunga |
| Number of Samples                    | 13 WATER     |
| Date samples received                | 17/06/2020   |
| Date completed instructions received | 17/06/2020   |

## **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|
| Date results requested by                                                             | 24/06/2020                                                       |  |  |  |  |  |  |
| Date of Issue                                                                         | 24/06/2020                                                       |  |  |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                  |  |  |  |  |  |  |
| Accredited for compliance with ISO/                                                   | EC 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |  |  |  |

#### **Results Approved By**

Alexander Mitchell Maclean, Senior Chemist Jaimie Loa-Kum-Cheung, Metals Supervisor Nick Sarlamis, Inorganics Supervisor **Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Waters Short                        |       |            |            |            |            |            |
|---------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                               |       | 245176-1   | 245176-2   | 245176-3   | 245176-4   | 245176-5   |
| Your Reference                              | UNITS | GW01       | QA20       | GW06       | KAN23      | GW05       |
| Date Sampled                                |       | 15/06/2020 | 15/06/2020 | 15/06/2020 | 15/06/2020 | 15/06/2020 |
| Type of sample                              |       | WATER      | WATER      | WATER      | WATER      | WATER      |
| Date prepared                               | -     | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 |
| Date analysed                               | -     | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanoic acid PFOA                 | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                     | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                     | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 103        | 100        | 101        | 100        | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 101        | 100        | 98         | 100        | 99         |
| Extracted ISTD 18 O2 PFHxS                  | %     | 104        | 89         | 97         | 107        | 112        |
| Extracted ISTD 13 C4 PFOS                   | %     | 87         | 80         | 91         | 92         | 106        |
| Extracted ISTD 13 C4 PFOA                   | %     | 98         | 69         | 99         | 101        | 120        |
| Extracted ISTD 13 C2 6:2FTS                 | %     | 100        | 65         | 89         | 100        | 131        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS     | %     | 86         | 68         | 87         | 60         | 81         |
| Total Positive PFHxS & PFOS                 | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Total Positive PFOA & PFOS                  | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Total Positive PFAS                         | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |

| PFAS in Waters Short                        |       |            |            |            |            |            |
|---------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                               |       | 245176-6   | 245176-7   | 245176-8   | 245176-9   | 245176-10  |
| Your Reference                              | UNITS | H15        | C04a       | GW03       | GW04       | TB05       |
| Date Sampled                                |       | 16/06/2020 | 16/06/2020 | 16/06/2020 | 16/06/2020 | 16/06/2020 |
| Type of sample                              |       | WATER      | WATER      | WATER      | WATER      | WATER      |
| Date prepared                               | -     | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 |
| Date analysed                               | -     | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | <0.01      | <0.01      | 0.01       | <0.01      | <0.01      |
| Perfluorooctanoic acid PFOA                 | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                     | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                     | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 92         | 113        | 99         | 102        | 104        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 99         | 101        | 103        | 97         | 94         |
| Extracted ISTD 18 O2 PFHxS                  | %     | 110        | 105        | 102        | 98         | 107        |
| Extracted ISTD 13 C4 PFOS                   | %     | 103        | 91         | 87         | 84         | 97         |
| Extracted ISTD 13 C4 PFOA                   | %     | 105        | 99         | 90         | 76         | 114        |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS     | %     | 111        | 105        | 91         | 68         | 110        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS     | %     | 65         | 84         | 68         | 58         | 72         |
| Total Positive PFHxS & PFOS                 | μg/L  | <0.01      | <0.01      | 0.01       | <0.01      | <0.01      |
| Total Positive PFOA & PFOS                  | μg/L  | <0.01      | <0.01      | 0.01       | <0.01      | <0.01      |
| Total Positive PFAS                         | μg/L  | <0.01      | <0.01      | 0.01       | <0.01      | <0.01      |

| PFAS in Waters Short                               |       |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|
| Our Reference                                      |       | 245176-11  | 245176-12  | 245176-13  |
| Your Reference                                     | UNITS | RB05       | GW02       | GW07       |
| Date Sampled                                       |       | 16/06/2020 | 15/06/2020 | 16/06/2020 |
| Type of sample                                     |       | WATER      | WATER      | WATER      |
| Date prepared                                      | -     | 19/06/2020 | 19/06/2020 | 19/06/2020 |
| Date analysed                                      | -     | 19/06/2020 | 19/06/2020 | 19/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.01      | <0.01      | <0.01      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.01      | <0.01      | <0.01      |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 110        | 100        | 104        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 100        | 98         | 99         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 111        | 100        | 100        |
| Extracted ISTD 13 C4 PFOS                          | %     | 99         | 92         | 91         |
| Extracted ISTD 13 C4 PFOA                          | %     | 113        | 82         | 82         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 125        | 82         | 76         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 82         | 54         | 59         |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.01      | <0.01      | <0.01      |
| Total Positive PFOA & PFOS                         | μg/L  | <0.01      | <0.01      | <0.01      |
| Total Positive PFAS                                | μg/L  | <0.01      | <0.01      | <0.01      |

| HM in water - dissolved |       |            |            |            |
|-------------------------|-------|------------|------------|------------|
| Our Reference           |       | 245176-4   | 245176-6   | 245176-7   |
| Your Reference          | UNITS | KAN23      | H15        | C04a       |
| Date Sampled            |       | 15/06/2020 | 16/06/2020 | 16/06/2020 |
| Type of sample          |       | WATER      | WATER      | WATER      |
| Date prepared           | -     | 23/06/2020 | 23/06/2020 | 23/06/2020 |
| Date analysed           | -     | 23/06/2020 | 23/06/2020 | 23/06/2020 |
| Arsenic-Dissolved       | μg/L  | 3          | 7          | <1         |
| Cadmium-Dissolved       | μg/L  | <0.1       | <0.1       | 5.3        |
| Chromium-Dissolved      | μg/L  | <1         | <1         | <1         |
| Copper-Dissolved        | μg/L  | <1         | <1         | 1          |
| Lead-Dissolved          | μg/L  | <1         | <1         | <1         |
| Mercury-Dissolved       | μg/L  | <0.05      | <0.05      | <0.05      |
| Nickel-Dissolved        | μg/L  | <1         | 7          | 35         |
| Zinc-Dissolved          | μg/L  | 2          | 7          | 25         |

| Miscellaneous Inorganics      |          |            |            |            |
|-------------------------------|----------|------------|------------|------------|
| Our Reference                 |          | 245176-4   | 245176-6   | 245176-7   |
| Your Reference                | UNITS    | KAN23      | H15        | C04a       |
| Date Sampled                  |          | 15/06/2020 | 16/06/2020 | 16/06/2020 |
| Type of sample                |          | WATER      | WATER      | WATER      |
| Date prepared                 | -        | 18/06/2020 | 18/06/2020 | 18/06/2020 |
| Date analysed                 | -        | 18/06/2020 | 18/06/2020 | 18/06/2020 |
| рН                            | pH Units | 7.0        | 6.9        | 6.5        |
| Total Dissolved Solids (grav) | mg/L     | 2,100      | 840        | 1,700      |

| Method ID  | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-001  | pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Inorg-018  | Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Metals-021 | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Metals-022 | Determination of various metals by ICP-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Org-029    | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|            | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY CONTROL: PFAS in Waters Short              |       |      |         |            |   | Du         | Spike Recovery % |     |            |            |
|----------------------------------------------------|-------|------|---------|------------|---|------------|------------------|-----|------------|------------|
| Test Description                                   | Units | PQL  | Method  | Blank      | # | Base       | Dup.             | RPD | LCS-W2     | 245176-2   |
| Date prepared                                      | -     |      |         | 19/06/2020 | 1 | 19/06/2020 | 19/06/2020       |     | 19/06/2020 | 19/06/2020 |
| Date analysed                                      | -     |      |         | 19/06/2020 | 1 | 19/06/2020 | 19/06/2020       |     | 19/06/2020 | 19/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.01 | Org-029 | <0.01      | 1 | <0.01      | <0.01            | 0   | 101        | 95         |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.01 | Org-029 | <0.01      | 1 | <0.01      | <0.01            | 0   | 102        | 97         |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.01 | Org-029 | <0.01      | 1 | <0.01      | <0.01            | 0   | 96         | 100        |
| 6:2 FTS                                            | μg/L  | 0.01 | Org-029 | <0.01      | 1 | <0.01      | <0.01            | 0   | 115        | 120        |
| 8:2 FTS                                            | μg/L  | 0.02 | Org-029 | <0.02      | 1 | <0.02      | <0.02            | 0   | 113        | 116        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     |      | Org-029 | 99         | 1 | 103        | 96               | 7   | 100        | 98         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     |      | Org-029 | 98         | 1 | 101        | 104              | 3   | 98         | 97         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     |      | Org-029 | 106        | 1 | 104        | 94               | 10  | 104        | 84         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     |      | Org-029 | 101        | 1 | 87         | 83               | 5   | 105        | 79         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     |      | Org-029 | 88         | 1 | 98         | 85               | 14  | 87         | 69         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |      | Org-029 | 89         | 1 | 100        | 86               | 15  | 89         | 60         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |      | Org-029 | 88         | 1 | 86         | 55               | 44  | 87         | 65         |

| QUALITY Co                                        | QUALITY CONTROL: PFAS in Waters Short |      |         |       |   |            |            |     | Spike Recovery % |      |  |
|---------------------------------------------------|---------------------------------------|------|---------|-------|---|------------|------------|-----|------------------|------|--|
| Test Description                                  | Units                                 | PQL  | Method  | Blank | # | Base       | Dup.       | RPD | [NT]             | [NT] |  |
| Date prepared                                     | -                                     |      |         | [NT]  | 9 | 19/06/2020 | 19/06/2020 |     |                  | [NT] |  |
| Date analysed                                     | -                                     |      |         | [NT]  | 9 | 19/06/2020 | 19/06/2020 |     |                  | [NT] |  |
| Perfluorohexanesulfonic acid - PFHxS              | μg/L                                  | 0.01 | Org-029 | [NT]  | 9 | <0.01      | <0.01      | 0   |                  | [NT] |  |
| Perfluorooctanesulfonic acid PFOS                 | μg/L                                  | 0.01 | Org-029 | [NT]  | 9 | <0.01      | <0.01      | 0   |                  | [NT] |  |
| Perfluorooctanoic acid PFOA                       | μg/L                                  | 0.01 | Org-029 | [NT]  | 9 | <0.01      | <0.01      | 0   |                  | [NT] |  |
| 6:2 FTS                                           | μg/L                                  | 0.01 | Org-029 | [NT]  | 9 | <0.01      | <0.01      | 0   |                  | [NT] |  |
| 8:2 FTS                                           | μg/L                                  | 0.02 | Org-029 | [NT]  | 9 | <0.02      | <0.02      | 0   |                  | [NT] |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %                                     |      | Org-029 | [NT]  | 9 | 102        | 100        | 2   |                  | [NT] |  |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA       | %                                     |      | Org-029 | [NT]  | 9 | 97         | 100        | 3   |                  | [NT] |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %                                     |      | Org-029 | [NT]  | 9 | 98         | 98         | 0   |                  | [NT] |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %                                     |      | Org-029 | [NT]  | 9 | 84         | 84         | 0   |                  | [NT] |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %                                     |      | Org-029 | [NT]  | 9 | 76         | 72         | 5   |                  | [NT] |  |

| QUALITY CONTROL: PFAS in Waters Short              |       |     |         |       | Duplicate |      |      |     | Spike Recovery % |      |
|----------------------------------------------------|-------|-----|---------|-------|-----------|------|------|-----|------------------|------|
| Test Description                                   | Units | PQL | Method  | Blank | #         | Base | Dup. | RPD | [NT]             | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |     | Org-029 | [NT]  | 9         | 68   | 68   | 0   |                  | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |     | Org-029 | [NT]  | 9         | 58   | 71   | 20  |                  | [NT] |

| QUALITY CO         | QUALITY CONTROL: HM in water - dissolved |      |            |            |   |            | Duplicate  |     |            | Spike Recovery % |  |
|--------------------|------------------------------------------|------|------------|------------|---|------------|------------|-----|------------|------------------|--|
| Test Description   | Units                                    | PQL  | Method     | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | [NT]             |  |
| Date prepared      | -                                        |      |            | 23/06/2020 | 4 | 23/06/2020 | 23/06/2020 |     | 23/06/2020 |                  |  |
| Date analysed      | -                                        |      |            | 23/06/2020 | 4 | 23/06/2020 | 23/06/2020 |     | 23/06/2020 |                  |  |
| Arsenic-Dissolved  | μg/L                                     | 1    | Metals-022 | <1         | 4 | 3          | 3          | 0   | 94         |                  |  |
| Cadmium-Dissolved  | μg/L                                     | 0.1  | Metals-022 | <0.1       | 4 | <0.1       | <0.1       | 0   | 93         |                  |  |
| Chromium-Dissolved | μg/L                                     | 1    | Metals-022 | <1         | 4 | <1         | <1         | 0   | 102        |                  |  |
| Copper-Dissolved   | μg/L                                     | 1    | Metals-022 | <1         | 4 | <1         | <1         | 0   | 101        |                  |  |
| Lead-Dissolved     | μg/L                                     | 1    | Metals-022 | <1         | 4 | <1         | <1         | 0   | 101        |                  |  |
| Mercury-Dissolved  | μg/L                                     | 0.05 | Metals-021 | <0.05      | 4 | <0.05      | <0.05      | 0   | 101        |                  |  |
| Nickel-Dissolved   | μg/L                                     | 1    | Metals-022 | <1         | 4 | <1         | <1         | 0   | 93         |                  |  |
| Zinc-Dissolved     | μg/L                                     | 1    | Metals-022 | <1         | 4 | 2          | 1          | 67  | 96         |                  |  |

| QUALITY COI                   | QUALITY CONTROL: Miscellaneous Inorganics |     |           |            |      |      |      | Duplicate |            |      |
|-------------------------------|-------------------------------------------|-----|-----------|------------|------|------|------|-----------|------------|------|
| Test Description              | Units                                     | PQL | Method    | Blank      | #    | Base | Dup. | RPD       | LCS-W1     | [NT] |
| Date prepared                 | -                                         |     |           | 18/06/2020 | [NT] |      | [NT] | [NT]      | 18/06/2020 |      |
| Date analysed                 | -                                         |     |           | 18/06/2020 | [NT] |      | [NT] | [NT]      | 18/06/2020 |      |
| рН                            | pH Units                                  |     | Inorg-001 | [NT]       | [NT] |      | [NT] | [NT]      | 101        |      |
| Total Dissolved Solids (grav) | mg/L                                      | 5   | Inorg-018 | <5         | [NT] | [NT] | [NT] | [NT]      | 92         | [NT] |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| <b>Quality Control</b>             | Quality Control Definitions                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |  |  |  |  |  |  |  |  |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |  |  |  |  |  |  |  |  |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |  |  |  |  |  |  |  |  |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |  |  |  |  |  |  |  |  |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |  |  |  |  |  |  |  |  |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

# **Report Comments**

pH:

Samples were out of the recommended holding time for this analysis.

Dissolved Metals:

For the determination of dissolved metals in samples #4, #6 and #7, the unpreserved sample was filtered through 0.45um filter at the lab due to the appearance

of colloids and/or sediment in the supplied HNO3 bottle (it appears the sample has not been field filtered).

Envirolab Reference: 245176 Page | 14 of 14 Revision No: R00

ENVÎROLÀB

Client: GHD Pty Ltd [Copyright and Confidential]

Email: Phone:

Envirolab Sample

STV

Z

4

J

σ

کد

3 ENVIROLAB

# **CHAIN OF CUSTODY FORM - Client**

Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 ③ 02 9910 6200 | ⊠ sydney@envirolab.com.au

National phone number 1300 424 344 **ENVIROLAB GROUP** 

Relinquished by (Company): GHD Sampler: Sean Sparrow Project Mgr: Dilara Valiff Contact Person: Sean Sparrow 17/06/2020 Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis GHDLabReports@ghd.com sean\_sparrow@ghd.com dilara.valiff@ghd.com Client Sample ID or Level 4 211 Victoria Square, Adelaide SA 5000 Sean Sparrow information GW04 GW05 GW03 GW05 GW03 RB05 TB05 KAN23 GW06 C04a QA20A QA20 GW01 H15 Sample Information \$ alehoro 3 Mob: Depth 16/06/2020 16/06/2020 16/06/2020 16/06/2020 16/06/2020 16/06/2020 16/06/2020 15/06/2020 15/06/2020 15/06/2020 15/06/2020 15/06/2020 0498 260 626 15/06/2020 15/06/2020 sampled Date Signature: Date & Time: Received by (Company): 5 ( < Print Name: Type of sample water \* lak, Steady Lab Comments: Or choose: standard / same day / 1 day / 2 day / 3 day CFS SQU KUNGA Date results required: × Additional report format: esdat / equis / PO No.: 12516828 × × Note: Inform lab in advance if urgent turnaround is required - surcharges Envirolab Quote No. : ma 19/4 РΗ TDS Metals (8 Suite) 3 1954002 VZ 13:150 Job number: 245 176 TAT Req - SAME day / 1 / 2 / 3 / 4 / 6TD standard Environmental Division Sydney Telephone: + 61-2-8784 8555 ests Required Work Order Reference <u>Brisbane Office</u> - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 ○ 07 3266 9532 | ⊡ brisbane@envirolab.com.au Melbourne Lab - Envirolab Services
25 Research Drive, Croydon South, VIC 3136
③ 03 9763 2500 | ⊠ melbourne@envirolab.com.au Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 ① 08 9317 2505 | ⊠ lab@mpl.com.au Lab Use Only Security seal: Intact/ Broken / None Cooling: Ice"/ Ice pack? None Metals sample was not filtered in the field

Metals sample was not filtered in the field Metals sample was not filtered in the field about the sample as you can Please forward to ALS Provide as much informatic

Comments

16.06.2020

Form 302\_V006

Sompley SWAN

GWO2 tomo

15.06.202

125 CARQ :

Date & Time: Print Name:

5 Z

٥ J

\_

Darl Rec-50 Mig(6/10 1823

Ers gra - 18.06.5020, 10:59

Issue date: 7 October 2019

## Login

245176,

From:

Sean Sparrow <Sean.Sparrow@ghd.com>

Sent:

Thursday, 18 June 2020 2:05 PM

To:

Login

Subject:

Re: Issue - CES Brukunga

**CAUTION:** This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Thank you for communicating this, the QA2 is indeed QA20A. For the missing samples the COC is incorrect, GW03 and GW07 were sampled on 16/6 and GW02 and GW05 were sampled on 15/6, hopefully the dates on the bottles will allow you to differentiate. Please confirm if these answer your questions.

Thanks, Sean

From: Login <Login@envirolab.com.au> Sent: Thursday, 18 June 2020 1:06 PM

To: Sean Sparrow <Sean.Sparrow@ghd.com>

Subject: Issue - CES Brukunga

Good afternoon Sean,

We have some questions regarding the job CES Brukunga we received today.

We did not receive samples:

GW03: 15/06/2020 GW05: 16/06/2020

We received extra samples:

GW02: 15/06/2020 GW07: 16/06/2020

Is there a chance the COC states the incorrect number and what we received is what you meant to send? Or should we consider these last samples as extras and test them for PFAS short suite?

And lastly, we received only one 125mL bottle for sample QA20A. Yet there is a bottle labelled QA2. I think you may have forgotten to finish writing the sample ID. Is that possible?

I attach the pictures of these samples.



## **CERTIFICATE OF ANALYSIS**

Work Order : ES2021434

Client : GHD PTY LTD

Contact : DILARA VALIFF

Address : 2/11 VICTORIA SQUARE

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8111 6600
Project : CFS BRUKUNGA

 Order number
 : --- 

 C-O-C number
 : --- 

 Sampler
 : --- 

 Site
 .

Quote number : EN/005/19

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 4

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 19-Jun-2020 15:50

Date Analysis Commenced : 24-Jun-2020

Issue Date : 25-Jun-2020 12:25



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW

 Page
 : 2 of 4

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

 Page
 : 3 of 4

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)           |                        | Clie        | ent sample ID  | QA20A             |  |  |  |  |  |
|---------------------------------------------|------------------------|-------------|----------------|-------------------|--|--|--|--|--|
|                                             | CI                     | ient sampli | ng date / time | 15-Jun-2020 00:00 |  |  |  |  |  |
| Compound                                    | CAS Number             | LOR         | Unit           | ES2021434-001     |  |  |  |  |  |
|                                             |                        |             |                | Result            |  |  |  |  |  |
| EP231A: Perfluoroalkyl Sulfonic Acid        | s                      |             |                |                   |  |  |  |  |  |
| Perfluorobutane sulfonic acid (PFBS)        | 375-73-5               | 0.02        | μg/L           | <0.02             |  |  |  |  |  |
| Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4               | 0.02        | μg/L           | <0.02             |  |  |  |  |  |
| Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1              | 0.01        | μg/L           | <0.01             |  |  |  |  |  |
| EP231B: Perfluoroalkyl Carboxylic Acids     |                        |             |                |                   |  |  |  |  |  |
| Perfluorobutanoic acid (PFBA)               | 375-22-4               | 0.1         | μg/L           | <0.1              |  |  |  |  |  |
| Perfluoropentanoic acid (PFPeA)             | 2706-90-3              | 0.02        | μg/L           | <0.02             |  |  |  |  |  |
| Perfluorohexanoic acid (PFHxA)              | 307-24-4               | 0.02        | μg/L           | <0.02             |  |  |  |  |  |
| Perfluoroheptanoic acid (PFHpA)             | 375-85-9               | 0.02        | μg/L           | <0.02             |  |  |  |  |  |
| Perfluorooctanoic acid (PFOA)               | 335-67-1               | 0.01        | μg/L           | <0.01             |  |  |  |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonio        | c Acids                |             |                |                   |  |  |  |  |  |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4            | 0.05        | μg/L           | <0.05             |  |  |  |  |  |
| 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2             | 0.05        | μg/L           | <0.05             |  |  |  |  |  |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4             | 0.05        | μg/L           | <0.05             |  |  |  |  |  |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0            | 0.05        | μg/L           | <0.05             |  |  |  |  |  |
| EP231P: PFAS Sums                           |                        |             |                |                   |  |  |  |  |  |
| Sum of PFHxS and PFOS                       | 355-46-4/1763-23-<br>1 | 0.01        | μg/L           | <0.01             |  |  |  |  |  |
| Sum of PFAS (WA DER List)                   |                        | 0.01        | μg/L           | <0.01             |  |  |  |  |  |
| EP231S: PFAS Surrogate                      |                        |             |                |                   |  |  |  |  |  |
| 13C4-PFOS                                   |                        | 0.02        | %              | 113               |  |  |  |  |  |
| 13C8-PFOA                                   |                        | 0.02        | %              | 101               |  |  |  |  |  |

 Page
 : 4 of 4

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



# Surrogate Control Limits

| Sub-Matrix: WATER      | Recovery Limits (%) |     |      |  |
|------------------------|---------------------|-----|------|--|
| Compound               | CAS Number          | Low | High |  |
| EP231S: PFAS Surrogate |                     |     |      |  |
| 13C4-PFOS              |                     | 60  | 120  |  |
| 13C8-PFOA              |                     | 60  | 120  |  |



#### **QUALITY CONTROL REPORT**

· ES2021434 Work Order

: GHD PTY LTD Contact : DILARA VALIFF

Address : 2/11 VICTORIA SQUARE

ADELAIDE SA. AUSTRALIA 5000

Telephone : +61 08 8111 6600 Project : CFS BRUKUNGA

Order number

C-O-C number Sampler

Site

Quote number : EN/005/19

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 19-Jun-2020 **Date Analysis Commenced** : 24-Jun-2020

· 25-Jun-2020 Issue Date



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW 

 Page
 : 2 of 5

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER             |                                         |                                                   | Laboratory Duplicate (DUP) Report |      |       |                 |                  |          |                     |
|-------------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------------|------|-------|-----------------|------------------|----------|---------------------|
| Laboratory sample ID          | Client sample ID                        | Method: Compound                                  | CAS Number                        | LOR  | Unit  | Original Result | Duplicate Result | RPD (%)  | Recovery Limits (%) |
| EP231A: Perfluoroa            | Ikyl Sulfonic Acids (QC                 | C Lot: 3097130)                                   |                                   |      |       |                 |                  |          |                     |
| EM2010513-004                 | Anonymous                               | EP231X: Perfluorooctane sulfonic acid (PFOS)      | 1763-23-1                         | 0.01 | μg/L  | <0.01           | <0.01            | 0.00     | No Limit            |
|                               |                                         | EP231X: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5                          | 0.02 | μg/L  | <0.02           | <0.02            | 0.00     | No Limit            |
|                               |                                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)     | 355-46-4                          | 0.02 | μg/L  | <0.02           | <0.02            | 0.00     | No Limit            |
| ES2021002-002                 | Anonymous                               | EP231X: Perfluorooctane sulfonic acid (PFOS)      | 1763-23-1                         | 0.01 | μg/L  | <0.01           | <0.01            | 0.00     | No Limit            |
|                               |                                         | EP231X: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5                          | 0.02 | μg/L  | <0.02           | <0.02            | 0.00     | No Limit            |
|                               |                                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)     | 355-46-4                          | 0.02 | μg/L  | <0.02           | <0.02            | 0.00     | No Limit            |
| EP231B: Perfluoroa            | alkyl Carboxylic Acids                  | (QC Lot: 3097130)                                 |                                   |      |       |                 |                  |          |                     |
| EM2010513-004 Anonymous EP231 |                                         | EP231X: Perfluorooctanoic acid (PFOA)             | 335-67-1                          | 0.01 | μg/L  | <0.01           | <0.01            | 0.00     | No Limit            |
|                               |                                         | EP231X: Perfluoropentanoic acid (PFPeA)           | 2706-90-3                         | 0.02 | μg/L  | <0.02           | <0.02            | 0.00     | No Limit            |
|                               | EP231X: Perfluorohexanoic acid (PFHxA)  | 307-24-4                                          | 0.02                              | μg/L | <0.02 | <0.02           | 0.00             | No Limit |                     |
|                               | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9                                          | 0.02                              | μg/L | <0.02 | <0.02           | 0.00             | No Limit |                     |
|                               |                                         | EP231X: Perfluorobutanoic acid (PFBA)             | 375-22-4                          | 0.1  | μg/L  | <0.1            | <0.1             | 0.00     | No Limit            |
| ES2021002-002                 | Anonymous                               | EP231X: Perfluorooctanoic acid (PFOA)             | 335-67-1                          | 0.01 | μg/L  | <0.01           | <0.01            | 0.00     | No Limit            |
|                               |                                         | EP231X: Perfluoropentanoic acid (PFPeA)           | 2706-90-3                         | 0.02 | μg/L  | <0.02           | <0.02            | 0.00     | No Limit            |
|                               |                                         | EP231X: Perfluorohexanoic acid (PFHxA)            | 307-24-4                          | 0.02 | μg/L  | <0.02           | <0.02            | 0.00     | No Limit            |
|                               |                                         | EP231X: Perfluoroheptanoic acid (PFHpA)           | 375-85-9                          | 0.02 | μg/L  | <0.02           | <0.02            | 0.00     | No Limit            |
|                               |                                         | EP231X: Perfluorobutanoic acid (PFBA)             | 375-22-4                          | 0.1  | μg/L  | <0.1            | <0.1             | 0.00     | No Limit            |
| EP231D: (n:2) Fluo            | rotelomer Sulfonic Acid                 | is (QC Lot: 3097130)                              |                                   |      |       |                 |                  |          |                     |
| EM2010513-004                 | Anonymous                               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2      | 757124-72-4                       | 0.05 | μg/L  | <0.05           | <0.05            | 0.00     | No Limit            |
|                               |                                         | FTS)                                              |                                   |      |       |                 |                  |          |                     |
|                               |                                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2      | 27619-97-2                        | 0.05 | μg/L  | <0.05           | <0.05            | 0.00     | No Limit            |
|                               |                                         | FTS)                                              |                                   |      |       |                 |                  |          |                     |
|                               |                                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 39108-34-4                        | 0.05 | μg/L  | <0.05           | <0.05            | 0.00     | No Limit            |

 Page
 : 3 of 5

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



| Sub-Matrix: WATER                                                        | ub-Matrix: <b>WATER</b> |                                                     |             |      |      | Laboratory Duplicate (DUP) Report |                  |         |                     |  |  |
|--------------------------------------------------------------------------|-------------------------|-----------------------------------------------------|-------------|------|------|-----------------------------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID                                                     | Client sample ID        | Method: Compound                                    | CAS Number  | LOR  | Unit | Original Result                   | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QC Lot: 3097130) - continued |                         |                                                     |             |      |      |                                   |                  |         |                     |  |  |
| EM2010513-004                                                            | Anonymous               | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05                             | <0.05            | 0.00    | No Limit            |  |  |
| ES2021002-002                                                            | Anonymous               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05 | μg/L | <0.05                             | <0.05            | 0.00    | No Limit            |  |  |
|                                                                          |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05 | μg/L | <0.05                             | <0.05            | 0.00    | No Limit            |  |  |
|                                                                          |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05 | μg/L | <0.05                             | <0.05            | 0.00    | No Limit            |  |  |
|                                                                          |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05                             | <0.05            | 0.00    | No Limit            |  |  |

 Page
 : 4 of 5

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                        | Method Blank (MB) | Laboratory Control Spike (LCS) Report |      |        |               |                    |          |            |  |  |
|----------------------------------------------------------|-------------------|---------------------------------------|------|--------|---------------|--------------------|----------|------------|--|--|
|                                                          |                   |                                       |      | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |  |  |
| Method: Compound                                         | CAS Number        | LOR                                   | Unit | Result | Concentration | LCS                | Low      | High       |  |  |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 3097130)   |                   |                                       |      |        |               |                    |          |            |  |  |
| EP231X: Perfluorobutane sulfonic acid (PFBS)             | 375-73-5          | 0.02                                  | μg/L | <0.02  | 0.25 μg/L     | 89.6               | 72.0     | 130        |  |  |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)            | 355-46-4          | 0.02                                  | μg/L | <0.02  | 0.25 μg/L     | 96.6               | 68.0     | 131        |  |  |
| EP231X: Perfluorooctane sulfonic acid (PFOS)             | 1763-23-1         | 0.01                                  | μg/L | <0.01  | 0.25 μg/L     | 101                | 65.0     | 140        |  |  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3097130) |                   |                                       |      |        |               |                    |          |            |  |  |
| EP231X: Perfluorobutanoic acid (PFBA)                    | 375-22-4          | 0.1                                   | μg/L | <0.1   | 1.25 μg/L     | 96.0               | 73.0     | 129        |  |  |
| EP231X: Perfluoropentanoic acid (PFPeA)                  | 2706-90-3         | 0.02                                  | μg/L | <0.02  | 0.25 μg/L     | 106                | 72.0     | 129        |  |  |
| EP231X: Perfluorohexanoic acid (PFHxA)                   | 307-24-4          | 0.02                                  | μg/L | <0.02  | 0.25 μg/L     | 97.8               | 72.0     | 129        |  |  |
| EP231X: Perfluoroheptanoic acid (PFHpA)                  | 375-85-9          | 0.02                                  | μg/L | <0.02  | 0.25 μg/L     | 105                | 72.0     | 130        |  |  |
| EP231X: Perfluorooctanoic acid (PFOA)                    | 335-67-1          | 0.01                                  | μg/L | <0.01  | 0.25 μg/L     | 99.8               | 71.0     | 133        |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:       | 3097130)          |                                       |      |        |               |                    |          |            |  |  |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)        | 757124-72-4       | 0.05                                  | μg/L | <0.05  | 0.25 μg/L     | 111                | 63.0     | 143        |  |  |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)        | 27619-97-2        | 0.05                                  | μg/L | <0.05  | 0.25 μg/L     | 107                | 64.0     | 140        |  |  |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)        | 39108-34-4        | 0.05                                  | μg/L | <0.05  | 0.25 μg/L     | 97.0               | 67.0     | 138        |  |  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)      | 120226-60-0       | 0.05                                  | μg/L | <0.05  | 0.25 μg/L     | 101                | 71.4     | 144        |  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER       |                                          |                                               | Matrix Spike (MS) Report                               |               |                  |          |            |
|-------------------------|------------------------------------------|-----------------------------------------------|--------------------------------------------------------|---------------|------------------|----------|------------|
|                         |                                          |                                               |                                                        | Spike         | SpikeRecovery(%) | Recovery | Limits (%) |
| Laboratory sample ID    | Client sample ID                         | Method: Compound                              | CAS Number                                             | Concentration | MS               | Low      | High       |
| EP231A: Perfluor        | oalkyl Sulfonic Acids (QCLot: 3097130)   |                                               |                                                        |               |                  |          |            |
| ES2021002-001 Anonymous |                                          | EP231X: Perfluorobutane sulfonic acid (PFBS)  | 375-73-5                                               | 0.25 μg/L     | 96.8             | 72.0     | 130        |
|                         |                                          | EP231X: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4                                               | 0.25 μg/L     | 103              | 68.0     | 131        |
|                         |                                          | EP231X: Perfluorooctane sulfonic acid (PFOS)  | EP231X: Perfluorooctane sulfonic acid (PFOS) 1763-23-1 |               | 91.4             | 65.0     | 140        |
| EP231B: Perfluoi        | oalkyl Carboxylic Acids (QCLot: 3097130) |                                               |                                                        |               |                  |          |            |
| ES2021002-001           | Anonymous                                | EP231X: Perfluorobutanoic acid (PFBA)         | 375-22-4                                               | 1.25 μg/L     | 106              | 73.0     | 129        |
|                         |                                          | EP231X: Perfluoropentanoic acid (PFPeA)       | 2706-90-3                                              | 0.25 μg/L     | 119              | 72.0     | 129        |
|                         |                                          | EP231X: Perfluorohexanoic acid (PFHxA)        | 307-24-4                                               | 0.25 μg/L     | 110              | 72.0     | 129        |
|                         |                                          | EP231X: Perfluoroheptanoic acid (PFHpA)       | 375-85-9                                               | 0.25 μg/L     | 115              | 72.0     | 130        |
|                         |                                          | EP231X: Perfluorooctanoic acid (PFOA)         | 335-67-1                                               | 0.25 μg/L     | 108              | 71.0     | 133        |

 Page
 : 5 of 5

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



| Sub-Matrix: WATER    |                                                       | Matrix Spike (MS) Report                            |             |               |                  |             |           |
|----------------------|-------------------------------------------------------|-----------------------------------------------------|-------------|---------------|------------------|-------------|-----------|
|                      |                                                       |                                                     |             | Spike         | SpikeRecovery(%) | Recovery Li | imits (%) |
| Laboratory sample ID | Client sample ID                                      | Method: Compound                                    | CAS Number  | Concentration | MS               | Low         | High      |
| EP231D: (n:2) Flu    | orotelomer Sulfonic Acids (QCLot: 3097130) - continue |                                                     |             |               |                  |             |           |
| ES2021002-001        | Anonymous                                             | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.25 μg/L     | 118              | 63.0        | 143       |
|                      |                                                       | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.25 μg/L     | 111              | 64.0        | 140       |
|                      |                                                       | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.25 μg/L     | 102              | 67.0        | 138       |
|                      |                                                       | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.25 μg/L     | 81.0             | 71.4        | 144       |



# QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2021434** Page : 1 of 4

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : DILARA VALIFF
 Telephone
 : +61 2 8784 8555

 Project
 : CFS BRUKUNGA
 Date Samples Received
 : 19-Jun-2020

 Site
 : Sue Date
 : 25-Jun-2020

Sampler : --- No. of samples received : 1
Order number : --- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 4

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



# **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: \* = Holding time breach:  $\checkmark$  = Within holding time.

| Method                                     | Sample Date | Ex             | traction / Preparation |            |               | Analysis         |            |
|--------------------------------------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)            |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |
| EP231A: Perfluoroalkyl Sulfonic Acids      |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X)<br>QA20A           | 15-Jun-2020 | 24-Jun-2020    | 12-Dec-2020            | 1          | 24-Jun-2020   | 12-Dec-2020      | <b>✓</b>   |
| EP231B: Perfluoroalkyl Carboxylic Acids    |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X)<br>QA20A           | 15-Jun-2020 | 24-Jun-2020    | 12-Dec-2020            | 1          | 24-Jun-2020   | 12-Dec-2020      | <b>✓</b>   |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X)<br>QA20A           | 15-Jun-2020 | 24-Jun-2020    | 12-Dec-2020            | 1          | 24-Jun-2020   | 12-Dec-2020      | ✓          |
| EP231P: PFAS Sums                          |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X)<br>QA20A           | 15-Jun-2020 | 24-Jun-2020    | 12-Dec-2020            | ✓          | 24-Jun-2020   | 12-Dec-2020      | <b>✓</b>   |

 Page
 : 3 of 4

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

| Quality Control Sample Type                          |        | С  | ount    |        | Rate (%) |            | Quality Control Specification  |
|------------------------------------------------------|--------|----|---------|--------|----------|------------|--------------------------------|
| Analytical Methods                                   | Method | OC | Reaular | Actual | Expected | Evaluation |                                |
| Laboratory Duplicates (DUP)                          |        |    |         |        |          |            |                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2  | 19      | 10.53  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Laboratory Control Samples (LCS)                     |        |    |         |        |          |            |                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Method Blanks (MB)                                   |        |    |         |        |          |            |                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)                                   |        |    |         |        |          |            |                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |

 Page
 : 4 of 4

 Work Order
 : ES2021434

 Client
 : GHD PTY LTD

 Project
 : CFS BRUKUNGA



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                   | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                  | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Solid Phase Extraction (SPE) for PFAS in water       | ORG72  | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                 |



#### **ENVIROLAB GROUP CHAIN OF CUSTODY FORM - Client** National phone number 1300 424 344 Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 ③ 02 9910 6200 ∤ ☑ sydney@envirolab.com.au [Copyright and Confidential] Perth Lab - MPL Laboratories 16-18 Hayden Crt, Mýaree, WA 6154 ⊕ 08 9317 2505 | ☑ lab@mpl.com.au Client: GHD Ptv Ltd Client Project Name/Number/Site etc (ie report title): Contact Person: Sean Sparrow Melbourne Lab - Envirolab Services Project Mar: Dilara Valiff PO No.: 12516828 25 Research Drive, Croydon South, VIC 3136 Sampler: Sean Sparrow ② 03 9763 2500 | ☑ melbourne@envirolab.com.au Envirolab Quote No. : Date results required: Address: Standard Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067 Level 4, 211 Victoria Square, Adelaide 5000 Or choose: standard / same day / 1 day / 2 day / 3 day ① 08 7087 6800 | ☑ adelaide@envirolab.com.au Note: Inform lab in advance if urgent turnaround is required surcharges apply Brisbane Office - Envirolab Services Phone: 20a, 10-20 Depot St, Banyo, QLD 4014 Mob: 0498 260 626 Additional report format: Esdat ① 07 3266 9532 | ☑ brisbane@envirolab.com.au GHDLabReports@ghd.com Email: Lab Comments: sean.sparrow@ghd.com Darwin Office - Envirolab Services Unit 20/119 Reichardt Road, Winnellie, NT 0820 dilara.valiff@ghd.com © 08 8967 1201 | ☑ darwin@envirolab.com.au Sample information **Tests Required** Comments Suite Suite) Short Provide as much **Envirolab Sample** Client Sample ID or Date Depth Ŧ 8 Type of sample information about the ID information sampled sample as you can FAS RB086 19/06/2020 water х 2 TB05 6 19/06/2020 water Hawthom1 19/06/2020 Metals were not filtered in the water 4 QA21 -19/06/2020 Metals were not filtered in the water Х field ALS Please forward to ALS. QA21A 19/06/2020 <u>water</u> Metals were not filtered in the Х field ಶ KAN28 26 19/06/2020 Metals were not filtered in the water Х field Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis Relinquished by (Company): GHD Pty Ltd Received by (Company): ENVIROLAS Lab Use Only **Print Name:** Print Name: J.BOWDEN Job number: 245 412 Sean Sparrow Cooling: Ice / Ice pack None 22-06-2020 22/06/2020 Date & Time: 8.2.C Security seal: Intact Broken / None Date & Time: Temperature: Signature: Signature: IAT Reg - SAME day / 1 / 2 / 3 / 4 / STD

ELS Sydning, Trumand Canolis Bull. 23.06.2020, 10:42 Page 1 of 1



**Envirolab Services Pty Ltd** 

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 245412**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Sean Sparrow, Dilara Valiff      |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                 |
|--------------------------------------|-----------------|
| Your Reference                       | <u>12516828</u> |
| Number of Samples                    | 5 Water         |
| Date samples received                | 23/06/2020      |
| Date completed instructions received | 23/06/2020      |

## **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                      |                                                                  |  |
|-------------------------------------|------------------------------------------------------------------|--|
| Date results requested by           | 26/06/2020                                                       |  |
| Date of Issue                       | 26/06/2020                                                       |  |
| NATA Accreditation Number 2901. 7   | his document shall not be reproduced except in full.             |  |
| Accredited for compliance with ISO/ | EC 17025 - Testing. Tests not covered by NATA are denoted with * |  |

**Results Approved By** 

Alexander Mitchell Maclean, Senior Chemist Hannah Nguyen, Senior Chemist Priya Samarawickrama, Senior Chemist **Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Waters Short                               |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 245412-1   | 245412-2   | 245412-3   | 245412-4   | 245412-5   |
| Your Reference                                     | UNITS | RB06       | TB06       | Hawthorn1  | QA21       | KAN26      |
| Date Sampled                                       |       | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 | 19/06/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 24/06/2020 | 24/06/2020 | 24/06/2020 | 24/06/2020 | 24/06/2020 |
| Date analysed                                      | -     | 24/06/2020 | 24/06/2020 | 24/06/2020 | 24/06/2020 | 24/06/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                            | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 8:2 FTS                                            | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 98         | 102        | 93         | 102        | 93         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 93         | 95         | 92         | 92         | 96         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 94         | 99         | 93         | 91         | 97         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 84         | 89         | 81         | 79         | 86         |
| Extracted ISTD 13 C4 PFOA                          | %     | 100        | 103        | 91         | 88         | 91         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 89         | 106        | 70         | 69         | 89         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 70         | 82         | 64         | 53         | 62         |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Total Positive PFOA & PFOS                         | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Total Positive PFAS                                | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |

| HM in water - dissolved |       |            |            |            |
|-------------------------|-------|------------|------------|------------|
| Our Reference           |       | 245412-3   | 245412-4   | 245412-5   |
| Your Reference          | UNITS | Hawthorn1  | QA21       | KAN26      |
| Date Sampled            |       | 19/06/2020 | 19/06/2020 | 19/06/2020 |
| Type of sample          |       | Water      | Water      | Water      |
| Date prepared           | -     | 25/06/2020 | 25/06/2020 | 25/06/2020 |
| Date analysed           | -     | 25/06/2020 | 25/06/2020 | 25/06/2020 |
| Arsenic-Dissolved       | μg/L  | <1         | <1         | <1         |
| Cadmium-Dissolved       | μg/L  | 0.8        | 0.8        | <0.1       |
| Chromium-Dissolved      | μg/L  | <1         | <1         | 1          |
| Copper-Dissolved        | μg/L  | 5          | <1         | 4          |
| Lead-Dissolved          | μg/L  | <1         | <1         | <1         |
| Mercury-Dissolved       | μg/L  | <0.05      | <0.05      | <0.05      |
| Nickel-Dissolved        | μg/L  | 20         | 24         | 4          |
| Zinc-Dissolved          | μg/L  | 54         | 69         | 2          |

| Miscellaneous Inorganics      |          |            |            |            |
|-------------------------------|----------|------------|------------|------------|
| Our Reference                 |          | 245412-3   | 245412-4   | 245412-5   |
| Your Reference                | UNITS    | Hawthorn1  | QA21       | KAN26      |
| Date Sampled                  |          | 19/06/2020 | 19/06/2020 | 19/06/2020 |
| Type of sample                |          | Water      | Water      | Water      |
| Date prepared                 | -        | 23/06/2020 | 23/06/2020 | 23/06/2020 |
| Date analysed                 | -        | 23/06/2020 | 23/06/2020 | 23/06/2020 |
| рН                            | pH Units | 7.2        | 7.2        | 6.8        |
| Total Dissolved Solids (grav) | mg/L     | 3,300      | 3,400      | 890        |

| Method ID  | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-001  | pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Inorg-018  | Total Dissolved Solids - determined gravimetrically. The solids are dried at 180+/-10°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Metals-021 | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Metals-022 | Determination of various metals by ICP-MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Org-029    | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|            | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 245412

Revision No: R00

| QUALITY C                                          | ONTROL: PI | AS in W | aters Short |            |   | Du         | plicate    |     | Spike Re   | covery % |
|----------------------------------------------------|------------|---------|-------------|------------|---|------------|------------|-----|------------|----------|
| Test Description                                   | Units      | PQL     | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | [NT]     |
| Date prepared                                      | -          |         |             | 24/06/2020 | 1 | 24/06/2020 | 24/06/2020 |     | 24/06/2020 |          |
| Date analysed                                      | -          |         |             | 24/06/2020 | 1 | 24/06/2020 | 24/06/2020 |     | 24/06/2020 |          |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.01    | Org-029     | <0.01      | 1 | <0.01      | <0.01      | 0   | 100        |          |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.01    | Org-029     | <0.01      | 1 | <0.01      | <0.01      | 0   | 94         |          |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.01    | Org-029     | <0.01      | 1 | <0.01      | <0.01      | 0   | 93         |          |
| 6:2 FTS                                            | μg/L       | 0.01    | Org-029     | <0.01      | 1 | <0.01      | <0.01      | 0   | 98         |          |
| 8:2 FTS                                            | μg/L       | 0.02    | Org-029     | <0.02      | 1 | <0.02      | <0.02      | 0   | 96         |          |
| Surrogate 13 C <sub>8</sub> PFOS                   | %          |         | Org-029     | 95         | 1 | 98         | 95         | 3   | 95         |          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |         | Org-029     | 104        | 1 | 93         | 95         | 2   | 96         |          |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |         | Org-029     | 91         | 1 | 94         | 95         | 1   | 98         |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |         | Org-029     | 93         | 1 | 84         | 92         | 9   | 102        |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |         | Org-029     | 100        | 1 | 100        | 102        | 2   | 111        |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |         | Org-029     | 103        | 1 | 89         | 110        | 21  | 125        |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |         | Org-029     | 91         | 1 | 70         | 70         | 0   | 103        |          |

| QUALITY CC         | NTROL: HN | 1 in water | - dissolved |            |   | Du         | plicate    |     | Spike Re   | covery % |
|--------------------|-----------|------------|-------------|------------|---|------------|------------|-----|------------|----------|
| Test Description   | Units     | PQL        | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | [NT]     |
| Date prepared      | -         |            |             | 25/06/2020 | 3 | 25/06/2020 | 25/06/2020 |     | 25/06/2020 |          |
| Date analysed      | -         |            |             | 25/06/2020 | 3 | 25/06/2020 | 25/06/2020 |     | 25/06/2020 |          |
| Arsenic-Dissolved  | μg/L      | 1          | Metals-022  | <1         | 3 | <1         | [NT]       |     | 97         |          |
| Cadmium-Dissolved  | μg/L      | 0.1        | Metals-022  | <0.1       | 3 | 0.8        | [NT]       |     | 98         |          |
| Chromium-Dissolved | μg/L      | 1          | Metals-022  | <1         | 3 | <1         | [NT]       |     | 97         |          |
| Copper-Dissolved   | μg/L      | 1          | Metals-022  | <1         | 3 | 5          | [NT]       |     | 98         |          |
| Lead-Dissolved     | μg/L      | 1          | Metals-022  | <1         | 3 | <1         | [NT]       |     | 109        |          |
| Mercury-Dissolved  | μg/L      | 0.05       | Metals-021  | <0.05      | 3 | <0.05      | <0.05      | 0   | 99         |          |
| Nickel-Dissolved   | μg/L      | 1          | Metals-022  | <1         | 3 | 20         | [NT]       |     | 98         |          |
| Zinc-Dissolved     | μg/L      | 1          | Metals-022  | <1         | 3 | 54         | [NT]       |     | 100        | [NT]     |

Envirolab Reference: 245412

Revision No: R00

| QUALITY CO                    | NTROL: Mis | cellaneou | s Inorganics |            |      | Du   | plicate |      | Spike Re   | covery % |
|-------------------------------|------------|-----------|--------------|------------|------|------|---------|------|------------|----------|
| Test Description              | Units      | PQL       | Method       | Blank      | #    | Base | Dup.    | RPD  | LCS-W1     | [NT]     |
| Date prepared                 | -          |           |              | 23/06/2020 | [NT] |      | [NT]    | [NT] | 23/06/2020 |          |
| Date analysed                 | -          |           |              | 23/06/2020 | [NT] |      | [NT]    | [NT] | 23/06/2020 |          |
| рН                            | pH Units   |           | Inorg-001    | [NT]       | [NT] |      | [NT]    | [NT] | 102        |          |
| Total Dissolved Solids (grav) | mg/L       | 5         | Inorg-018    | <5         | [NT] |      | [NT]    | [NT] | 93         |          |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 245412

Revision No: R00

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided. Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 245412 Page | 10 of 11 R00

# **Report Comments**

MISC\_INORG:pH:Samples were out of the recommended holding time for this analysis.

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab. Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 245412 Page | 11 of 11

Revision No: R00

| ENVIROUAB | gw.                                     |
|-----------|-----------------------------------------|
| / 3       | and |

| ENVIROLAB                    | CHAIN OF CUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CHAIN OF CUSTODY FORM - Client                                 | National phone number 1300                                                                |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| (Copyright and Confidential) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | Sydney Lab. Envirolab Servir<br>12 Ashley St, Chatswood, NS<br>⊕ 02 9910 6200   ⊡ sydney@ |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | Perth Lab - MPL Laboratories                                                              |
| Client: GHD Pty Ltd '        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client Project Name/Number/Site etc (le report title):         | 16-18 Hayden Crt, Myaree, W/                                                              |
| Contact Person: Sean Sparrow |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                              | ു 08 9317 2505   🔄 lab@mpi.                                                               |
| Project Mgr. Dilara Valiff 🗸 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PO No.: 12516828                                               | Melbourne Lab - Envirolab Se                                                              |
| Sampler: Sean Sparrow /      | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Envirolab Quote No. :                                          | ☼ 03 9763 2500   ☑ melbourn                                                               |
| Address:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date results required: Standard                                | Adelaide Office - Envirolab Se                                                            |
| Level 4, 211 Victoria Squ    | Square, Adelaide 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Or choose: standard / same day / 1 day / 2 day / 3 day         | 7a The Parade, Norwood, SA                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Note: Inform lab in advance if urgent turnaround is required - |                                                                                           |
| Phone:                       | Moh: 0400 300 ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Additional renow format: Earlot                                | 20a 10.20 Denot St Banyo O                                                                |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Additional report joinings, Estat                              | 0: 07 3966 9629   17 hashaned                                                             |
| Email: CHDLabReports@ghd.com | El .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab Comments:                                                  | Pare 2005 Inspance                                                                        |
| _ sean.sparrow@ghd.com       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | Darwin Office - Envirolab Sen                                                             |
| dilara valiff@ghd.com        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | ৩ 08 8967 1201 া ব্যৱসায় জিল<br>১ ৩৪ 8967 1201 া ্য ব্যৱসায় জিল                         |
|                              | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                              |                                                                                           |
| Sample infor                 | Information The Property of the Party of the | Tests: Reculting                                               |                                                                                           |

Phone: Email:

|                        | Sample information                                                                                                            | mation       |                 |                                   |                 |            |            |              | Tests Required | pelinb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Comments                                                           |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------------------------------|-----------------|------------|------------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------|
| Envirolab Sample<br>ID | Client Sample ID or information                                                                                               | Depth        | Date<br>sampled | Type of sample                    | etiu& hod& &A44 | Hq<br>\$QT | (e) Suite) |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Provide as much information about the sample as you can            |
| _                      | RBOBG                                                                                                                         |              | 19/06/2020      | water                             | ×               | -          | _          |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                    |
| 7,                     | TB0\$ 6                                                                                                                       |              | 19/06/2020      | water                             | ×               |            | -          |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                    |
| 8                      | , Hawthorn1                                                                                                                   |              | 19/06/2020      | water                             | ×               | ×          | ×          |              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Metals were not filtered in the                                    |
| 4                      | QA21                                                                                                                          |              | 19/06/2020      | water                             | ×               | ×          | ×          |              | Env            | Environmental Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Metals were not filtered in the field                              |
| ALS .                  | QA21A · · · · · ·                                                                                                             |              | 19/06/2020      | water                             | ×<br>×          | ×          | ×          |              | Syd            | Sydney Work Order Reference  FS2001853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | Please forward to ALS,<br>Metals were not filtered in the<br>field |
| ß                      | KANJØ 26                                                                                                                      |              | 19/06/2020      | water                             | ×               | ×          | ×          |              | <b>-</b>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Metals were not filtered in the field                              |
|                        |                                                                                                                               |              |                 |                                   |                 |            |            |              | <del></del>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                    |
|                        |                                                                                                                               |              |                 |                                   |                 |            |            | _            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                    |
|                        |                                                                                                                               |              |                 |                                   |                 |            |            |              | <u> </u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                    |
|                        |                                                                                                                               |              |                 |                                   |                 |            |            |              | <del></del>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                    |
|                        |                                                                                                                               |              |                 |                                   |                 |            |            |              | delei          | Telephone: +61-2-8764 8555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br> <br> -                            |                                                                    |
|                        |                                                                                                                               |              |                 |                                   |                 | _          |            |              | <u></u>        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                    |
|                        | Please tick the box if observed settled segiment present in water samples is to be included in the extraction and/or analysis | settled sedi | ment present    | in water samples is               | to be inc       | luded in   | the extra  | ction and/or | analysis       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                    |
| Relinquished by (Co    | Relinquished by (Company): GHD Pty Ltd / EU                                                                                   | 1 Sing       |                 | Received by (Company): EXVI ROLAB | 吳               | 3          | 400        | 8            |                | 787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lab Use Only                           |                                                                    |
|                        |                                                                                                                               | 1 1 1 1      |                 |                                   |                 |            |            |              | 140.0          | No. of the Control of | Mary Arger Show and Mary Establishment |                                                                    |

rices SW 2067 genvirolab.com.au

A 6154 .com.au

services South, VIC 3136 ne@envirolab.com.au

Services \ 5067 @envirolab.com.au

Services OLD 4014 @envirolab.com.au

vices Winnellie, NT 0820 envirolab.com.au

23.06.2070, 10:42 Es Syonny, Trundad cancilos Temperature: 8.2.C Security seat. (ntack) Broken / None IAT Req - SAME day / 1 / 2 / 3 / 4 / \$TD) Cooling: Ice / Ice pack ) None Job number: 2年7 412 Temperature: 8.2.C

Form 302\_V006

Red-Soften 1900 52 Issue date: 7 October 2019

22-06-20-22

Date & Time: Signature:

35

Sean Sparrow

22/06/2020

Date & Time:

Signature:

Print Name:

Print Name: J. BOWDEN



## **CERTIFICATE OF ANALYSIS**

Issue Date

: 01-Jul-2020 14:06

**Work Order** : ES2021853 Page : 1 of 5

Amendment : 1

Client Laboratory GHD PTY LTD : Environmental Division Sydney

Contact : DILARA VALIFF Contact : Angus Harding

Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : 2/11 VICTORIA SQUARE

ADELAIDE SA. AUSTRALIA 5000

Telephone : +61 08 8111 6600 Telephone : +61 2 8784 8555 **Project** : 12516828 CFS Brukunga DSI **Date Samples Received** : 24-Jun-2020 19:00

Order number : 12516828 Date Analysis Commenced : 25-Jun-2020

C-O-C number Sampler

: SEAN SPARROW

Site

No. of samples received

Quote number : EN/005/19

No. of samples analysed : 1

Accreditation No. 825 Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 1

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** 

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position         | Accreditation Category             |
|----------------|------------------|------------------------------------|
| Ashesh Patel   | Senior Chemist   | Sydney Inorganics, Smithfield, NSW |
| Franco Lentini | LCMS Coordinator | Sydney Organics, Smithfield, NSW   |
| Ivan Taylor    | Analyst          | Sydney Inorganics, Smithfield, NSW |
|                |                  |                                    |

Page : 2 of 5

Work Order : ES2021853 Amendment 1

Client : GHD PTY LTD

Project · 12516828 CFS Brukunga DSI



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- Amendment (01/07/2020): This report has been amended to alter the project reference. All analysis results are as per the previous report.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

Page

3 of 5 ES2021853 Amendment 1 Work Order

: GHD PTY LTD Client

: 12516828 CFS Brukunga DSI Project

# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)            |              | Clie       | ent sample ID  | QA21A             | <br> | <br> |
|----------------------------------------------|--------------|------------|----------------|-------------------|------|------|
|                                              | Cli          | ent sampli | ng date / time | 19-Jun-2020 00:00 | <br> | <br> |
| Compound                                     | CAS Number   | LOR        | Unit           | ES2021853-001     | <br> | <br> |
|                                              |              |            |                | Result            | <br> | <br> |
| EA005P: pH by PC Titrator                    |              |            |                |                   |      |      |
| pH Value                                     |              | 0.01       | pH Unit        | 7.79              | <br> | <br> |
| EA015: Total Dissolved Solids dried a        | t 180 ± 5 °C |            |                |                   |      |      |
| Total Dissolved Solids @180°C                |              | 10         | mg/L           | 3420              | <br> | <br> |
| EG020T: Total Metals by ICP-MS               |              |            |                |                   |      |      |
| Arsenic                                      | 7440-38-2    | 0.001      | mg/L           | 0.011             | <br> | <br> |
| Cadmium                                      | 7440-43-9    | 0.0001     | mg/L           | 0.0009            | <br> | <br> |
| Chromium                                     | 7440-47-3    | 0.001      | mg/L           | <0.001            | <br> | <br> |
| Copper                                       | 7440-50-8    | 0.001      | mg/L           | 0.001             | <br> | <br> |
| Nickel                                       | 7440-02-0    | 0.001      | mg/L           | 0.029             | <br> | <br> |
| Lead                                         | 7439-92-1    | 0.001      | mg/L           | <0.001            | <br> | <br> |
| Zinc                                         | 7440-66-6    | 0.005      | mg/L           | 0.082             | <br> | <br> |
| EG035T: Total Recoverable Mercury b          | by FIMS      |            |                |                   |      |      |
| Mercury                                      | 7439-97-6    | 0.0001     | mg/L           | <0.0001           | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids        | 5            |            |                |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5     | 0.02       | μg/L           | <0.02             | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4     | 0.02       | μg/L           | <0.02             | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1    | 0.01       | μg/L           | <0.01             | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Ac         | cids         |            |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4     | 0.1        | μg/L           | <0.1              | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3    | 0.02       | μg/L           | <0.02             | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4     | 0.02       | μg/L           | <0.02             | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9     | 0.02       | μg/L           | <0.02             | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1     | 0.01       | μg/L           | <0.01             | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonic         | Acids        |            |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4  | 0.05       | μg/L           | <0.05             | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2   | 0.05       | μg/L           | <0.05             | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)    | 39108-34-4   | 0.05       | μg/L           | <0.05             | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0  | 0.05       | μg/L           | <0.05             | <br> | <br> |

Page

: 4 of 5 : ES2021853 Amendment 1 Work Order

: GHD PTY LTD Client

: 12516828 CFS Brukunga DSI Project

# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER) |                   | Clie        | ent sample ID  | QA21A             | <br> | <br> |
|-----------------------------------|-------------------|-------------|----------------|-------------------|------|------|
|                                   | Cli               | ent samplii | ng date / time | 19-Jun-2020 00:00 | <br> | <br> |
| Compound                          | CAS Number        | LOR         | Unit           | ES2021853-001     | <br> | <br> |
|                                   |                   |             |                | Result            | <br> | <br> |
| EP231P: PFAS Sums                 |                   |             |                |                   |      |      |
| Sum of PFHxS and PFOS             | 355-46-4/1763-23- | 0.01        | μg/L           | <0.01             | <br> | <br> |
|                                   | 1                 |             |                |                   |      |      |
| Sum of PFAS (WA DER List)         |                   | 0.01        | μg/L           | <0.01             | <br> | <br> |
| EP231S: PFAS Surrogate            |                   |             |                |                   |      |      |
| 13C4-PFOS                         |                   | 0.02        | %              | 104               | <br> | <br> |
| 13C8-PFOA                         |                   | 0.02        | %              | 104               | <br> | <br> |

Page

: 5 of 5 : ES2021853 Amendment 1 Work Order

Client : GHD PTY LTD

: 12516828 CFS Brukunga DSI Project

# Surrogate Control Limits

| Sub-Matrix: WATER      |            | Recovery | Limits (%) |
|------------------------|------------|----------|------------|
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |





#### **QUALITY CONTROL REPORT**

Issue Date

**Work Order** : **ES2021853** Page : 1 of 5

Amendment : 1

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

Contact : DILARA VALIFF Contact : Angus Harding

Address : 2/11 VICTORIA SQUARE Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8111 6600 Telephone : +61 2 8784 8555

 Project
 : 12516828 CFS Brukunga DSI
 Date Samples Received
 : 24-Jun-2020

 Order number
 : 12516828
 Date Analysis Commenced
 : 25-Jun-2020

C-O-C number · ----

Sampler : SEAN SPARROW

Site

Quote number : EN/005/19

No. of samples received : 1
No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories    | Position         | Accreditation Category             |
|----------------|------------------|------------------------------------|
| Ashesh Patel   | Senior Chemist   | Sydney Inorganics, Smithfield, NSW |
| Franco Lentini | LCMS Coordinator | Sydney Organics, Smithfield, NSW   |
| Ivan Taylor    | Analyst          | Sydney Inorganics, Smithfield, NSW |

Page : 2 of 5

Work Order : ES2021853 Amendment 1

Client : GHD PTY LTD

Project : 12516828 CFS Brukunga DSI



#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                               |                                       |            |        |         | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------------|---------------------------------------|------------|--------|---------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID              | Method: Compound                      | CAS Number | LOR    | Unit    | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA005P: pH by PC T   | itrator (QC Lot: 3101764)     |                                       |            |        |         |                 |                        |         |                     |
| ES2021897-006        | Anonymous                     | EA005-P: pH Value                     |            | 0.01   | pH Unit | 3.94            | 3.94                   | 0.00    | 0% - 20%            |
| ES2021876-006        | Anonymous                     | EA005-P: pH Value                     |            | 0.01   | pH Unit | 7.49            | 7.31                   | 2.43    | 0% - 20%            |
| EA015: Total Dissol  | ved Solids dried at 180 ± 5 ° | C (QC Lot: 3104146)                   |            |        |         |                 |                        |         |                     |
| ES2021853-001        | QA21A                         | EA015H: Total Dissolved Solids @180°C |            | 10     | mg/L    | 3420            | 3460                   | 1.08    | 0% - 20%            |
| ES2021987-009        | Anonymous                     | EA015H: Total Dissolved Solids @180°C |            | 10     | mg/L    | 3420            | 3380                   | 1.32    | 0% - 20%            |
| EG020T: Total Metal  | s by ICP-MS (QC Lot: 31043    | 357)                                  |            |        |         |                 |                        |         |                     |
| ES2021898-001        | Anonymous                     | EG020A-T: Cadmium                     | 7440-43-9  | 0.0001 | mg/L    | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                      |                               | EG020A-T: Arsenic                     | 7440-38-2  | 0.001  | mg/L    | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                               | EG020A-T: Chromium                    | 7440-47-3  | 0.001  | mg/L    | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                               | EG020A-T: Copper                      | 7440-50-8  | 0.001  | mg/L    | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                               | EG020A-T: Lead                        | 7439-92-1  | 0.001  | mg/L    | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                               | EG020A-T: Nickel                      | 7440-02-0  | 0.001  | mg/L    | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                               | EG020A-T: Zinc                        | 7440-66-6  | 0.005  | mg/L    | 0.022           | 0.021                  | 0.00    | No Limit            |
| ES2021882-003        | Anonymous                     | EG020A-T: Cadmium                     | 7440-43-9  | 0.0001 | mg/L    | <0.0001         | <0.0001                | 0.00    | No Limit            |
|                      |                               | EG020A-T: Arsenic                     | 7440-38-2  | 0.001  | mg/L    | 0.002           | 0.002                  | 0.00    | No Limit            |
|                      |                               | EG020A-T: Chromium                    | 7440-47-3  | 0.001  | mg/L    | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                               | EG020A-T: Copper                      | 7440-50-8  | 0.001  | mg/L    | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                               | EG020A-T: Lead                        | 7439-92-1  | 0.001  | mg/L    | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                               | EG020A-T: Nickel                      | 7440-02-0  | 0.001  | mg/L    | <0.001          | <0.001                 | 0.00    | No Limit            |
|                      |                               | EG020A-T: Zinc                        | 7440-66-6  | 0.005  | mg/L    | <0.005          | <0.005                 | 0.00    | No Limit            |
| G035T: Total Reco    | overable Mercury by FIMS (0   | QC Lot: 3104435)                      |            |        |         |                 |                        |         |                     |
| ES2021853-001        | QA21A                         | EG035T: Mercury                       | 7439-97-6  | 0.0001 | mg/L    | <0.0001         | <0.0001                | 0.00    | No Limit            |
| ES2021958-002        | Anonymous                     | EG035T: Mercury                       | 7439-97-6  | 0.0001 | mg/L    | <0.0001         | <0.0001                | 0.00    | No Limit            |
| P231A: Perfluoroa    | kyl Sulfonic Acids (QC Lot:   | 3108017)                              |            |        |         |                 |                        |         |                     |
| •                    | <u> </u>                      |                                       |            |        |         |                 |                        |         |                     |

Page : 3 of 5

Work Order : ES2021853 Amendment 1

Client : GHD PTY LTD

Project : 12516828 CFS Brukunga DSI



| Sub-Matrix: WATER    |                         |                                                     |             |      |      | Laboratory I    | Duplicate (DUP) Report | :       |                     |
|----------------------|-------------------------|-----------------------------------------------------|-------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                    | CAS Number  | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC | Lot: 3108017) - continued                           |             |      |      |                 |                        |         |                     |
| ES2021853-001        | QA21A                   | EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
| ES2021880-008        | Anonymous               | EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.01 | μg/L | 1.76            | 1.78                   | 1.18    | 0% - 20%            |
|                      |                         | EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.02 | μg/L | 0.95            | 0.90                   | 5.19    | 0% - 20%            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.02 | μg/L | 1.77            | 1.81                   | 2.21    | 0% - 20%            |
| EP231B: Perfluoro    | alkyl Carboxylic Acids( | (QC Lot: 3108017)                                   |             |      |      |                 |                        |         |                     |
| ES2021853-001        | QA21A                   | EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.1  | μg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES2021880-008        | Anonymous               | EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.01 | μg/L | 0.13            | 0.12                   | 0.00    | 0% - 50%            |
|                      |                         | EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.02 | μg/L | 0.12            | 0.13                   | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.02 | μg/L | 0.56            | 0.55                   | 2.70    | 0% - 20%            |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.02 | μg/L | 0.11            | 0.10                   | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.1  | μg/L | 0.1             | 0.1                    | 0.00    | No Limit            |
| EP231D: (n:2) Fluo   | rotelomer Sulfonic Acid | s (QC Lot: 3108017)                                 |             |      |      |                 |                        |         |                     |
| ES2021853-001        | QA21A                   | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
| ES2021880-008        | Anonymous               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |

Page : 4 of 5

Work Order : ES2021853 Amendment 1

Client : GHD PTY LTD

Project : 12516828 CFS Brukunga DSI



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                     |                |        |         | Method Blank (MB) |               | Laboratory Control Spike (LC | Control Spike (LCS) Report |            |  |  |  |
|-------------------------------------------------------|----------------|--------|---------|-------------------|---------------|------------------------------|----------------------------|------------|--|--|--|
|                                                       |                |        |         | Report            | Spike         | Spike Recovery (%)           | Recovery                   | Limits (%) |  |  |  |
| Method: Compound                                      | CAS Number     | LOR    | Unit    | Result            | Concentration | LCS                          | Low                        | High       |  |  |  |
| EA005P: pH by PC Titrator (QCLot: 3101764)            |                |        |         |                   |               |                              |                            |            |  |  |  |
| EA005-P: pH Value                                     |                |        | pH Unit |                   | 4 pH Unit     | 100                          | 98.0                       | 102        |  |  |  |
|                                                       |                |        |         |                   | 7 pH Unit     | 99.8                         | 98.0                       | 102        |  |  |  |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C (QC | CLot: 3104146) |        |         |                   |               |                              |                            |            |  |  |  |
| EA015H: Total Dissolved Solids @180°C                 |                | 10     | mg/L    | <10               | 2000 mg/L     | 97.3                         | 87.0                       | 109        |  |  |  |
|                                                       |                |        |         | <10               | 293 mg/L      | 110                          | 66.0                       | 126        |  |  |  |
| EG020T: Total Metals by ICP-MS (QCLot: 3104357)       |                |        |         |                   |               |                              |                            |            |  |  |  |
| EG020A-T: Arsenic                                     | 7440-38-2      | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 90.0                         | 82.0                       | 114        |  |  |  |
| EG020A-T: Cadmium                                     | 7440-43-9      | 0.0001 | mg/L    | <0.0001           | 0.1 mg/L      | 88.8                         | 84.0                       | 112        |  |  |  |
| EG020A-T: Chromium                                    | 7440-47-3      | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 88.1                         | 86.0                       | 116        |  |  |  |
| EG020A-T: Copper                                      | 7440-50-8      | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 88.9                         | 83.0                       | 118        |  |  |  |
| EG020A-T: Lead                                        | 7439-92-1      | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 94.1                         | 85.0                       | 115        |  |  |  |
| EG020A-T: Nickel                                      | 7440-02-0      | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 87.2                         | 84.0                       | 116        |  |  |  |
| EG020A-T: Zinc                                        | 7440-66-6      | 0.005  | mg/L    | <0.005            | 0.1 mg/L      | 88.6                         | 79.0                       | 117        |  |  |  |
| EG035T: Total Recoverable Mercury by FIMS (QCLot      | t: 3104435)    |        |         |                   |               |                              |                            |            |  |  |  |
| EG035T: Mercury                                       | 7439-97-6      | 0.0001 | mg/L    | <0.0001           | 0.01 mg/L     | 92.6                         | 77.0                       | 111        |  |  |  |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 31080   | 017)           |        |         |                   |               |                              |                            |            |  |  |  |
| EP231X: Perfluorobutane sulfonic acid (PFBS)          | 375-73-5       | 0.02   | μg/L    | <0.02             | 0.25 μg/L     | 90.6                         | 72.0                       | 130        |  |  |  |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4       | 0.02   | μg/L    | <0.02             | 0.25 μg/L     | 101                          | 68.0                       | 131        |  |  |  |
| EP231X: Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1      | 0.01   | μg/L    | <0.01             | 0.25 μg/L     | 101                          | 65.0                       | 140        |  |  |  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 31    | 08017)         |        |         |                   |               |                              |                            |            |  |  |  |
| EP231X: Perfluorobutanoic acid (PFBA)                 | 375-22-4       | 0.1    | μg/L    | <0.1              | 1.25 μg/L     | 113                          | 73.0                       | 129        |  |  |  |
| EP231X: Perfluoropentanoic acid (PFPeA)               | 2706-90-3      | 0.02   | μg/L    | <0.02             | 0.25 μg/L     | 124                          | 72.0                       | 129        |  |  |  |
| EP231X: Perfluorohexanoic acid (PFHxA)                | 307-24-4       | 0.02   | μg/L    | <0.02             | 0.25 μg/L     | 116                          | 72.0                       | 129        |  |  |  |
| EP231X: Perfluoroheptanoic acid (PFHpA)               | 375-85-9       | 0.02   | μg/L    | <0.02             | 0.25 μg/L     | 119                          | 72.0                       | 130        |  |  |  |
| EP231X: Perfluorooctanoic acid (PFOA)                 | 335-67-1       | 0.01   | μg/L    | <0.01             | 0.25 μg/L     | 120                          | 71.0                       | 133        |  |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:    | 3108017)       |        |         |                   |               |                              |                            |            |  |  |  |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)     | 757124-72-4    | 0.05   | μg/L    | <0.05             | 0.25 μg/L     | 108                          | 63.0                       | 143        |  |  |  |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)     | 27619-97-2     | 0.05   | μg/L    | <0.05             | 0.25 μg/L     | 111                          | 64.0                       | 140        |  |  |  |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)     | 39108-34-4     | 0.05   | μg/L    | <0.05             | 0.25 μg/L     | 103                          | 67.0                       | 138        |  |  |  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)   | 120226-60-0    | 0.05   | μg/L    | <0.05             | 0.25 μg/L     | 119                          | 71.4                       | 144        |  |  |  |

Page : 5 of 5

Work Order : ES2021853 Amendment 1

Client : GHD PTY LTD

Project : 12516828 CFS Brukunga DSI



The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: WATER    |                                                                                                                                                 |                                                     |             | M                | atrix Spike (MS) Report |           |      |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|------------------|-------------------------|-----------|------|
|                     | Client sample ID  G020T: Total Metals by ICP-MS (QCLot: 3104357)  S2021882-007 Anonymous  G035T: Total Recoverable Mercury by FIMS (QCLot: 3104 |                                                     | Spike       | SpikeRecovery(%) | Recovery I              | imits (%) |      |
| aboratory sample ID | Client sample ID                                                                                                                                | Method: Compound                                    | CAS Number  | Concentration    | MS                      | Low       | High |
| G020T: Total Met    | tals by ICP-MS (QCLot: 3104357)                                                                                                                 |                                                     |             |                  |                         |           |      |
| ES2021882-007       | Anonymous                                                                                                                                       | EG020A-T: Arsenic                                   | 7440-38-2   | 1 mg/L           | 89.2                    | 70.0      | 130  |
|                     |                                                                                                                                                 | EG020A-T: Cadmium                                   | 7440-43-9   | 0.25 mg/L        | 90.6                    | 70.0      | 130  |
|                     |                                                                                                                                                 | EG020A-T: Chromium                                  | 7440-47-3   | 1 mg/L           | 88.4                    | 70.0      | 130  |
|                     |                                                                                                                                                 | EG020A-T: Copper                                    | 7440-50-8   | 1 mg/L           | 87.9                    | 70.0      | 130  |
|                     |                                                                                                                                                 | EG020A-T: Lead                                      | 7439-92-1   | 1 mg/L           | 95.8                    | 70.0      | 130  |
|                     |                                                                                                                                                 | EG020A-T: Nickel                                    | 7440-02-0   | 1 mg/L           | 85.6                    | 70.0      | 130  |
|                     |                                                                                                                                                 | EG020A-T: Zinc                                      | 7440-66-6   | 1 mg/L           | 88.8                    | 70.0      | 130  |
| G035T: Total Re     | coverable Mercury by FIMS (QCLot: 3                                                                                                             | 104435)                                             |             |                  |                         |           |      |
| ES2021882-003       | Anonymous                                                                                                                                       | EG035T: Mercury                                     | 7439-97-6   | 0.01 mg/L        | 78.4                    | 70.0      | 130  |
| P231A: Perfluoro    | oalkyl Sulfonic Acids (QCLot: 3108017                                                                                                           | )                                                   |             |                  |                         |           |      |
| S2021857-002        | Anonymous                                                                                                                                       | EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.25 μg/L        | 94.8                    | 72.0      | 130  |
|                     |                                                                                                                                                 | EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.25 μg/L        | 104                     | 68.0      | 131  |
|                     |                                                                                                                                                 | EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.25 μg/L        | 102                     | 65.0      | 140  |
| P231B: Perfluor     | oalkyl Carboxylic Acids (QCLot: 31080                                                                                                           | 017)                                                |             |                  |                         |           |      |
| S2021857-002        | Anonymous                                                                                                                                       | EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 1.25 μg/L        | 108                     | 73.0      | 129  |
|                     |                                                                                                                                                 | EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.25 μg/L        | 124                     | 72.0      | 129  |
|                     |                                                                                                                                                 | EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.25 μg/L        | 116                     | 72.0      | 129  |
|                     |                                                                                                                                                 | EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.25 μg/L        | 118                     | 72.0      | 130  |
|                     |                                                                                                                                                 | EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.25 μg/L        | 117                     | 71.0      | 133  |
| P231D: (n:2) Flu    | orotelomer Sulfonic Acids (QCLot: 31                                                                                                            | 08017)                                              |             |                  |                         |           |      |
| S2021857-002        | Anonymous                                                                                                                                       | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.25 μg/L        | 105                     | 63.0      | 143  |
|                     |                                                                                                                                                 | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.25 μg/L        | 117                     | 64.0      | 140  |
|                     |                                                                                                                                                 | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.25 μg/L        | 102                     | 67.0      | 138  |
|                     |                                                                                                                                                 | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.25 μg/L        | 127                     | 71.4      | 144  |



## QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **ES2021853** Page : 1 of 5

Amendment : 1

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

Contact : DILARA VALIFF Telephone : +61 2 8784 8555

 Project
 : 12516828 CFS Brukunga DSI
 Date Samples Received
 : 24-Jun-2020

 Site
 : ssue Date
 : 01-Jul-2020

Sampler : SEAN SPARROW No. of samples received : 1
Order number : 12516828 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

#### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

Analysis Holding Time Outliers exist - please see following pages for full details.

#### **Outliers: Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5

Work Order : ES2021853 Amendment 1

Client : GHD PTY LTD

Project : 12516828 CFS Brukunga DSI



#### **Outliers: Analysis Holding Time Compliance**

Matrix: WATER

| MICHAL WATER                    |                |                         |         |               |                  |         |
|---------------------------------|----------------|-------------------------|---------|---------------|------------------|---------|
| Method                          | E              | ktraction / Preparation |         |               |                  |         |
| Container / Client Sample ID(s) | Date extracted | Due for extraction      | Days    | Date analysed | Due for analysis | Days    |
|                                 |                |                         | overdue |               |                  | overdue |
| EA005P: pH by PC Titrator       |                |                         |         |               |                  |         |
| Clear Plastic Bottle - Natural  |                |                         |         |               |                  |         |
| QA21A                           |                |                         |         | 25-Jun-2020   | 19-Jun-2020      | 6       |

#### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

| Matrix. WATER                                                     |             |                |                        | Lvaluation | . ~ - Holding time | breach, V - With | ir noluling time |
|-------------------------------------------------------------------|-------------|----------------|------------------------|------------|--------------------|------------------|------------------|
| Method                                                            | Sample Date | Ex             | traction / Preparation |            |                    | Analysis         |                  |
| Container / Client Sample ID(s)                                   |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis | Evaluation       |
| EA005P: pH by PC Titrator                                         |             |                |                        |            |                    |                  |                  |
| Clear Plastic Bottle - Natural (EA005-P)  QA21A                   | 19-Jun-2020 |                |                        |            | 25-Jun-2020        | 19-Jun-2020      | ×                |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C                 |             |                |                        |            |                    |                  |                  |
| Clear Plastic Bottle - Natural (EA015H)  QA21A                    | 19-Jun-2020 |                |                        |            | 26-Jun-2020        | 26-Jun-2020      | ✓                |
| EG020T: Total Metals by ICP-MS                                    |             |                |                        |            |                    |                  |                  |
| Clear Plastic Bottle - Nitric Acid; Unspecified (EG020A-T)  QA21A | 19-Jun-2020 | 26-Jun-2020    | 16-Dec-2020            | ✓          | 26-Jun-2020        | 16-Dec-2020      | <b>✓</b>         |
| EG035T: Total Recoverable Mercury by FIMS                         |             |                |                        |            |                    |                  |                  |
| Clear Plastic Bottle - Nitric Acid; Unspecified (EG035T)  QA21A   | 19-Jun-2020 |                |                        |            | 29-Jun-2020        | 17-Jul-2020      | <b>√</b>         |
| EP231A: Perfluoroalkyl Sulfonic Acids                             |             |                |                        |            |                    |                  |                  |
| HDPE (no PTFE) (EP231X) QA21A                                     | 19-Jun-2020 | 30-Jun-2020    | 16-Dec-2020            | ✓          | 30-Jun-2020        | 16-Dec-2020      | <b>✓</b>         |
| EP231B: Perfluoroalkyl Carboxylic Acids                           |             |                |                        |            |                    |                  |                  |
| HDPE (no PTFE) (EP231X) QA21A                                     | 19-Jun-2020 | 30-Jun-2020    | 16-Dec-2020            | ✓          | 30-Jun-2020        | 16-Dec-2020      | <b>√</b>         |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids                        |             |                |                        |            |                    |                  |                  |
| HDPE (no PTFE) (EP231X) QA21A                                     | 19-Jun-2020 | 30-Jun-2020    | 16-Dec-2020            | 1          | 30-Jun-2020        | 16-Dec-2020      | <b>√</b>         |

Page : 3 of 5

Work Order : ES2021853 Amendment 1

Client : GHD PTY LTD

Project : 12516828 CFS Brukunga DSI



| Matrix: WATER                   |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time. |
|---------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|-----------------|
| Method                          | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                 |
| Container / Client Sample ID(s) |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation      |
| EP231P: PFAS Sums               |             |                |                        |            |                    |                    |                 |
| HDPE (no PTFE) (EP231X)         |             |                |                        |            |                    |                    |                 |
| QA21A                           | 19-Jun-2020 | 30-Jun-2020    | 16-Dec-2020            | ✓          | 30-Jun-2020        | 16-Dec-2020        | ✓               |

Page : 4 of 5

Work Order : ES2021853 Amendment 1

Client : GHD PTY LTD

Project : 12516828 CFS Brukunga DSI



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: \* = Quality Control frequency not within specification: \* = Quality Control frequency within specification.

| Matrix: WATER                                        |          |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification. |
|------------------------------------------------------|----------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                          |          | Co | ount    |           | Rate (%)          |                 | Quality Control Specification                                                 |
| Analytical Methods                                   | Method   | QC | Regular | Actual    | Expected          | Evaluation      |                                                                               |
| Laboratory Duplicates (DUP)                          |          |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X   | 2  | 19      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| pH by PC Titrator                                    | EA005-P  | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Dissolved Solids (High Level)                  | EA015H   | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Mercury by FIMS                                | EG035T   | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Metals by ICP-MS - Suite A                     | EG020A-T | 2  | 18      | 11.11     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |          |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X   | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| pH by PC Titrator                                    | EA005-P  | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Dissolved Solids (High Level)                  | EA015H   | 2  | 20      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Mercury by FIMS                                | EG035T   | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Metals by ICP-MS - Suite A                     | EG020A-T | 1  | 18      | 5.56      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |          |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X   | 1  | 19      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Dissolved Solids (High Level)                  | EA015H   | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Mercury by FIMS                                | EG035T   | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Metals by ICP-MS - Suite A                     | EG020A-T | 1  | 18      | 5.56      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |          |    |         |           |                   |                 |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X   | 1  | 19      | 5.26      | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Mercury by FIMS                                | EG035T   | 1  | 20      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Metals by ICP-MS - Suite A                     | EG020A-T | 1  | 18      | 5.56      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                |

Page : 5 of 5

Work Order : ES2021853 Amendment 1

Client : GHD PTY LTD

Project : 12516828 CFS Brukunga DSI



#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                   | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by PC Titrator                                    | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Total Dissolved Solids (High Level)                  | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                              |
| Total Metals by ICP-MS - Suite A                     | EG020A-T | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                                                                                                                                                                                                          |
| Total Mercury by FIMS                                | EG035T   | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                 |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X   | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                  | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Digestion for Total Recoverable Metals               | EN25     | WATER  | In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Solid Phase Extraction (SPE) for PFAS in water       | ORG72    | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                 |

| ENVIROLAB              | Envijkojus<br>G <u>m</u> pl                                            | CHA                                              | AIN C           | F CUS          | то               | D١                                               | ſ F                  | OF                                             | RM       | - (      | Clie         | ent       | t        |          | Nati<br>Svdi        | onal pl                                          | hone n                                           | AB G<br>umber<br>irolab S<br>tswood<br>isydn | 1300 4:<br>Service                               | 24 344                                                        |
|------------------------|------------------------------------------------------------------------|--------------------------------------------------|-----------------|----------------|------------------|--------------------------------------------------|----------------------|------------------------------------------------|----------|----------|--------------|-----------|----------|----------|---------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
| [Copyright and Confid  | dentialj                                                               |                                                  |                 |                |                  |                                                  |                      |                                                |          |          |              |           |          |          | Pert                | h Lab-                                           | MPLL                                             | aborate                                      | ories                                            | 2454                                                          |
| Client: GHD Pty Ltd    | d                                                                      |                                                  |                 |                | Client           | Projec                                           | t Name               | /Numb                                          | er/Site  | etc (le  | report t     | iitle):   |          |          | ·) 08               | 9317                                             | 2505                                             | Myare<br>∢lab@                               | mpl.co                                           | m.au                                                          |
| Contact Person: Se     | ean Sparrow                                                            |                                                  |                 |                | L                |                                                  |                      |                                                | 1251     | 6828     |              |           |          |          | Mell                | ourne                                            | Lab - E                                          | nvirola                                      | b Serv                                           | ices                                                          |
| Project Mgr: Dilara    | Valiff                                                                 |                                                  |                 |                | 1                | .: 1251                                          |                      |                                                |          |          |              |           |          |          | 25 R                | esearc                                           | h Drive                                          | , Croye                                      | don So                                           | uth, VIC 3136<br>@envirolab.com.au                            |
| Sampler: Sean Spa      | arrow                                                                  |                                                  |                 |                |                  |                                                  | ote No.              |                                                |          |          | 2 0          | lav       |          |          |                     |                                                  |                                                  |                                              |                                                  | -                                                             |
| Address:               | Level 4, 211 Victoria Squ                                              | are, Adelaid                                     | e 5000          |                | Or che           | oose: s                                          | standar<br>ab in ac  | d/san                                          |          |          | 2 day        | / 3 day   |          |          | 7a T<br>-5:08       | he Par<br>3 7087                                 | ade, No<br>6800   3                              | Envirola<br>orwood<br>adela<br>Envirol       | , SA 50<br>aide@e                                | 67<br>nvirolab.com,au                                         |
| Phone:                 |                                                                        | Mob:                                             | 0498 260 62     |                |                  |                                                  | port for             | rmat: e                                        | sdat / e | equis /  |              |           |          | _        | 20a,                | 10-20                                            | Depot S                                          | St, Ban                                      | yo, QLI                                          | D 4014                                                        |
| Email:                 | GHDLabReports@qhd.con<br>dilara.valiff@qhd.com<br>sean.sparrow@qhd.com |                                                  | 0400 200 02     |                | _                | ommer                                            |                      | _                                              |          | <u> </u> |              |           |          |          | <u>Dary</u><br>Unit | vin Off<br>20/119                                | ice - Er<br>Reich                                | virolat<br>ardt Ro                           | Service<br>ad, Wi                                | envirolab.com.au<br>ces<br>nnellie, NT 0820<br>virolab.com.au |
| *0.0                   | Sample infor                                                           | mation                                           |                 |                |                  |                                                  |                      |                                                |          |          | Test         | ts Requ   | uired    |          | _                   |                                                  |                                                  |                                              |                                                  | Comments                                                      |
| Envirolab Sample<br>ID | Client Sample ID or<br>Information                                     | Depth                                            | Date<br>sampled | Type of sample | PFAS Ultra-trace | PFAS Short suite                                 | Leachate<br>analysis |                                                |          |          |              |           |          |          |                     |                                                  |                                                  |                                              |                                                  | Provide as much<br>information about the<br>sample as you can |
|                        | DC09                                                                   |                                                  | 8/07/2020       | <u>water</u>   | х                |                                                  |                      |                                                |          |          |              |           |          |          |                     |                                                  |                                                  |                                              |                                                  |                                                               |
| 3                      | QA25                                                                   | 1                                                | 8/07/2020       | <u>water</u>   | ×                |                                                  |                      |                                                |          |          |              |           |          |          |                     |                                                  |                                                  |                                              |                                                  |                                                               |
|                        | QA25A                                                                  |                                                  | 8/07/2020       | water          | ×                |                                                  |                      |                                                |          |          |              |           |          |          |                     |                                                  |                                                  |                                              | <del>                                     </del> | Please forward to ALS                                         |
| 7                      | DC10                                                                   | 1                                                | 8/07/2020       | water          | ×                |                                                  |                      |                                                |          |          |              |           |          |          |                     | i                                                |                                                  |                                              |                                                  |                                                               |
| 7                      | DC11                                                                   |                                                  | 8/07/2020       | water          | x                | Ì                                                |                      |                                                |          |          |              |           |          |          |                     |                                                  |                                                  |                                              |                                                  |                                                               |
| a                      | DC13                                                                   | l                                                | 8/07/2020       | water          | x                | I                                                | 1                    |                                                |          |          |              |           |          |          |                     |                                                  |                                                  |                                              |                                                  |                                                               |
| 11                     | DC14                                                                   |                                                  | 8/07/2020       | <u>water</u>   | ×                |                                                  |                      | T-                                             |          |          |              |           |          |          |                     |                                                  | 1                                                | 1                                            |                                                  |                                                               |
| 13                     | DC15                                                                   |                                                  | 8/07/2020       | water          | ×                |                                                  |                      |                                                |          |          |              |           |          |          |                     |                                                  | 1                                                |                                              |                                                  |                                                               |
| 2                      | DC09S                                                                  |                                                  | 8/07/2020       | sediment       |                  | ×                                                |                      |                                                |          |          |              |           |          |          |                     |                                                  |                                                  |                                              |                                                  |                                                               |
| 1                      | QA25S                                                                  | ļ .                                              | 8/07/2020       | sediment       | †                | x                                                | $\vdash$             |                                                |          |          |              |           |          |          |                     |                                                  |                                                  | 1                                            |                                                  |                                                               |
|                        | QA25AS                                                                 | <u> </u>                                         | 8/07/2020       | sediment       | 1                | ×                                                | t                    |                                                |          |          |              |           |          |          |                     |                                                  |                                                  |                                              |                                                  | Please forward to ALS                                         |
| 6                      | DC10S                                                                  | † — —                                            | 8/07/2020       | sediment       | t                | X                                                |                      |                                                |          |          |              |           |          |          |                     |                                                  |                                                  | 1                                            |                                                  |                                                               |
| Ř                      | DC11S                                                                  | 1                                                | 8/07/2020       | sediment       | T                | ×                                                | $\vdash$             |                                                |          |          |              |           |          |          |                     |                                                  |                                                  | İ                                            | Ì                                                |                                                               |
| 10                     | DC13S                                                                  | İ                                                | 8/07/2020       | sediment       |                  | ×                                                | †                    | <u>                                       </u> |          |          |              |           |          |          |                     |                                                  |                                                  |                                              | 1                                                |                                                               |
| /2                     | DC14S                                                                  | <u> </u>                                         | 8/07/2020       | sediment       | 1                | X                                                |                      |                                                |          |          |              |           |          |          |                     |                                                  |                                                  |                                              | 1                                                |                                                               |
| 14                     | DC15S                                                                  | <u> </u>                                         | 8/07/2020       | sediment       | 1 -              | X                                                |                      |                                                |          |          | $\vdash$     | -         |          | r        |                     | $\vdash$                                         |                                                  |                                              |                                                  | 1                                                             |
| 15                     | WW01                                                                   |                                                  | 8/07/2020       | <u>water</u>   | ×                | 1 ~                                              |                      |                                                |          |          |              |           |          |          |                     |                                                  | T                                                |                                              |                                                  |                                                               |
| 16                     | WW02                                                                   |                                                  | 8/07/2020       | water          | ×                | <del>                                     </del> | 1                    |                                                |          |          |              |           |          |          |                     | $\vdash$                                         | $\vdash$                                         | t                                            | T                                                |                                                               |
| וֹין                   | QA26                                                                   | <del>                                     </del> | 8/07/2020       | water          | ×                | t                                                |                      | 1                                              |          | $\vdash$ | <del> </del> | <b></b> - |          |          | $\vdash$            | T                                                | t                                                | $\vdash$                                     | <del>                                     </del> |                                                               |
| <u> </u>               | QA26A                                                                  | 1                                                | 8/07/2020       | water          | T <sub>x</sub>   | t                                                | 1                    | T                                              | $\vdash$ | $\vdash$ |              | $\vdash$  | t        |          | $\vdash$            | -                                                | <u> </u>                                         | t                                            |                                                  | Please forward to ALS                                         |
| 18                     | WW03                                                                   | 1                                                | 8/07/2020       | water          | \^               | †                                                |                      | <b>-</b>                                       | —        |          |              |           | t        |          |                     | <del>                                     </del> | <del>                                     </del> | <b>†</b>                                     | <del>                                     </del> | , ,case jornalia to ALS                                       |
| 19                     | WW04                                                                   |                                                  | 8/07/2020       | water          | x                | t                                                | 1                    | $\vdash$                                       | <u> </u> | -        | <del> </del> | $\vdash$  | $\vdash$ |          |                     |                                                  | <b>†</b>                                         | +                                            | <del> </del>                                     |                                                               |
|                        | WW05                                                                   | <del> </del>                                     | 8/07/2020       | water          | X X              | +                                                | +                    |                                                |          | $\vdash$ |              |           | $\vdash$ | <u> </u> | <del> </del>        | -                                                | 1                                                | ţ                                            | $\vdash$                                         | <u> </u>                                                      |
| <u>20</u>              | WW06                                                                   | 1                                                | 8/07/2020       | water          | X                | +                                                | +                    | <del>  -</del>                                 |          | $\vdash$ |              | $\vdash$  |          |          | $\vdash$            | $\vdash$                                         | $\vdash$                                         | 1                                            | <del>                                     </del> |                                                               |
| 22                     | WW07                                                                   | +                                                | 8/07/2020       | <del> </del>   | +-               | 1                                                | +                    | 1                                              | $\vdash$ |          |              |           |          | $\vdash$ | $\vdash$            | $\vdash$                                         | $\vdash$                                         | $\vdash$                                     | 1                                                | <del> </del>                                                  |
| ~~                     | I WWWW/                                                                | 1                                                | 3/0/12020       | <u>water</u>   | j x              | ł                                                | 1                    |                                                |          |          |              |           | 1        |          |                     |                                                  | l                                                |                                              | 1                                                |                                                               |

RB 8/07/2020 water х Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis Received by (Company): HS Sychon Print Name: Xann Occup Lab Üse Only Relinquished by (Company): 246709 Cooling: Ice / Ice pock / None Print Name: Sean Sparrow 10/07/ 2020 / 10245 Temperature: Security seal: http:// Broken / None Date & Time: 9/07/2020 Date & Time: TAT Req - SAME day / 1 / 2 / 3 / 4 / STD Signature: Signature:

х

Tank4

Tank5

EB (TB)

23 24

□ 2b

3/07/2020

3/07/2020

8/07/2020

concrete

<u>concrete</u>

<u>water</u>

| ENVIROLAB |
|-----------|
|-----------|

| <b>ENV</b> ÎROLAB |  |
|-------------------|--|
| @mpl              |  |

# **CHAIN OF CUSTODY FORM - Client**

[Copyright and Confidential]

| Client: GHD Pty Ltd          |                          |              | Client Project Name/Number/Site                                                            | etc (ie report title): |
|------------------------------|--------------------------|--------------|--------------------------------------------------------------------------------------------|------------------------|
| Contact Person: Sean Sparrow |                          |              | 125                                                                                        | 16828                  |
| Project Mgr: Dilara Valiff   |                          |              | PO No.: 12516828                                                                           |                        |
| Sampler: Sean Sparrow        |                          |              | Envirolab Quote No. :                                                                      |                        |
| Address:                     |                          |              | Date results required:                                                                     | 2 day                  |
| Level 4, 21                  | 1 Victoria Square, Adela | alde 5000    | Or choose: standard / same day<br>Note: Inform lab in advance if urgen<br>surcharges apply |                        |
| Phone:                       | Mob:                     | 0498 260 626 | Additional report format: esdat /                                                          | equis /                |
| Email: GHDLabRepor           | ts@ghd.com               |              | Lab Comments:                                                                              | •                      |

**ENVIROLAB GROUP** 

National phone number 1300 424 344

<u>Sydney Lab</u> - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 ③ 02 9910 6200 | ☑ sydney@envirolab.com.au

Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 ③ 08 9317 2505 | ☑ lab@mpl.com.au

Melbourne Lab - Envirolab Services
25 Research Drive, Croydon South, VIC 3136

→ 03 9763 2500 | → melbourne@envirolab.com.au

Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067 ⊕ 08 7087 6800 | Ы adelaide@envirolab.com.au

Brighano Office Envirolah Comisso

|                                      | <del></del>                                                           |               |                 |                       |                        | irges a    |          |         |        |         |         |          |        |                                                                                                                                   | Bris | <u>bane O</u>              | ffice - | Envirol                                          | ab Ser   | vices                                                         |
|--------------------------------------|-----------------------------------------------------------------------|---------------|-----------------|-----------------------|------------------------|------------|----------|---------|--------|---------|---------|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------|------|----------------------------|---------|--------------------------------------------------|----------|---------------------------------------------------------------|
| Phone:                               |                                                                       | Mob:          | 0498 260 62     | 6                     |                        |            | <u> </u> | rmat: e | sdat / | equis / |         |          |        |                                                                                                                                   | 20a. | D 4014<br>envirolab.com.au |         |                                                  |          |                                                               |
| Email:                               | GHDLabReports@ghd.co<br>dilara.valiff@ghd.com<br>sean.sparrow@ghd.com | <u>m</u><br>  |                 |                       | Lab C                  | ommer      | nts:     |         |        |         |         |          | ÷      | <u>Darwin Office</u> - Envirolab Services<br>Unit 20/119 Reichardt Road, Winnellie, NT<br>⊕ 08 8967 1201   ⊠ darwin@envirolab.com |      |                            |         |                                                  |          | ces<br>înnellie. NT 0820                                      |
|                                      | Sample Info                                                           | rmation       |                 | -                     |                        | ******     | K        | 40      |        | v- 27   | Tes     | ts Req   | uired  |                                                                                                                                   |      |                            | 7       |                                                  |          | Comments                                                      |
| Envirolab Sample<br>ID<br>Ugter Soil | Client Sample ID or<br>information                                    | Depth         | Date<br>sampled | Type of sample        | Trace analysis<br>PFAS | PFAS Short |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          | Provide as much<br>information about the<br>sample as you can |
| 1,2                                  | DC09                                                                  |               | 08/07/2020      | water, sediment       | х                      |            |          |         |        | -       |         |          |        |                                                                                                                                   |      |                            |         | <del>                                     </del> | -        |                                                               |
| 3,4                                  | QA25                                                                  |               | 08/07/2020      | water, sediment       | X                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         | _                                                |          |                                                               |
|                                      | QA25A                                                                 | ٠.            | 08/07/2020      | water, sediment       | х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          | Please forward to ALS                                         |
| 5,6                                  | DC10                                                                  |               | 08/07/2020      | water, sediment       | х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          | I reduce terminate to 7 izo                                   |
| 7.8                                  | DC11                                                                  |               | 08/07/2020      | water, sediment       | Х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          | ,                                                             |
| 9,10                                 | DC13                                                                  |               | 08/07/2020      | water, sediment       | Х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| ii,ir_                               | DC14                                                                  |               | 08/07/2020      | water, sediment       | Х                      |            |          |         |        |         | 1 -     |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| 13,14                                | DC15                                                                  |               | 08/07/2020      | water, sediment       | х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          | •                                                             |
| 15                                   | WW01                                                                  |               | 08/07/2020      | <u>water</u>          | Х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| 16                                   | WW02                                                                  |               | 08/07/2020      | <u>water</u>          | Х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  | _        |                                                               |
| 17                                   | QA26                                                                  |               | 08/07/2020      | <u>water</u>          | Х                      |            |          |         |        |         | 1       |          | [ ]    |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
|                                      | QA26A                                                                 | <u> </u>      | 08/07/2020      | <u>water</u>          | Х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          | Please forward to ALS                                         |
| 18                                   | *WW03                                                                 |               | 08/07/2020      | <u>water</u>          | X                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| 19                                   | WW04                                                                  |               | 08/07/2020      | <u>water</u>          | X                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| 20                                   | WW05                                                                  | <u> </u>      | 08/07/2020      | <u>water</u>          | Х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| u                                    | WW06                                                                  |               | 08/07/2020      | <u>water</u>          | Х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| 22                                   | W07                                                                   |               | 08/07/2020      | <u>water</u>          | Х                      |            |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| 23                                   | Tank4                                                                 |               | 03/07/2020      | concrete              |                        | Х          |          |         |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| 24                                   | Tank5                                                                 | 1             | 03/07/2020      | concrete              |                        | X          |          | ,       |        |         |         |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
|                                      | Please tick the box if observed                                       | i settled sed | iment presen    | t in water samples is | to be                  | include    |          |         |        |         | nalysis |          |        |                                                                                                                                   |      |                            |         |                                                  |          |                                                               |
| Relinquished by (Co                  | ompany):                                                              |               |                 | Received by (Comp     | any):                  |            | i        | ECZ     | 5/1/   | ) _     | 1,      |          |        |                                                                                                                                   |      | La                         | b Use ( | Only                                             |          |                                                               |
| Print Name;                          | Sean Sparrow                                                          |               |                 |                       | Zer.                   |            | Don      |         |        |         | Job ni  | umber:   | 14     | 67                                                                                                                                | 09   |                            | Coolin  | g: Ice                                           | / Ice pa | ick / None                                                    |
| Date & Time:                         | 09/07/2020                                                            |               |                 | Date & Time:          | 10/                    | HZ         |          | io      | (5     |         | Temp    | erature  |        | 8.                                                                                                                                | 31   | _                          | _       | -                                                | _        | / Broken / None                                               |
| Signature:                           |                                                                       |               |                 | Signature:            |                        |            | 10       | 98      |        |         | TAT R   | leq - SA | ME day | 11/                                                                                                                               | 2) 3 |                            | _       |                                                  | -        | <del>-</del>                                                  |

K1307 TB07 8/7/20 Water



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 246709**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                                  |
|--------------------------------------|----------------------------------|
| Your Reference                       | <u>12516828</u>                  |
| Number of Samples                    | 17 Water, 7 Sediment, 2 Concrete |
| Date samples received                | 10/07/2020                       |
| Date completed instructions received | 10/07/2020                       |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                        |                                                                  |  |
|---------------------------------------|------------------------------------------------------------------|--|
| Date results requested by             | 14/07/2020                                                       |  |
| Date of Issue                         | 14/07/2020                                                       |  |
| NATA Accreditation Number 2901. T     | his document shall not be reproduced except in full.             |  |
| Accredited for compliance with ISO/II | EC 17025 - Testing. Tests not covered by NATA are denoted with * |  |

Results Approved By

Phalak Inthakesone, Organics Development Manager, Sydney

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 246709-1   | 246709-3   | 246709-5   | 246709-7   | 246709-9   |
| Your Reference                                     | UNITS | DC09       | QA25       | DC10       | DC11       | DC13       |
| Date Sampled                                       |       | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 |
| Date analysed                                      | -     | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.11       | 0.12       | 0.11       | 0.11       | 0.088      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.13       | 0.13       | 0.11       | 0.13       | 0.097      |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0088     | 0.0092     | 0.0080     | 0.0086     | 0.0065     |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 92         | 102        | 100        | 95         | 94         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 85         | 84         | 80         | 81         | 82         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 71         | 67         | 67         | 73         | 70         |
| Extracted ISTD 13 C4 PFOS                          | %     | 68         | 72         | 70         | 77         | 76         |
| Extracted ISTD 13 C4 PFOA                          | %     | 87         | 90         | 86         | 90         | 88         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 163        | 146        | 142        | 145        | 145        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 168        | 162        | 151        | 170        | 150        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.23       | 0.25       | 0.22       | 0.24       | 0.18       |
| Total Positive PFOS & PFOA                         | μg/L  | 0.14       | 0.14       | 0.12       | 0.14       | 0.10       |
| Total Positive PFAS                                | μg/L  | 0.24       | 0.26       | 0.23       | 0.25       | 0.19       |

| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 246709-11  | 246709-13  | 246709-15  | 246709-16  | 246709-17  |
| Your Reference                                     | UNITS | DC14       | DC15       | WW01       | WW02       | QA26       |
| Date Sampled                                       |       | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 |
| Date analysed                                      | -     | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.081      | 0.066      | 0.0009     | 0.0024     | 0.0025     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.081      | 0.080      | <0.0002    | 0.0003     | 0.0003     |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0062     | 0.0057     | 0.0003     | 0.001      | 0.0009     |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 100        | 98         | 98         | 94         | 99         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 84         | 82         | 85         | 83         | 85         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 71         | 74         | 83         | 84         | 83         |
| Extracted ISTD 13 C4 PFOS                          | %     | 75         | 77         | 60         | 65         | 63         |
| Extracted ISTD 13 C4 PFOA                          | %     | 91         | 86         | 93         | 95         | 96         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 145        | 158        | 169        | 176        | 163        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 150        | 153        | 115        | 138        | 110        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.16       | 0.15       | 0.0009     | 0.0026     | 0.0028     |
| Total Positive PFOS & PFOA                         | μg/L  | 0.087      | 0.085      | 0.0003     | 0.001      | 0.001      |
| Total Positive PFAS                                | μg/L  | 0.17       | 0.15       | 0.001      | 0.0036     | 0.0037     |

| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 246709-18  | 246709-19  | 246709-20  | 246709-21  | 246709-22  |
| Your Reference                                     | UNITS | WW03       | WW04       | WW05       | WW06       | WW07       |
| Date Sampled                                       |       | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 |
| Date analysed                                      | -     | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.001      | 0.028      | 0.0049     | 0.0078     | 0.088      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.0071     | 0.12       | 0.0004     | 0.035      | 0.023      |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0004     | 0.037      | 0.0039     | 0.0094     | 0.083      |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | 0.0005     | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 89         | 91         | 98         | 98         | 96         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 87         | 84         | 92         | 79         | 88         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 83         | 83         | 86         | 81         | 70         |
| Extracted ISTD 13 C4 PFOS                          | %     | 69         | 65         | 67         | 63         | 66         |
| Extracted ISTD 13 C4 PFOA                          | %     | 98         | 98         | 99         | 101        | 87         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 171        | 179        | 164        | 180        | 159        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 146        | 158        | 124        | 152        | 145        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0085     | 0.15       | 0.0053     | 0.043      | 0.11       |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0075     | 0.16       | 0.0043     | 0.045      | 0.11       |
| Total Positive PFAS                                | μg/L  | 0.0088     | 0.19       | 0.0091     | 0.052      | 0.19       |

| PFAS in Water TRACE Short                          |       |            |            |
|----------------------------------------------------|-------|------------|------------|
| Our Reference                                      |       | 246709-25  | 246709-26  |
| Your Reference                                     | UNITS | RB         | ТВ         |
| Date Sampled                                       |       | 08/07/2020 | 08/07/2020 |
| Type of sample                                     |       | Water      | Water      |
| Date prepared                                      | -     | 13/07/2020 | 13/07/2020 |
| Date analysed                                      | -     | 13/07/2020 | 13/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.0002    | <0.0002    |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.0002    | <0.0002    |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.0002    | <0.0002    |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 96         | 90         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 91         | 99         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 94         | 95         |
| Extracted ISTD 13 C4 PFOS                          | %     | 97         | 71         |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 104        | 99         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 169        | 142        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 128        | 124        |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.0002    | <0.0002    |
| Total Positive PFOS & PFOA                         | μg/L  | <0.0002    | <0.0002    |
| Total Positive PFAS                                | μg/L  | <0.0002    | <0.0002    |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 246709-2   | 246709-4   | 246709-6   | 246709-8   | 246709-10  |
| Your Reference                                     | UNITS | DC09S      | QA25S      | DC10S      | DC11S      | DC13S      |
| Date Sampled                                       |       | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 |
| Type of sample                                     |       | Sediment   | Sediment   | Sediment   | Sediment   | Sediment   |
| Date prepared                                      | -     | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 |
| Date analysed                                      | -     | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 1.3        | 1.1        | 1.5        | 1.4        | 0.1        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 22         | 37         | 59         | 31         | 3.1        |
| Perfluorooctanoic acid PFOA                        | μg/kg | 0.1        | 0.1        | 0.5        | 0.2        | <0.1       |
| 6:2 FTS                                            | μg/kg | <0.1       | 0.6        | <0.1       | <0.1       | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 100        | 103        | 97         | 103        | 105        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 97         | 96         | 98         | 98         | 96         |
| Extracted ISTD 18 O <sub>2</sub> PFHxS             | %     | 72         | 74         | 71         | 73         | 74         |
| Extracted ISTD 13 C4 PFOS                          | %     | 71         | 57         | 63         | 67         | 68         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 56         | 49         | 63         | 70         | 64         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 120        | 105        | 85         | #          | 89         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 106        | 101        | 120        | #          | 102        |
| Total Positive PFHxS & PFOS                        | μg/kg | 23         | 38         | 60         | 33         | 3.2        |
| Total Positive PFOS & PFOA                         | μg/kg | 22         | 37         | 59         | 32         | 3.1        |
| Total Positive PFAS                                | μg/kg | 24         | 39         | 61         | 33         | 3.2        |

Envirolab Reference: 246709

| PFAS in Soils Short                         |       |            |            |            |            |
|---------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                               |       | 246709-12  | 246709-14  | 246709-23  | 246709-24  |
| Your Reference                              | UNITS | DC14S      | DC15S      | Tank4      | Tank5      |
| Date Sampled                                |       | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 |
| Type of sample                              |       | Sediment   | Sediment   | Concrete   | Concrete   |
| Date prepared                               | -     | 13/07/2020 | 13/07/2020 | 14/07/2020 | 14/07/2020 |
| Date analysed                               | -     | 13/07/2020 | 13/07/2020 | 14/07/2020 | 14/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS        | μg/kg | 0.3        | 0.6        | 11         | <0.1       |
| Perfluorooctanesulfonic acid PFOS           | μg/kg | 9.8        | 27         | 59         | 0.7        |
| Perfluorooctanoic acid PFOA                 | μg/kg | <0.1       | 0.8        | 2.8        | <0.1       |
| 6:2 FTS                                     | μg/kg | <0.1       | 0.5        | 4.0        | 1.2        |
| 8:2 FTS                                     | μg/kg | <0.2       | <0.2       | 6.0        | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 101        | 106        | 60         | 104        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 98         | 99         | 100        | 94         |
| Extracted ISTD 18 O2 PFHxS                  | %     | 78         | 73         | 47         | 57         |
| Extracted ISTD 13 C4 PFOS                   | %     | 57         | 62         | 87         | 57         |
| Extracted ISTD 13 C <sub>4</sub> PFOA       | %     | 52         | 67         | 41         | 50         |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS     | %     | 71         | 100        | 38         | 42         |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS     | %     | 72         | 136        | 42         | 52         |
| Total Positive PFHxS & PFOS                 | μg/kg | 10         | 27         | 70         | 0.7        |
| Total Positive PFOS & PFOA                  | μg/kg | 9.8        | 27         | 62         | 0.7        |
| Total Positive PFAS                         | μg/kg | 10         | 29         | 82         | 1.9        |

| Moisture       |       |            |            |            |            |            |
|----------------|-------|------------|------------|------------|------------|------------|
| Our Reference  |       | 246709-2   | 246709-4   | 246709-6   | 246709-8   | 246709-10  |
| Your Reference | UNITS | DC09S      | QA25S      | DC10S      | DC11S      | DC13S      |
| Date Sampled   |       | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 | 08/07/2020 |
| Type of sample |       | Sediment   | Sediment   | Sediment   | Sediment   | Sediment   |
| Date prepared  | -     | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 | 13/07/2020 |
| Date analysed  | -     | 14/07/2020 | 14/07/2020 | 14/07/2020 | 14/07/2020 | 14/07/2020 |
| Moisture       | %     | 39         | 41         | 64         | 38         | 25         |

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference  |       | 246709-12  | 246709-14  |
| Your Reference | UNITS | DC14S      | DC15S      |
| Date Sampled   |       | 08/07/2020 | 08/07/2020 |
| Type of sample |       | Sediment   | Sediment   |
| Date prepared  | -     | 13/07/2020 | 13/07/2020 |
| Date analysed  | -     | 14/07/2020 | 14/07/2020 |
| Moisture       | %     | 36         | 57         |

| PFAS in ASLP Short                                 |          |            |            |
|----------------------------------------------------|----------|------------|------------|
| Our Reference                                      |          | 246709-23  | 246709-24  |
| Your Reference                                     | UNITS    | Tank4      | Tank5      |
| Date Sampled                                       |          | 08/07/2020 | 08/07/2020 |
| Type of sample                                     |          | Concrete   | Concrete   |
| Date prepared                                      | -        | 14/07/2020 | 14/07/2020 |
| Date analysed                                      | -        | 14/07/2020 | 14/07/2020 |
| pH of final Leachate                               | pH units | 11.8       | 11.8       |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L     | 0.20       | <0.01      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L     | 0.61       | 0.01       |
| Perfluorooctanoic acid PFOA                        | μg/L     | 0.04       | <0.01      |
| 6:2 FTS                                            | μg/L     | 0.03       | 0.01       |
| 8:2 FTS                                            | μg/L     | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %        | 96         | 92         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %        | 96         | 96         |
| Extracted ISTD 18 O2 PFHxS                         | %        | 89         | 90         |
| Extracted ISTD 13 C4 PFOS                          | %        | 70         | 73         |
| Extracted ISTD 13 C4 PFOA                          | %        | 96         | 96         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %        | 117        | 123        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %        | 75         | 83         |
| Total Positive PFHxS & PFOS                        | μg/L     | 0.81       | 0.01       |
| Total Positive PFOS & PFOA                         | μg/L     | 0.65       | 0.01       |
| Total Positive PFAS                                | μg/L     | 0.88       | 0.03       |

Envirolab Reference: 246709

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-001 | pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Org-029A  | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY CONT                                       | ROL: PFAS | in Water | TRACE Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|-----------|----------|-------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units     | PQL      | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | 246709-3   |
| Date prepared                                      | -         |          |             | 13/07/2020 | 1 | 13/07/2020 | 13/07/2020 |     | 13/07/2020 | 13/07/2020 |
| Date analysed                                      | -         |          |             | 13/07/2020 | 1 | 13/07/2020 | 13/07/2020 |     | 13/07/2020 | 13/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L      | 0.0002   | Org-029     | <0.0002    | 1 | 0.11       | 0.11       | 0   | 110        | 142        |
| Perfluorooctanesulfonic acid PFOS                  | μg/L      | 0.0002   | Org-029     | <0.0002    | 1 | 0.13       | 0.12       | 8   | 107        | 141        |
| Perfluorooctanoic acid PFOA                        | μg/L      | 0.0002   | Org-029     | <0.0002    | 1 | 0.0088     | 0.0087     | 1   | 105        | 109        |
| 6:2 FTS                                            | μg/L      | 0.0004   | Org-029     | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 112        | 130        |
| 8:2 FTS                                            | μg/L      | 0.0004   | Org-029     | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 110        | 132        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %         |          | Org-029     | 96         | 1 | 92         | 99         | 7   | 96         | 104        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %         |          | Org-029     | 96         | 1 | 85         | 87         | 2   | 93         | 83         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %         |          | Org-029     | 92         | 1 | 71         | 67         | 6   | 98         | 68         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %         |          | Org-029     | 78         | 1 | 68         | 70         | 3   | 77         | 69         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %         |          | Org-029     | 99         | 1 | 87         | 85         | 2   | 97         | 85         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %         |          | Org-029     | 102        | 1 | 163        | 145        | 12  | 85         | 135        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %         |          | Org-029     | 84         | 1 | 168        | 165        | 2   | 77         | 148        |

| QUALITY CONTROL: PFAS in Water TRACE Short        |       |        |         |       |    | Du         |            | Spike Recovery % |      |      |
|---------------------------------------------------|-------|--------|---------|-------|----|------------|------------|------------------|------|------|
| Test Description                                  | Units | PQL    | Method  | Blank | #  | Base       | Dup.       | RPD              | [NT] | [NT] |
| Date prepared                                     | -     |        |         | [NT]  | 19 | 13/07/2020 | 13/07/2020 |                  |      | [NT] |
| Date analysed                                     | -     |        |         | [NT]  | 19 | 13/07/2020 | 13/07/2020 |                  |      | [NT] |
| Perfluorohexanesulfonic acid - PFHxS              | μg/L  | 0.0002 | Org-029 | [NT]  | 19 | 0.028      | 0.028      | 0                |      | [NT] |
| Perfluorooctanesulfonic acid PFOS                 | μg/L  | 0.0002 | Org-029 | [NT]  | 19 | 0.12       | 0.12       | 0                |      | [NT] |
| Perfluorooctanoic acid PFOA                       | μg/L  | 0.0002 | Org-029 | [NT]  | 19 | 0.037      | 0.037      | 0                |      | [NT] |
| 6:2 FTS                                           | μg/L  | 0.0004 | Org-029 | [NT]  | 19 | <0.0004    | <0.0004    | 0                |      | [NT] |
| 8:2 FTS                                           | μg/L  | 0.0004 | Org-029 | [NT]  | 19 | 0.0005     | <0.0004    | 22               |      | [NT] |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %     |        | Org-029 | [NT]  | 19 | 91         | 99         | 8                |      | [NT] |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA       | %     |        | Org-029 | [NT]  | 19 | 84         | 87         | 4                |      | [NT] |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %     |        | Org-029 | [NT]  | 19 | 83         | 84         | 1                |      | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %     |        | Org-029 | [NT]  | 19 | 65         | 65         | 0                |      | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %     |        | Org-029 | [NT]  | 19 | 98         | 97         | 1                |      | [NT] |

| QUALITY CONTROL: PFAS in Water TRACE Short         |       |     |         |       | Duplicate |      |      |     | Spike Recovery % |      |
|----------------------------------------------------|-------|-----|---------|-------|-----------|------|------|-----|------------------|------|
| Test Description                                   | Units | PQL | Method  | Blank | #         | Base | Dup. | RPD | [NT]             | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |     | Org-029 | [NT]  | 19        | 179  | 179  | 0   | [NT]             | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |     | Org-029 | [NT]  | 19        | 158  | 136  | 15  | [NT]             | [NT] |

Envirolab Reference: 246709

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|-----------|------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL       | Method     | Blank      | # | Base       | Dup.       | RPD | LCS-1      | 246709-4   |
| Date prepared                                      | -          |           |            | 14/07/2020 | 2 | 13/07/2020 | 13/07/2020 |     | 13/07/2020 | 13/07/2020 |
| Date analysed                                      | -          |           |            | 14/07/2020 | 2 | 13/07/2020 | 13/07/2020 |     | 13/07/2020 | 13/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | 1.3        | 2.0        | 42  | 102        | 106        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | 22         | 34         | 43  | 101        | ##         |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | 0.1        | 0.2        | 67  | 103        | 100        |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | <0.1       | <0.1       | 0   | 91         | 87         |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | 2 | <0.2       | <0.2       | 0   | 112        | 118        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 104        | 2 | 100        | 101        | 1   | 102        | 103        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | 100        | 2 | 97         | 96         | 1   | 98         | 96         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 91         | 2 | 72         | 75         | 4   | 89         | 64         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 86         | 2 | 71         | 60         | 17  | 88         | 52         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | 93         | 2 | 56         | 43         | 26  | 88         | 42         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 105        | 2 | 120        | 77         | 44  | 102        | 101        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | 116        | 2 | 106        | 70         | 41  | 105        | 98         |

Envirolab Reference: 246709

| QUALITY (                                          | CONTROL: F | PFAS in A | SLP Short |            |      | Du   | plicate |      | Spike Rec  | overy % |
|----------------------------------------------------|------------|-----------|-----------|------------|------|------|---------|------|------------|---------|
| Test Description                                   | Units      | PQL       | Method    | Blank      | #    | Base | Dup.    | RPD  | LCS-W1     | [NT]    |
| Date prepared                                      | -          |           |           | 14/07/2020 | [NT] |      | [NT]    | [NT] | 14/07/2020 |         |
| Date analysed                                      | -          |           |           | 14/07/2020 | [NT] |      | [NT]    | [NT] | 14/07/2020 |         |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.01      | Org-029A  | <0.01      | [NT] |      | [NT]    | [NT] | 100        |         |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.01      | Org-029A  | <0.01      | [NT] |      | [NT]    | [NT] | 100        |         |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.01      | Org-029A  | <0.01      | [NT] |      | [NT]    | [NT] | 100        |         |
| 6:2 FTS                                            | μg/L       | 0.01      | Org-029A  | <0.01      | [NT] |      | [NT]    | [NT] | 116        |         |
| 8:2 FTS                                            | μg/L       | 0.02      | Org-029A  | <0.02      | [NT] |      | [NT]    | [NT] | 112        |         |
| Surrogate 13 C <sub>8</sub> PFOS                   | %          |           | Org-029A  | 98         | [NT] |      | [NT]    | [NT] | 96         |         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029A  | 102        | [NT] |      | [NT]    | [NT] | 105        |         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029A  | 94         | [NT] |      | [NT]    | [NT] | 98         |         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029A  | 92         | [NT] |      | [NT]    | [NT] | 96         |         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029A  | 88         | [NT] |      | [NT]    | [NT] | 90         |         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029A  | 87         | [NT] |      | [NT]    | [NT] | 77         |         |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %          |           | Org-029A  | 83         | [NT] |      | [NT]    | [NT] | 87         |         |

Envirolab Reference: 246709

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 246709

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

#### **Report Comments**

PFAS in Soil Short - ## Percent recovery for the matrix spike is not possible to report as the high concentration of analytes in sample 246709-4 have caused interference.

PFAS in Soil Short - Please note that the analysis of PFAS in concrete is not covered by NATA accreditation.

PFAS in Soil Short - The results for sample 246709-23 and 24 are reported on the sample as received i.e. no moisture correction has been applied.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

PFAS\_W\_SHORT\_TR: Matrix spike recoveries for 246709-3 for PFHxS and PFOS are outside global acceptance criteria (60-140%) due to background level of the analytes in the sample. However acceptable recoveries were obtained for the LCS.

Envirolab Reference: 246709 Page | 17 of 17 Revision No: R00

### Ming To

From:

Aileen Hie

Sent:

Friday, 9 October 2020 5:39 PM

To:

Ming To

Subject:

FW: Envirolab Invoice No SY574974 for Registration 251682 12516828

Importance:

High

Follow Up Flag:

Follow up

Flag Status:

Flagged

Ref = 246709-A TAT : 1 day Due! 12/10/2020 MT.

From: Alex Stenta <astenta@envirolab.com.au>

Sent: Friday, 9 October 2020 5:05 PM

To: Customer Service < Customer Service@envirolab.com.au>

Cc: Adelaide <adelaide@envirolab.com.au>; Alexander Maclean <AMaclean@envirolab.com.au>

Subject: FW: Envirolab Invoice No SY574974 for Registration 251682 12516828

Importance: High

Hi Guys,

Can we please report trace level PFAS extended suite for all samples in Job Number 251682?

Also, can we please have trace level PFAS extended suite for the following samples:

DC14 - 246709 - 11 3 246709 - A DC15 - 246709 - 13

DC16 - 247753 - 1

DC17 - 247753 - 2

DC18 - 247753 - 3

DC19 - 247753 - 4



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 246709-A**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                                  |
|--------------------------------------|----------------------------------|
| Your Reference                       | <u>12516828</u>                  |
| Number of Samples                    | 17 Water, 7 Sediment, 2 Concrete |
| Date samples received                | 10/07/2020                       |
| Date completed instructions received | 09/10/2020                       |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                    |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| Date results requested by                                                             | 13/10/2020                                                         |  |  |  |  |  |  |
| Date of Issue                                                                         | 13/10/2020                                                         |  |  |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                    |  |  |  |  |  |  |
| Accredited for compliance with ISO                                                    | /IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |  |  |  |

Results Approved By

Alexander Mitchell Maclean, Senior Chemist

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Waters Trace Extended               |       |             |             |
|---------------------------------------------|-------|-------------|-------------|
| Our Reference                               |       | 246709-A-11 | 246709-A-13 |
| Your Reference                              | UNITS | DC14        | DC15        |
| Date Sampled                                |       | 08/07/2020  | 08/07/2020  |
| Type of sample                              |       | Water       | Water       |
| Date prepared                               | -     | 13/07/2020  | 13/07/2020  |
| Date analysed                               | -     | 13/07/2020  | 13/07/2020  |
| Perfluorobutanesulfonic acid                | μg/L  | 0.0088      | 0.0071      |
| Perfluoropentanesulfonic acid               | μg/L  | 0.009       | 0.007       |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.081       | 0.066       |
| Perfluoroheptanesulfonic acid               | μg/L  | 0.003       | 0.002       |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.081       | 0.080       |
| Perfluorodecanesulfonic acid                | μg/L  | <0.002      | <0.002      |
| Perfluorobutanoic acid                      | μg/L  | 0.01        | 0.01        |
| Perfluoropentanoic acid                     | μg/L  | 0.01        | 0.009       |
| Perfluorohexanoic acid                      | μg/L  | 0.020       | 0.016       |
| Perfluoroheptanoic acid                     | μg/L  | 0.0048      | 0.0045      |
| Perfluorooctanoic acid PFOA                 | μg/L  | 0.0062      | 0.0057      |
| Perfluorononanoic acid                      | μg/L  | <0.001      | <0.001      |
| Perfluorodecanoic acid                      | μg/L  | <0.002      | <0.002      |
| Perfluoroundecanoic acid                    | μg/L  | <0.002      | <0.002      |
| Perfluorododecanoic acid                    | μg/L  | <0.005      | <0.005      |
| Perfluorotridecanoic acid                   | μg/L  | <0.01       | <0.01       |
| Perfluorotetradecanoic acid                 | μg/L  | <0.05       | <0.05       |
| 4:2 FTS                                     | μg/L  | <0.001      | <0.001      |
| 6:2 FTS                                     | μg/L  | <0.0004     | <0.0004     |
| 8:2 FTS                                     | μg/L  | <0.0004     | <0.0004     |
| 10:2 FTS                                    | μg/L  | <0.002      | <0.002      |
| Perfluorooctane sulfonamide                 | μg/L  | <0.01       | <0.01       |
| N-Methyl perfluorooctane sulfonamide        | μg/L  | <0.005      | <0.005      |
| N-Ethyl perfluorooctanesulfon amide         | μg/L  | <0.01       | <0.01       |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L  | <0.005      | <0.005      |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L  | <0.05       | <0.05       |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 100         | 98          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 84          | 82          |
| Extracted ISTD 13 C3 PFBS                   | %     | 72          | 69          |
| Extracted ISTD 18 O2 PFHxS                  | %     | 71          | 74          |
| Extracted ISTD 13 C4 PFOS                   | %     | 75          | 77          |
| Extracted ISTD 13 C <sub>4</sub> PFBA       | %     | 37          | 39          |

| PFAS in Waters Trace Extended                      |       |             |             |
|----------------------------------------------------|-------|-------------|-------------|
| Our Reference                                      |       | 246709-A-11 | 246709-A-13 |
| Your Reference                                     | UNITS | DC14        | DC15        |
| Date Sampled                                       |       | 08/07/2020  | 08/07/2020  |
| Type of sample                                     |       | Water       | Water       |
| Extracted ISTD 13 C3 PFPeA                         | %     | 36          | 36          |
| Extracted ISTD 13 C2 PFHxA                         | %     | 51          | 52          |
| Extracted ISTD 13 C4 PFHpA                         | %     | 71          | 70          |
| Extracted ISTD 13 C4 PFOA                          | %     | 91          | 86          |
| Extracted ISTD 13 C <sub>5</sub> PFNA              | %     | 101         | 95          |
| Extracted ISTD 13 C <sub>2</sub> PFDA              | %     | 83          | 83          |
| Extracted ISTD 13 C2 PFUnDA                        | %     | 67          | 61          |
| Extracted ISTD 13 C2 PFDoDA                        | %     | 54          | 42          |
| Extracted ISTD 13 C2 PFTeDA                        | %     | 42          | 37          |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS            | %     | 114         | 128         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 145         | 158         |
| Extracted ISTD 13 C2 8:2FTS                        | %     | 150         | 153         |
| Extracted ISTD 13 C8 FOSA                          | %     | 53          | 51          |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 40          | 34          |
| Extracted ISTD d <sub>5</sub> N EtFOSA             | %     | 43          | 34          |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 46          | 39          |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 46          | 42          |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 82          | 80          |
| Extracted ISTD ds N EtFOSAA                        | %     | 49          | 52          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.16        | 0.15        |
| Total Positive PFOS & PFOA                         | μg/L  | 0.087       | 0.085       |
| Total Positive PFAS                                | μg/L  | 0.24        | 0.21        |

Envirolab Reference: 246709-A

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 246709-A

| QUALITY CONTR                               | OL: PFAS i | n Waters <sup>-</sup> | Trace Extended |            |      | Du   | ıplicate |      | Spike Red  | covery % |
|---------------------------------------------|------------|-----------------------|----------------|------------|------|------|----------|------|------------|----------|
| Test Description                            | Units      | PQL                   | Method         | Blank      | #    | Base | Dup.     | RPD  | LCS-W1     | [NT]     |
| Date prepared                               | -          |                       |                | 13/07/2020 | [NT] |      | [NT]     | [NT] | 13/07/2020 |          |
| Date analysed                               | -          |                       |                | 13/07/2020 | [NT] |      | [NT]     | [NT] | 13/07/2020 |          |
| Perfluorobutanesulfonic acid                | μg/L       | 0.0004                | Org-029        | <0.0004    | [NT] |      | [NT]     | [NT] | 99         |          |
| Perfluoropentanesulfonic acid               | μg/L       | 0.001                 | Org-029        | <0.001     | [NT] |      | [NT]     | [NT] | 107        |          |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L       | 0.0002                | Org-029        | <0.0002    | [NT] |      | [NT]     | [NT] | 110        |          |
| Perfluoroheptanesulfonic acid               | μg/L       | 0.001                 | Org-029        | <0.001     | [NT] |      | [NT]     | [NT] | 98         |          |
| Perfluorooctanesulfonic acid PFOS           | μg/L       | 0.0002                | Org-029        | <0.0002    | [NT] |      | [NT]     | [NT] | 107        |          |
| Perfluorodecanesulfonic acid                | μg/L       | 0.002                 | Org-029        | <0.002     | [NT] |      | [NT]     | [NT] | 82         |          |
| Perfluorobutanoic acid                      | μg/L       | 0.002                 | Org-029        | <0.002     | [NT] |      | [NT]     | [NT] | 106        |          |
| Perfluoropentanoic acid                     | μg/L       | 0.002                 | Org-029        | <0.002     | [NT] |      | [NT]     | [NT] | 103        |          |
| Perfluorohexanoic acid                      | μg/L       | 0.0004                | Org-029        | <0.0004    | [NT] |      | [NT]     | [NT] | 101        |          |
| Perfluoroheptanoic acid                     | μg/L       | 0.0004                | Org-029        | <0.0004    | [NT] |      | [NT]     | [NT] | 101        |          |
| Perfluorooctanoic acid PFOA                 | μg/L       | 0.0002                | Org-029        | <0.0002    | [NT] |      | [NT]     | [NT] | 105        |          |
| Perfluorononanoic acid                      | μg/L       | 0.001                 | Org-029        | <0.001     | [NT] |      | [NT]     | [NT] | 99         |          |
| Perfluorodecanoic acid                      | μg/L       | 0.002                 | Org-029        | <0.002     | [NT] |      | [NT]     | [NT] | 106        |          |
| Perfluoroundecanoic acid                    | μg/L       | 0.002                 | Org-029        | <0.002     | [NT] |      | [NT]     | [NT] | 110        |          |
| Perfluorododecanoic acid                    | μg/L       | 0.005                 | Org-029        | <0.005     | [NT] |      | [NT]     | [NT] | 99         |          |
| Perfluorotridecanoic acid                   | μg/L       | 0.01                  | Org-029        | <0.01      | [NT] |      | [NT]     | [NT] | 126        |          |
| Perfluorotetradecanoic acid                 | μg/L       | 0.05                  | Org-029        | <0.05      | [NT] |      | [NT]     | [NT] | 92         |          |
| 4:2 FTS                                     | μg/L       | 0.001                 | Org-029        | <0.001     | [NT] |      | [NT]     | [NT] | 105        |          |
| 6:2 FTS                                     | μg/L       | 0.0004                | Org-029        | <0.0004    | [NT] |      | [NT]     | [NT] | 112        |          |
| 8:2 FTS                                     | μg/L       | 0.0004                | Org-029        | <0.0004    | [NT] |      | [NT]     | [NT] | 110        |          |
| 10:2 FTS                                    | μg/L       | 0.002                 | Org-029        | <0.002     | [NT] |      | [NT]     | [NT] | 90         |          |
| Perfluorooctane sulfonamide                 | μg/L       | 0.01                  | Org-029        | <0.01      | [NT] |      | [NT]     | [NT] | 106        |          |
| N-Methyl perfluorooctane sulfonamide        | μg/L       | 0.005                 | Org-029        | <0.005     | [NT] |      | [NT]     | [NT] | 125        |          |
| N-Ethyl perfluorooctanesulfon amide         | μg/L       | 0.01                  | Org-029        | <0.01      | [NT] |      | [NT]     | [NT] | 105        |          |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L       | 0.005                 | Org-029        | <0.005     | [NT] |      | [NT]     | [NT] | 120        |          |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L       | 0.05                  | Org-029        | <0.05      | [NT] |      | [NT]     | [NT] | 119        |          |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.002                 | Org-029        | <0.002     | [NT] |      | [NT]     | [NT] | 105        |          |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.002                 | Org-029        | <0.002     | [NT] |      | [NT]     | [NT] | 115        |          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %          |                       | Org-029        | 96         | [NT] |      | [NT]     | [NT] | 96         |          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %          |                       | Org-029        | 96         | [NT] |      | [NT]     | [NT] | 93         |          |

Envirolab Reference: 246709-A

| QUALITY CONTR                                      | OL: PFAS ir | Waters • | Trace Extended |       |      | Du   | plicate |      | Spike Re | covery % |
|----------------------------------------------------|-------------|----------|----------------|-------|------|------|---------|------|----------|----------|
| Test Description                                   | Units       | PQL      | Method         | Blank | #    | Base | Dup.    | RPD  | LCS-W1   | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFBS   | %           |          | Org-029        | 74    | [NT] |      | [NT]    | [NT] | 76       |          |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %           |          | Org-029        | 92    | [NT] |      | [NT]    | [NT] | 98       |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %           |          | Org-029        | 78    | [NT] |      | [NT]    | [NT] | 77       |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFBA   | %           |          | Org-029        | 92    | [NT] |      | [NT]    | [NT] | 96       |          |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFPeA  | %           |          | Org-029        | 93    | [NT] |      | [NT]    | [NT] | 91       |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFHxA  | %           |          | Org-029        | 95    | [NT] |      | [NT]    | [NT] | 96       |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %           |          | Org-029        | 98    | [NT] |      | [NT]    | [NT] | 100      |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %           |          | Org-029        | 99    | [NT] |      | [NT]    | [NT] | 97       |          |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %           |          | Org-029        | 95    | [NT] |      | [NT]    | [NT] | 98       |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDA   | %           |          | Org-029        | 91    | [NT] |      | [NT]    | [NT] | 83       |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %           |          | Org-029        | 66    | [NT] |      | [NT]    | [NT] | 56       |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDoDA | %           |          | Org-029        | 55    | [NT] |      | [NT]    | [NT] | 42       |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %           |          | Org-029        | 49    | [NT] |      | [NT]    | [NT] | 37       |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 4:2FTS | %           |          | Org-029        | 99    | [NT] |      | [NT]    | [NT] | 96       |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %           |          | Org-029        | 102   | [NT] |      | [NT]    | [NT] | 85       |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %           |          | Org-029        | 84    | [NT] |      | [NT]    | [NT] | 77       |          |
| Extracted ISTD <sup>13</sup> C <sub>8</sub> FOSA   | %           |          | Org-029        | 70    | [NT] |      | [NT]    | [NT] | 59       |          |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %           |          | Org-029        | 38    | [NT] |      | [NT]    | [NT] | 34       |          |
| Extracted ISTD d <sub>5</sub> N EtFOSA             | %           |          | Org-029        | 38    | [NT] |      | [NT]    | [NT] | 34       |          |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %           |          | Org-029        | 60    | [NT] |      | [NT]    | [NT] | 46       |          |

Envirolab Reference: 246709-A

| QUALITY CONTROL: PFAS in Waters Trace Extended |       |     |         |       | Duplicate |      |      |      | Spike Recovery % |      |  |
|------------------------------------------------|-------|-----|---------|-------|-----------|------|------|------|------------------|------|--|
| Test Description                               | Units | PQL | Method  | Blank | #         | Base | Dup. | RPD  | LCS-W1           | [NT] |  |
| Extracted ISTD d <sub>9</sub> N EtFOSE         | %     |     | Org-029 | 57    | [NT]      | [NT] | [NT] | [NT] | 43               |      |  |
| Extracted ISTD d <sub>3</sub> N MeFOSAA        | %     |     | Org-029 | 74    | [NT]      | [NT] | [NT] | [NT] | 61               |      |  |
| Extracted ISTD d₅ N EtFOSAA                    | %     |     | Org-029 | 54    | [NT]      | [NT] | [NT] | [NT] | 38               | [NT] |  |

Envirolab Reference: 246709-A

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 246709-A

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 246709-A Page | 9 of 10

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 246709-A Page | 10 of 10

Revision No: R00



# **CHAIN OF CUSTODY FORM - Client**

[Copyright and Confidential] Client: GHD Ptv I td Client Project Name/Number/Site etc (le report title): Contact Person: Sean Sparrow 12516828 Project Mar: Dilara Valiff PO No.: 12516828 Sampler: Sean Sparrow Envirolati Quote No. : Address: Date results required: 2 day Level 4, 211 Victoria Square, Adelaide 5000 Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required surcharges apply Phone: Mob: 0498 260 626 Additional report format: esdat / eguls / Email: GHDLabReports@ghd.com Lab Comments: dilara.valiff@ghd.com sean.sparrow@ghd.com

Signature:

#### **ENVIROLAB GROUP**

National phone number 1300 424 344

Sydney Lab - Envirolab Services
12 Ashley St, Chatswood, NSW 2067
① 02 9910 6200 | sydney@envirolab.com.au

Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 ூ 08 9317 2505 | ⊠ lab@mpl.com.au

Melbourne Lab - Envirolab Services 25 Research Drive, Croydon South, VIC 3136 © 03 9763 2500 | I⊷ melbourne@envirolab.com.au

Brisbane Office - Envirolab Services

20a, 10-20 Depot St, Banyo, QLD 4014

① 07 3266 9532

<u>Darwin Office</u> - Envirolab Services Unit 20/119 Reichardt Road, Winnelle, NT 0820 ⊕ 08 8967 1201 | Ы. darwin@envirolab.com.au

|                                      |                                 |                    |                 |                       | I                      |            |                |              |             |                     |                                                  |                     |                  | " -     |          | 12011                                            | Gair                                             | viii@ci                                          | iviiolab.colli.au                                            |
|--------------------------------------|---------------------------------|--------------------|-----------------|-----------------------|------------------------|------------|----------------|--------------|-------------|---------------------|--------------------------------------------------|---------------------|------------------|---------|----------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|
|                                      | Samp                            | ole information    |                 |                       |                        |            |                | 7            | 445 Vg      | , Te                | sts Re                                           | juired :            | 2 ( A A A A )    | (e.S.b) | i da     | in rock i                                        | A-VOY                                            | an Aerth                                         | Comments                                                     |
| Envirolab Sample<br>ID<br>kyler Soil | Citent Sample ID<br>information | or Depth           | Date<br>sampled | Type of sample        | Trace analysis<br>PFAS | PFAS Short |                |              | a 1937<br>4 | er estense          | 1                                                | W<br>M              | ſ                |         |          |                                                  |                                                  |                                                  | Provide as much<br>information about th<br>sample as you can |
| \$                                   | DC09                            |                    | 08/07/2020      | water, sediment       | Х                      |            |                |              |             | 1 1                 | 1                                                |                     | 1                |         | <b>!</b> |                                                  | <del>                                     </del> | ╁                                                |                                                              |
| 3-4                                  | QA25                            |                    | 08/07/2020      | water, sediment       | х                      | 1          |                |              |             | 7                   | 1                                                |                     | t 	au            | 25      | 1        | <u> </u>                                         | $\vdash$                                         | $\vdash$                                         |                                                              |
|                                      | QA25A                           |                    | 08/07/2020      | water, sediment       | Х                      |            |                |              |             |                     | 1                                                | 1                   | -                |         |          | 1                                                | $\vdash$                                         | 1                                                | Please forward to ALS                                        |
| 5.6                                  | DC10                            |                    | 08/07/2020      | water, sediment       | х                      |            |                |              |             |                     | •                                                | •                   |                  |         | _        | <b></b>                                          | <u> </u>                                         | _                                                | r lease loiward to ALS                                       |
| <del>&gt; , ()</del>                 | DC11                            |                    | 08/07/2020      | water, sediment       | ×                      |            |                | _            |             |                     |                                                  | I Div               |                  |         |          |                                                  | $\vdash$                                         | $\vdash$                                         |                                                              |
| 1/10                                 | DC13                            |                    | 08/07/2020      | water, sediment       | Х                      |            | 1              | - 5          | 3ydn        | ey                  |                                                  | eferei              |                  |         |          | <del>                                     </del> |                                                  | $\vdash$                                         |                                                              |
|                                      | DC14                            |                    | 08/07/2020      | water, sediment       | х                      |            |                |              | Wo          | rk Or               | der R                                            | eferei              | rce              |         |          |                                                  | <u> </u>                                         | <del>                                     </del> |                                                              |
| 3.14                                 | DC15                            |                    | 08/07/2020      | water, sediment       | Х                      |            |                |              |             | 52                  | <b>.</b> U2                                      | 238                 | ن <del>4</del> 3 | 5       | -        | <b>†</b>                                         | -                                                | <del> </del>                                     |                                                              |
| 15                                   | WW01                            |                    | 08/07/2020      | <u>water</u>          | ×                      |            |                |              |             |                     |                                                  |                     |                  |         | -        | <del>                                     </del> | ·                                                | _                                                |                                                              |
| C16_                                 | WW02                            |                    | 08/07/2020      | water                 | Х                      | İ          | - 1            |              |             |                     | 11                                               |                     |                  | 1       | <u> </u> |                                                  | <del>                                     </del> | $\vdash$                                         |                                                              |
| 17)                                  | QA26                            |                    | 08/07/2020      | water                 | ×                      |            |                |              |             |                     | 1                                                | i W. Y              |                  |         | -        |                                                  | $\vdash$                                         | $\vdash$                                         |                                                              |
| 1                                    | QA26A                           |                    | 08/07/2020      | water                 | Х                      |            |                |              |             |                     | ¥.                                               | W                   |                  |         | i        |                                                  | <del></del>                                      | <del>                                     </del> | Please forward to ALS                                        |
| (18                                  | WW03                            |                    | 08/07/2020      | water                 | Х                      |            |                |              |             | III Q.V             |                                                  |                     | <b>:        </b> | ļ       | -        |                                                  |                                                  | $\vdash$                                         | r lease lorward to ALS                                       |
| 19                                   | WW04                            |                    | 08/07/2020      | water                 | Х                      |            |                |              |             | <b>     </b>      1 | nt are                                           | . 4. 17             |                  | 1       | •        |                                                  | <u> </u>                                         |                                                  |                                                              |
| (20                                  | WW05                            |                    | 08/07/2020      | water                 | Х                      |            |                | 1            | relepho     | ne:+6               | 31-2-87                                          | 34 <del>0</del> 555 |                  |         | :        |                                                  |                                                  |                                                  |                                                              |
| W                                    | WW06                            |                    | 08/07/2020      | water                 | Х                      |            |                |              |             |                     |                                                  |                     |                  |         |          |                                                  |                                                  |                                                  |                                                              |
| 62                                   | WW07                            |                    | 08/07/2020      | water                 | Х                      |            |                |              | T           | T                   | 1                                                |                     |                  |         |          |                                                  | <del>                                     </del> |                                                  |                                                              |
| रिय                                  | Tank4                           |                    | 03/07/2020      | concrete              |                        | X          |                |              | 1           |                     |                                                  |                     |                  |         |          | <b></b>                                          | $\overline{}$                                    |                                                  |                                                              |
| 24                                   | Tank5                           |                    | 03/07/2020      | concrete              |                        | х          |                |              | 1           | 1                   | <del>                                     </del> |                     |                  |         |          |                                                  |                                                  |                                                  |                                                              |
| ار ف                                 | Please tick the box if ob       | served settled sed | ment presen     | t in water samples is | to be                  | include    | d in the       | extraction a | nd/or a     | nalysis             | ·                                                |                     |                  |         |          |                                                  |                                                  |                                                  |                                                              |
| lingyished by (C                     | ompany):                        | / Es sya           | <i>′</i>        | Received by (Comp     | any):                  |            | 7              | 5CS 571      | 0           |                     |                                                  | 1961                | 1000 m           | e de la | La       | b Use i                                          | <b>Only</b>                                      | . 6.05×85                                        |                                                              |
| nt Name:                             | Sean Sparrow                    | 1 1.00             | re.             |                       | Şçyc                   |            | Don            |              |             | Job ni              | ımber:                                           | 74                  | 67               | 04      |          | Coolin                                           | g: Ice                                           | lce pa                                           | ci₹ / None                                                   |
| ite & Time:                          | 09/07/2020                      | 10.7.20            | 12:15pm         | Date & Time:          | 107                    | 42         | $\sigma \circ$ | 1045         |             | Temp                | erature                                          |                     | 8                | 31      |          |                                                  |                                                  | _                                                | / Broken / None                                              |
|                                      | 1                               | 11                 |                 |                       |                        |            | A 64           | и            |             | 7                   |                                                  |                     |                  | ~       |          |                                                  |                                                  |                                                  | 3                                                            |

Form 302\_V006

Signature:

121307

TROZ

3

Issue date: 7 October 2019

200

rec: FA7: \$ 10/2/2 3:40g

TAT Req - SAME day / 1 /2 3 / 4 / STD



## **CERTIFICATE OF ANALYSIS**

Work Order : **ES2023843** 

: GHD PTY LTD

Contact : DILARA VALIFF

Address : LEVEL 15. 133 CASTLEREAGH STREET

SYDNEY NSW, AUSTRALIA 2000

Telephone : +61 08 8111 6600

Project : 12516828 Order number : 12516828

C-O-C number · ----

Sampler : SEAN SPARROW

Site

Client

Quote number : EN/005/19

No. of samples received : 3

No. of samples analysed : 3

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 10-Jul-2020 15:38

Date Analysis Commenced : 13-Jul-2020

Issue Date : 16-Jul-2020 12:49



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

 Page
 : 2 of 5

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231X: PFAS results for sample #2 confirmed by re-extraction and re-analysis.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

 Page
 : 3 of 5

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



## Analytical Results

| Sub-Matrix: SEDIMENT                         |                        | Clie   | ent sample ID  | QA25A             | <br> | <br>            |
|----------------------------------------------|------------------------|--------|----------------|-------------------|------|-----------------|
| (Matrix: SOIL)                               |                        |        |                | 40.1.1.0000.00.00 |      |                 |
|                                              |                        |        | ng date / time | 10-Jul-2020 00:00 | <br> | <br>            |
| Compound                                     | CAS Number             | LOR    | Unit           | ES2023843-003     | <br> | <br>            |
|                                              |                        |        |                | Result            | <br> | <br>            |
| EA055: Moisture Content (Dried @ 105         | 5-110°C)               |        |                |                   |      |                 |
| Moisture Content                             |                        | 0.1    | %              | 28.6              | <br> | <br>            |
| EP231A: Perfluoroalkyl Sulfonic Acids        | \$                     |        |                |                   |      |                 |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5               | 0.0002 | mg/kg          | <0.0002           | <br> | <br><del></del> |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.0002 | mg/kg          | 0.0005            | <br> | <br>            |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.0002 | mg/kg          | 0.0142            | <br> | <br>            |
| EP231B: Perfluoroalkyl Carboxylic Ad         | cids                   |        |                |                   |      |                 |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.001  | mg/kg          | <0.001            | <br> | <br>            |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.0002 | mg/kg          | <0.0002           | <br> | <br>            |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.0002 | mg/kg          | <0.0002           | <br> | <br>            |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.0002 | mg/kg          | <0.0002           | <br> | <br>            |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.0002 | mg/kg          | <0.0002           | <br> | <br>            |
| EP231D: (n:2) Fluorotelomer Sulfonic         | Acids                  |        |                |                   |      |                 |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.0005 | mg/kg          | <0.0005           | <br> | <br>            |
| 6:2 Fluorotelomer sulfonic acid (6:2 FTS)    | 27619-97-2             | 0.0005 | mg/kg          | <0.0005           | <br> | <br>            |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.0005 | mg/kg          | <0.0005           | <br> | <br>            |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.0005 | mg/kg          | <0.0005           | <br> | <br>            |
| EP231P: PFAS Sums                            |                        |        |                |                   |      |                 |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.0002 | mg/kg          | 0.0147            | <br> | <br>            |
| Sum of PFAS (WA DER List)                    |                        | 0.0002 | mg/kg          | 0.0147            | <br> | <br>            |
| EP231S: PFAS Surrogate                       |                        |        |                |                   |      |                 |
| 13C4-PFOS                                    |                        | 0.0002 | %              | 104               | <br> | <br>            |
| 13C8-PFOA                                    |                        | 0.0002 | %              | 104               | <br> | <br>            |

 Page
 : 4 of 5

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



## Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)            |                        | Clie         | ent sample ID  | QA25A             | QA26A             | <br> |  |
|----------------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|------|--|
|                                              | CI                     | lient sampli | ng date / time | 08-Jul-2020 00:00 | 08-Jul-2020 00:00 | <br> |  |
| Compound                                     | CAS Number             | LOR          | Unit           | ES2023843-001     | ES2023843-002     | <br> |  |
|                                              |                        |              |                | Result            | Result            | <br> |  |
| EP231A: Perfluoroalkyl Sulfonic Acids        | 6                      |              |                |                   |                   |      |  |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5               | 0.002        | μg/L           | 0.011             | 0.009             | <br> |  |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.002        | μg/L           | 0.068             | <0.002            | <br> |  |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.002        | μg/L           | 0.119             | <0.002            | <br> |  |
| EP231B: Perfluoroalkyl Carboxylic Ad         | cids                   |              |                |                   |                   |      |  |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.01         | μg/L           | 0.01              | 0.01              | <br> |  |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.002        | μg/L           | 0.012             | 0.004             | <br> |  |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.002        | μg/L           | 0.030             | 0.006             | <br> |  |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.002        | μg/L           | 0.005             | <0.002            | <br> |  |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.002        | μg/L           | 0.007             | <0.002            | <br> |  |
| EP231D: (n:2) Fluorotelomer Sulfonic         | Acids                  |              |                |                   |                   |      |  |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.005        | μg/L           | <0.005            | <0.005            | <br> |  |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2             | 0.005        | μg/L           | <0.005            | <0.005            | <br> |  |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)    | 39108-34-4             | 0.005        | μg/L           | <0.005            | <0.005            | <br> |  |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.005        | μg/L           | <0.005            | <0.005            | <br> |  |
| EP231P: PFAS Sums                            |                        |              |                |                   |                   |      |  |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.002        | μg/L           | 0.187             | <0.002            | <br> |  |
| Sum of PFAS (WA DER List)                    |                        | 0.002        | μg/L           | 0.262             | 0.029             | <br> |  |
| EP231S: PFAS Surrogate                       |                        |              |                |                   |                   |      |  |
| 13C4-PFOS                                    |                        | 0.002        | %              | 96.5              | 98.0              | <br> |  |
| 13C8-PFOA                                    |                        | 0.002        | %              | 96.4              | 97.4              | <br> |  |

 Page
 : 5 of 5

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Surrogate Control Limits

| Sub-Matrix: SEDIMENT   |            | Recovery | Limits (%) |
|------------------------|------------|----------|------------|
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |
| Sub-Matrix: WATER      |            | Recovery | Limits (%) |
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |



#### **QUALITY CONTROL REPORT**

Issue Date

: 16-Jul-2020

Work Order : ES2023843

**2023843** Page : 1 of 6

Client : GHD PTY LTD Laboratory : Environmental Division Sydney
Contact : DILARA VALIFF Contact : Angus Harding

Address : LEVEL 15, 133 CASTLEREAGH STREET Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2000

Telephone : +61 08 8111 6600 Telephone : +61 2 8784 8555

Project: 12516828Date Samples Received: 10-Jul-2020Order number: 12516828Date Analysis Commenced: 13-Jul-2020

C-O-C number : ----

: 3

This Quality Control Report contains the following information:

Sampler : SEAN SPARROW

Site :

No. of samples received

Quote number : EN/005/19

No. of samples analysed : 3

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

• Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

 Page
 : 2 of 6

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                         |                                                 |             | Laboratory Duplicate (DUP) Report |       |                 |                        |         |                     |
|----------------------|-------------------------|-------------------------------------------------|-------------|-----------------------------------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                | CAS Number  | LOR                               | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA055: Moisture Co   | ntent (Dried @ 105-110  | °C) (QC Lot: 3136040)                           |             |                                   |       |                 |                        |         |                     |
| ES2023366-001        | Anonymous               | EA055: Moisture Content                         |             | 0.1                               | %     | 4.5             | 4.5                    | 0.00    | 0% - 20%            |
| EP231A: Perfluoroa   | Ikyl Sulfonic Acids (QC | Lot: 3136427)                                   |             |                                   |       |                 |                        |         |                     |
| ES2023843-003        | QA25A                   | EP231X: Perfluorobutane sulfonic acid (PFBS)    | 375-73-5    | 0.0002                            | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)   | 355-46-4    | 0.0002                            | mg/kg | 0.0005          | 0.0005                 | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorooctane sulfonic acid (PFOS)    | 1763-23-1   | 0.0002                            | mg/kg | 0.0142          | 0.0144                 | 1.91    | 0% - 20%            |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids( | (QC Lot: 3136427)                               |             |                                   |       |                 |                        |         |                     |
| ES2023843-003        | QA25A                   | EP231X: Perfluoropentanoic acid (PFPeA)         | 2706-90-3   | 0.0002                            | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)          | 307-24-4    | 0.0002                            | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)         | 375-85-9    | 0.0002                            | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorooctanoic acid (PFOA)           | 335-67-1    | 0.0002                            | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)           | 375-22-4    | 0.001                             | mg/kg | <0.001          | <0.001                 | 0.00    | No Limit            |
| EP231D: (n:2) Fluo   | rotelomer Sulfonic Acid | s (QC Lot: 3136427)                             |             |                                   |       |                 |                        |         |                     |
| ES2023843-003        | QA25A                   | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2    | 757124-72-4 | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |                                   |       |                 |                        |         |                     |
|                      |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2    | 27619-97-2  | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |                                   |       |                 |                        |         |                     |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2    | 39108-34-4  | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |                                   |       |                 |                        |         |                     |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2  | 120226-60-0 | 0.0005                            | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |                                   |       |                 |                        |         |                     |
| Sub-Matrix: WATER    |                         |                                                 |             |                                   |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
| Laboratory sample ID | Client sample ID        | Method: Compound                                | CAS Number  | LOR                               | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroa   | Ikyl Sulfonic Acids (QC | Lot: 3133887)                                   |             |                                   |       |                 |                        |         |                     |
| ES2023843-001        | QA25A                   | EP231X-LL: Perfluorobutane sulfonic acid (PFBS) | 375-73-5    | 0.002                             | μg/L  | 0.011           | 0.012                  | 12.8    | No Limit            |

 Page
 : 3 of 6

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER    |                        |                                                        |             |       |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|--------------------------------------------------------|-------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                                       | CAS Number  | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (Q | C Lot: 3133887) - continued                            |             |       |      |                 |                        |         |                     |
| ES2023843-001        | QA25A                  | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.002 | μg/L | 0.068           | 0.076                  | 11.4    | 0% - 20%            |
|                      |                        | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.002 | μg/L | 0.119           | 0.135                  | 12.1    | 0% - 20%            |
| EP231B: Perfluoro    | alkyl Carboxylic Acids | (QC Lot: 3133887)                                      |             |       |      |                 |                        |         |                     |
| ES2023843-001        | QA25A                  | EP231X-LL: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.002 | μg/L | 0.012           | 0.011                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.002 | μg/L | 0.030           | 0.032                  | 4.56    | 0% - 50%            |
|                      |                        | EP231X-LL: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.002 | μg/L | 0.005           | 0.005                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.002 | μg/L | 0.007           | 0.007                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.01  | μg/L | 0.01            | 0.01                   | 0.00    | No Limit            |
| EP231D: (n:2) Fluo   | rotelomer Sulfonic Aci | ds (QC Lot: 3133887)                                   |             |       |      |                 |                        |         |                     |
| ES2023843-001        | QA25A                  | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                        | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                        | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                        | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |

 Page
 : 4 of 6

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828

Sub-Matrix: SOIL



Laboratory Control Spike (LCS) Report

## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Method Blank (MB)

| Sub-Matrix: <b>SOIL</b>                                                                                                                                                                                                                                                                                                                             |                                                             |                         |                      | Wethod Blank (WB)                    |                                                      | Laboratory Control Spike (LC  | s) Report            |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|----------------------|--------------------------------------|------------------------------------------------------|-------------------------------|----------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                     |                                                             |                         |                      | Report                               | Spike                                                | Spike Recovery (%)            | Recovery             | Limits (%)        |
| Method: Compound                                                                                                                                                                                                                                                                                                                                    | CAS Number                                                  | LOR                     | Unit                 | Result                               | Concentration                                        | LCS                           | Low                  | High              |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 31364                                                                                                                                                                                                                                                                                                 | 127)                                                        |                         |                      |                                      |                                                      |                               |                      |                   |
| EP231X: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                        | 375-73-5                                                    | 0.0002                  | mg/kg                | <0.0002                              | 0.00125 mg/kg                                        | 94.4                          | 72.0                 | 128               |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                       | 355-46-4                                                    | 0.0002                  | mg/kg                | <0.0002                              | 0.00125 mg/kg                                        | 98.8                          | 67.0                 | 130               |
| EP231X: Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                        | 1763-23-1                                                   | 0.0002                  | mg/kg                | <0.0002                              | 0.00125 mg/kg                                        | 102                           | 68.0                 | 136               |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 31                                                                                                                                                                                                                                                                                                  | 36427)                                                      |                         |                      |                                      |                                                      |                               |                      |                   |
| EP231X: Perfluorobutanoic acid (PFBA)                                                                                                                                                                                                                                                                                                               | 375-22-4                                                    | 0.001                   | mg/kg                | <0.001                               | 0.00625 mg/kg                                        | 101                           | 71.0                 | 135               |
| EP231X: Perfluoropentanoic acid (PFPeA)                                                                                                                                                                                                                                                                                                             | 2706-90-3                                                   | 0.0002                  | mg/kg                | <0.0002                              | 0.00125 mg/kg                                        | 117                           | 69.0                 | 132               |
| EP231X: Perfluorohexanoic acid (PFHxA)                                                                                                                                                                                                                                                                                                              | 307-24-4                                                    | 0.0002                  | mg/kg                | <0.0002                              | 0.00125 mg/kg                                        | 108                           | 70.0                 | 132               |
| EP231X: Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                             | 375-85-9                                                    | 0.0002                  | mg/kg                | <0.0002                              | 0.00125 mg/kg                                        | 118                           | 71.0                 | 131               |
| EP231X: Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                               | 335-67-1                                                    | 0.0002                  | mg/kg                | <0.0002                              | 0.00125 mg/kg                                        | 118                           | 69.0                 | 133               |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:                                                                                                                                                                                                                                                                                                  | 3136427)                                                    |                         |                      |                                      |                                                      |                               |                      |                   |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                                                                                                                                                                                                                                                                                                   | 757124-72-4                                                 | 0.0005                  | mg/kg                | <0.0005                              | 0.00125 mg/kg                                        | 109                           | 62.0                 | 145               |
| P231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                                                                                                                                                                                                                                                                                                    | 27619-97-2                                                  | 0.0005                  | mg/kg                | <0.0005                              | 0.00125 mg/kg                                        | 102                           | 64.0                 | 140               |
| P231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                                                                                                                                                                                                                                                                                                    | 39108-34-4                                                  | 0.0005                  | mg/kg                | <0.0005                              | 0.00125 mg/kg                                        | 119                           | 65.0                 | 137               |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                                                                                                                                                                                                                                                                                                 | 120226-60-0                                                 | 0.0005                  | mg/kg                | <0.0005                              | 0.00125 mg/kg                                        | 139                           | 69.2                 | 143               |
| Sub-Matrix: WATER                                                                                                                                                                                                                                                                                                                                   |                                                             |                         |                      | Method Blank (MB)                    |                                                      | Laboratory Control Spike (LC) | S) Report            |                   |
|                                                                                                                                                                                                                                                                                                                                                     |                                                             |                         |                      | Report                               | Spike                                                | Spike Recovery (%)            | Recovery             | Limits (%)        |
| Method: Compound                                                                                                                                                                                                                                                                                                                                    | CAS Number                                                  | LOR                     | Unit                 | Result                               | Concentration                                        | LCS                           | Low                  | High              |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 31338                                                                                                                                                                                                                                                                                                 | 387)                                                        |                         |                      |                                      |                                                      |                               |                      |                   |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                     | 375-73-5                                                    | 0.002                   | μg/L                 | <0.002                               | 0.025 μg/L                                           | 77.2                          | 72.0                 | 130               |
| P231X-LL: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                     | 355-46-4                                                    | 0.002                   | μg/L                 | <0.002                               | 0.025 μg/L                                           | 82.0                          | 68.0                 | 131               |
| P231X-LL: Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                      | 1763-23-1                                                   | 0.002                   | μg/L                 | <0.002                               | 0.025 μg/L                                           | 126                           | 65.0                 | 140               |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 31                                                                                                                                                                                                                                                                                                  | 33887)                                                      |                         |                      |                                      |                                                      |                               |                      |                   |
| P231X-LL: Perfluorobutanoic acid (PFBA)                                                                                                                                                                                                                                                                                                             | 375-22-4                                                    | 0.01                    | μg/L                 | <0.01                                | 0.125 μg/L                                           | 88.3                          | 73.0                 | 129               |
| P231X-LL: Perfluoropentanoic acid (PFPeA)                                                                                                                                                                                                                                                                                                           |                                                             |                         |                      | -0.000                               | 0.005//                                              | 92.8                          | 72.0                 | 129               |
| i zo ik zz. i omaoropomanolo aola (i i i oki)                                                                                                                                                                                                                                                                                                       | 2706-90-3                                                   | 0.002                   | μg/L                 | <0.002                               | 0.025 μg/L                                           | 92.0                          |                      |                   |
| , ,                                                                                                                                                                                                                                                                                                                                                 | 2706-90-3<br>307-24-4                                       | 0.002                   | μg/L<br>μg/L         | <0.002                               | 0.025 μg/L<br>0.025 μg/L                             | 92.8                          | 72.0                 | 129               |
| P231X-LL: Perfluorohexanoic acid (PFHxA)                                                                                                                                                                                                                                                                                                            |                                                             |                         |                      |                                      |                                                      |                               | 72.0<br>72.0         | 129<br>130        |
| P231X-LL: Perfluorohexanoic acid (PFHxA)                                                                                                                                                                                                                                                                                                            | 307-24-4                                                    | 0.002                   | μg/L                 | <0.002                               | 0.025 μg/L                                           | 92.8                          |                      |                   |
| EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluoroheptanoic acid (PFHpA) EP231X-LL: Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                       | 307-24-4<br>375-85-9<br>335-67-1                            | 0.002<br>0.002          | μg/L<br>μg/L         | <0.002<br><0.002                     | 0.025 μg/L<br>0.025 μg/L                             | 92.8<br>89.6                  | 72.0                 | 130               |
| EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluoroheptanoic acid (PFHpA) EP231X-LL: Perfluorooctanoic acid (PFOA) EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:                                                                                                                                                                    | 307-24-4<br>375-85-9<br>335-67-1                            | 0.002<br>0.002          | μg/L<br>μg/L         | <0.002<br><0.002                     | 0.025 μg/L<br>0.025 μg/L                             | 92.8<br>89.6                  | 72.0                 | 130               |
| EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluoroheptanoic acid (PFHpA) EP231X-LL: Perfluorooctanoic acid (PFOA) EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                                                                                                               | 307-24-4<br>375-85-9<br>335-67-1<br>3133887)                | 0.002<br>0.002<br>0.002 | hâ\r<br>hâ\r         | <0.002<br><0.002<br><0.002           | 0.025 μg/L<br>0.025 μg/L<br>0.025 μg/L               | 92.8<br>89.6<br>89.2          | 72.0<br>71.0         | 130<br>133<br>143 |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)  EP231X-LL: Perfluoroheptanoic acid (PFHpA)  EP231X-LL: Perfluoroctanoic acid (PFOA)  EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)  EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)  EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) | 307-24-4<br>375-85-9<br>335-67-1<br>3133887)<br>757124-72-4 | 0.002<br>0.002<br>0.002 | µg/L<br>µg/L<br>µg/L | <0.002<br><0.002<br><0.002<br><0.005 | 0.025 μg/L<br>0.025 μg/L<br>0.025 μg/L<br>0.025 μg/L | 92.8<br>89.6<br>89.2          | 72.0<br>71.0<br>63.0 | 130<br>133        |

 Page
 : 5 of 6

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: SOIL                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                | Ma                                                                                                                                                   | atrix Spike (MS) Report                                                                                        |                                                                      |                                                                                                                    |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                | Spike                                                                                                                                                | SpikeRecovery(%)                                                                                               | Recovery I                                                           | Limits (%)                                                                                                         |
| aboratory sample ID                                                                 | Client sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method: Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CAS Number                                                                                     | Concentration                                                                                                                                        | MS                                                                                                             | Low                                                                  | Higl                                                                                                               |
| EP231A: Perfluoro                                                                   | alkyl Sulfonic Acids (QCLot: 31364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |                                                                                                                                                      |                                                                                                                |                                                                      |                                                                                                                    |
| ES2023843-003                                                                       | QA25A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EP231X: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                                       | 375-73-5                                                                                       | 0.00125 mg/kg                                                                                                                                        | 101                                                                                                            | 72.0                                                                 | 128                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 355-46-4                                                                                       | 0.00125 mg/kg                                                                                                                                        | 115                                                                                                            | 67.0                                                                 | 130                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1763-23-1                                                                                      | 0.00125 mg/kg                                                                                                                                        | # Not                                                                                                          | 68.0                                                                 | 136                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |                                                                                                                                                      | Determined                                                                                                     |                                                                      |                                                                                                                    |
| EP231B: Perfluoro                                                                   | palkyl Carboxylic Acids (QCLot: 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36427)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                |                                                                                                                                                      |                                                                                                                |                                                                      |                                                                                                                    |
| ES2023843-003                                                                       | QA25A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EP231X: Perfluorobutanoic acid (PFBA)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 375-22-4                                                                                       | 0.00625 mg/kg                                                                                                                                        | 104                                                                                                            | 71.0                                                                 | 135                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: Perfluoropentanoic acid (PFPeA)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2706-90-3                                                                                      | 0.00125 mg/kg                                                                                                                                        | 122                                                                                                            | 69.0                                                                 | 132                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: Perfluorohexanoic acid (PFHxA)                                                                                                                                                                                                                                                                                                                                                                                                                                             | 307-24-4                                                                                       | 0.00125 mg/kg                                                                                                                                        | 109                                                                                                            | 70.0                                                                 | 132                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 375-85-9                                                                                       | 0.00125 mg/kg                                                                                                                                        | 119                                                                                                            | 71.0                                                                 | 131                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                                                                                                                                              | 335-67-1                                                                                       | 0.00125 mg/kg                                                                                                                                        | 118                                                                                                            | 69.0                                                                 | 133                                                                                                                |
| EP231D: (n:2) Fluc                                                                  | orotelomer Sulfonic Acids (QCLot:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3136427)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                |                                                                                                                                                      |                                                                                                                |                                                                      |                                                                                                                    |
| ES2023843-003                                                                       | QA25A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 757124-72-4                                                                                    | 0.00125 mg/kg                                                                                                                                        | 99.2                                                                                                           | 62.0                                                                 | 145                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27619-97-2                                                                                     | 0.00125 mg/kg                                                                                                                                        | 92.0                                                                                                           | 64.0                                                                 | 140                                                                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | 0.00105                                                                                                                                              | 104                                                                                                            | 65.0                                                                 | 13                                                                                                                 |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39108-34-4                                                                                     | 0.00125 mg/kg                                                                                                                                        | 104                                                                                                            | 05.0                                                                 | 10                                                                                                                 |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                                                                                                                                                                                                                                                                                                                                                                              | 39108-34-4<br>120226-60-0                                                                      | 0.00125 mg/kg<br>0.00125 mg/kg                                                                                                                       | 80.4                                                                                                           | 69.2                                                                 |                                                                                                                    |
| tub-Matrix: <b>WATER</b>                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | 0.00125 mg/kg                                                                                                                                        |                                                                                                                |                                                                      |                                                                                                                    |
| ub-Matrix: WATER                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | 0.00125 mg/kg                                                                                                                                        | 80.4                                                                                                           |                                                                      | 143                                                                                                                |
|                                                                                     | Client sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                | 0.00125 mg/kg                                                                                                                                        | 80.4<br>atrix Spike (MS) Report                                                                                | 69.2                                                                 | 143                                                                                                                |
| aboratory sample ID                                                                 | Client sample ID alkyl Sulfonic Acids (QCLot: 31338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  Method: Compound                                                                                                                                                                                                                                                                                                                                                                                                              | 120226-60-0                                                                                    | 0.00125 mg/kg  Ma Spike                                                                                                                              | 80.4 atrix Spike (MS) Report SpikeRecovery(%)                                                                  | 69.2  Recovery I                                                     | 143                                                                                                                |
| aboratory sample ID                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  Method: Compound                                                                                                                                                                                                                                                                                                                                                                                                              | 120226-60-0                                                                                    | 0.00125 mg/kg  Ma Spike                                                                                                                              | 80.4 atrix Spike (MS) Report SpikeRecovery(%)                                                                  | 69.2  Recovery I                                                     | 143<br>Limits (%)<br>Hig                                                                                           |
| aboratory sample ID                                                                 | alkyl Sulfonic Acids (QCLot: 31338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  Method: Compound  87)                                                                                                                                                                                                                                                                                                                                                                                                         | 120226-60-0  CAS Number                                                                        | 0.00125 mg/kg  Ma Spike Concentration                                                                                                                | 80.4 atrix Spike (MS) Report SpikeRecovery(%) MS                                                               | Recovery L                                                           | 143  Limits (%)  Hig                                                                                               |
| aboratory sample ID                                                                 | alkyl Sulfonic Acids (QCLot: 31338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method: Compound  EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                                                                                                                  | 120226-60-0  CAS Number  375-73-5                                                              | 0.00125 mg/kg  Ma Spike Concentration  0.025 µg/L                                                                                                    | 80.4 atrix Spike (MS) Report SpikeRecovery(%) MS 74.9                                                          | Recovery L<br>Low                                                    | 143  Limits (%)  Hig  130  131                                                                                     |
| aboratory sample ID                                                                 | alkyl Sulfonic Acids (QCLot: 31338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method: Compound  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorobexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                                                                 | 120226-60-0  CAS Number  375-73-5 355-46-4                                                     | 0.00125 mg/kg  Ma Spike Concentration  0.025 μg/L 0.025 μg/L                                                                                         | 80.4 atrix Spike (MS) Report SpikeRecovery(%) MS 74.9 83.5                                                     | 69.2  Recovery L  Low  72.0 68.0                                     | 143                                                                                                                |
| aboratory sample ID<br>EP231A: Perfluoro<br>ES2023843-001                           | alkyl Sulfonic Acids (QCLot: 31338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method: Compound  B7)  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorobexane sulfonic acid (PFHxS) EP231X-LL: Perfluoroctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                             | 120226-60-0  CAS Number  375-73-5 355-46-4                                                     | 0.00125 mg/kg  Ma Spike Concentration  0.025 μg/L 0.025 μg/L                                                                                         | 80.4  atrix Spike (MS) Report SpikeRecovery(%) MS  74.9 83.5 # Not                                             | 69.2  Recovery L  Low  72.0 68.0                                     | 143  Limits (%)  Hig  130  131                                                                                     |
| aboratory sample ID EP231A: Perfluoro ES2023843-001 EP231B: Perfluoro               | alkyl Sulfonic Acids (QCLot: 31338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Method: Compound  B7)  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorobexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                            | 120226-60-0  CAS Number  375-73-5 355-46-4                                                     | 0.00125 mg/kg  Ma Spike Concentration  0.025 μg/L 0.025 μg/L                                                                                         | 80.4  atrix Spike (MS) Report SpikeRecovery(%) MS  74.9 83.5 # Not                                             | 69.2  Recovery L  Low  72.0 68.0                                     | 143  Limits (%)  Hig  130  131                                                                                     |
| aboratory sample ID EP231A: Perfluoro ES2023843-001 EP231B: Perfluoro               | alkyl Sulfonic Acids (QCLot: 31338) QA25A  palkyl Carboxylic Acids (QCLot: 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method: Compound  B7)  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorobexane sulfonic acid (PFHxS) EP231X-LL: Perfluoroctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                             | 120226-60-0  CAS Number  375-73-5 355-46-4 1763-23-1                                           | 0.00125 mg/kg  Ma Spike Concentration  0.025 μg/L 0.025 μg/L 0.025 μg/L                                                                              | 80.4  atrix Spike (MS) Report SpikeRecovery(%) MS  74.9 83.5 # Not Determined                                  | 72.0<br>68.0<br>65.0                                                 | 143  Limits (%)  Hig  130  131                                                                                     |
| aboratory sample ID EP231A: Perfluoro ES2023843-001 EP231B: Perfluoro               | alkyl Sulfonic Acids (QCLot: 31338) QA25A  palkyl Carboxylic Acids (QCLot: 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method: Compound  B7)  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorobexane sulfonic acid (PFHxS) EP231X-LL: Perfluoroctane sulfonic acid (PFOS)  EP231X-LL: Perfluoroctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA)                                                                                                                                                                                                                   | 120226-60-0  CAS Number  375-73-5 355-46-4 1763-23-1                                           | 0.00125 mg/kg  Spike  Concentration  0.025 μg/L  0.025 μg/L  0.025 μg/L  0.025 μg/L                                                                  | 80.4  atrix Spike (MS) Report SpikeRecovery(%) MS  74.9 83.5 # Not Determined                                  | 72.0<br>68.0<br>65.0                                                 | 14:  Limits (%)  Hig  13:  14:  12:  12:                                                                           |
| aboratory sample ID EP231A: Perfluoro ES2023843-001 EP231B: Perfluoro               | alkyl Sulfonic Acids (QCLot: 31338) QA25A  palkyl Carboxylic Acids (QCLot: 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  Method: Compound  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPeA)                                                                                                                                                                       | 120226-60-0  CAS Number  375-73-5 355-46-4 1763-23-1  375-22-4 2706-90-3                       | 0.00125 mg/kg  Ma Spike Concentration  0.025 μg/L 0.025 μg/L 0.025 μg/L  0.125 μg/L 0.125 μg/L                                                       | 80.4  atrix Spike (MS) Report  SpikeRecovery(%)  MS  74.9  83.5  # Not Determined                              | 72.0<br>68.0<br>65.0<br>73.0<br>72.0                                 | 14:  Limits (%)  Hig  13:  14:  12:  12:  12:                                                                      |
| aboratory sample ID EP231A: Perfluoro ES2023843-001 EP231B: Perfluoro               | alkyl Sulfonic Acids (QCLot: 31338) QA25A  palkyl Carboxylic Acids (QCLot: 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method: Compound  B7)  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorobexane sulfonic acid (PFHxS) EP231X-LL: Perfluoroctane sulfonic acid (PFOS)  B231X-LL: Perfluoroctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPeA) EP231X-LL: Perfluorohexanoic acid (PFPAA)                                                                                                                               | 120226-60-0  CAS Number  375-73-5 355-46-4 1763-23-1  375-22-4 2706-90-3 307-24-4              | 0.00125 mg/kg  Spike Concentration  0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L                                                | 80.4  atrix Spike (MS) Report  SpikeRecovery(%)  MS  74.9  83.5  # Not Determined  107  82.9  84.2             | 72.0<br>68.0<br>65.0<br>73.0<br>72.0<br>72.0                         | 14:  Limits (%)  Hig  13:  13:  14:  12:  12:  13:  13:  13:  14:  15:  16:  17:  17:  18:  18:  18:  18:  18:  18 |
| EP231B: Perfluoro                                                                   | alkyl Sulfonic Acids (QCLot: 31338) QA25A  palkyl Carboxylic Acids (QCLot: 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method: Compound  B7)  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorobexane sulfonic acid (PFHxS) EP231X-LL: Perfluoroctane sulfonic acid (PFOS)  B23887)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPA) EP231X-LL: Perfluorobexanoic acid (PFPA) EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluorohexanoic acid (PFHpA) EP231X-LL: Perfluorocotanoic acid (PFOA)                                          | 120226-60-0  CAS Number  375-73-5 355-46-4 1763-23-1  375-22-4 2706-90-3 307-24-4 375-85-9     | 0.00125 mg/kg  Spike Concentration  0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L                                     | 80.4  atrix Spike (MS) Report  SpikeRecovery(%)  MS  74.9  83.5  # Not Determined  107  82.9  84.2  94.9       | 72.0<br>68.0<br>65.0<br>73.0<br>72.0<br>72.0<br>72.0                 | 14:  Limits (%)  Hig  13:  13:  14:  12:  12:  13:  13:  13:  14:  15:  16:  17:  17:  18:  18:  18:  18:  18:  18 |
| aboratory sample ID EP231A: Perfluoro ES2023843-001 EP231B: Perfluoro ES2023843-001 | palkyl Sulfonic Acids (QCLot: 31338) QA25A  palkyl Carboxylic Acids (QCLot: 313 QA25A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  Method: Compound  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPAA) EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluorohexanoic acid (PFDA) EP231X-LL: Perfluorooctanoic acid (PFOA) | 120226-60-0  CAS Number  375-73-5 355-46-4 1763-23-1  375-22-4 2706-90-3 307-24-4 375-85-9     | 0.00125 mg/kg  Spike Concentration  0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L                                     | 80.4  atrix Spike (MS) Report  SpikeRecovery(%)  MS  74.9  83.5  # Not Determined  107  82.9  84.2  94.9       | 72.0<br>68.0<br>65.0<br>73.0<br>72.0<br>72.0<br>72.0                 | 143  Limits (%)  Hig  130  131  140                                                                                |
| aboratory sample ID EP231A: Perfluoro ES2023843-001 EP231B: Perfluoro ES2023843-001 | palkyl Sulfonic Acids (QCLot: 31338)  QA25A  palkyl Carboxylic Acids (QCLot: 313  QA25A  particular of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont | Method: Compound  B7)  EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorobexane sulfonic acid (PFHxS) EP231X-LL: Perfluoroctane sulfonic acid (PFOS)  B23887)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPA) EP231X-LL: Perfluorobexanoic acid (PFPA) EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluorohexanoic acid (PFHpA) EP231X-LL: Perfluorocotanoic acid (PFOA)                                          | 375-73-5<br>355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9<br>335-67-1 | 0.00125 mg/kg  Me Spike Concentration  0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L 0.025 μg/L | 80.4  atrix Spike (MS) Report  SpikeRecovery(%)  MS  74.9  83.5  # Not Determined  107  82.9  84.2  94.9  87.2 | 72.0<br>68.0<br>65.0<br>73.0<br>72.0<br>72.0<br>72.0<br>72.0<br>71.0 | 143  Limits (%)  Hig  130  131  140  129  129  129  130  131                                                       |

 Page
 : 6 of 6

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER    | Sub-Matrix: WATER  Matrix Spike (MS) Report                             |                                                        |             |               |                  |            |           |  |  |  |
|----------------------|-------------------------------------------------------------------------|--------------------------------------------------------|-------------|---------------|------------------|------------|-----------|--|--|--|
|                      |                                                                         |                                                        |             | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |  |  |  |
| Laboratory sample ID | Client sample ID                                                        | Method: Compound                                       | CAS Number  | Concentration | MS               | Low        | High      |  |  |  |
| EP231D: (n:2) Flu    | EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3133887) - continued |                                                        |             |               |                  |            |           |  |  |  |
| ES2023843-001        | QA25A                                                                   | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.025 μg/L    | 76.4             | 75.2       | 137       |  |  |  |



# QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **ES2023843** Page : 1 of 5

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : DILARA VALIFF
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 10-Jul-2020

 Site
 : Issue Date
 : 16-Jul-2020

 Site
 :
 Issue Date
 : 16-Jul-2020

 Sampler
 : SEAN SPARROW
 No. of samples received
 : 3

Order number : 12516828 No. of samples analysed : 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 5

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                   | Laboratory Sample ID | Client Sample ID | Analyte              | CAS Number | Data       | Limits | Comment                          |
|---------------------------------------|----------------------|------------------|----------------------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries          |                      |                  |                      |            |            |        |                                  |
| EP231A: Perfluoroalkyl Sulfonic Acids | ES2023843003         | QA25A            | Perfluorooctane      | 1763-23-1  | Not        |        | MS recovery not determined,      |
|                                       |                      |                  | sulfonic acid (PFOS) |            | Determined |        | background level greater than or |
|                                       |                      |                  |                      |            |            |        | equal to 4x spike level.         |
| Motrice WATER                         |                      |                  |                      |            |            |        |                                  |

#### Matrix: WATER

| Compound Group Name                   | Laboratory Sample ID | Client Sample ID | Analyte              | CAS Number | Data       | Limits | Comment                          |
|---------------------------------------|----------------------|------------------|----------------------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries          |                      |                  |                      |            |            |        |                                  |
| EP231A: Perfluoroalkyl Sulfonic Acids | ES2023843001         | QA25A            | Perfluorooctane      | 1763-23-1  | Not        |        | MS recovery not determined,      |
|                                       |                      |                  | sulfonic acid (PFOS) |            | Determined |        | background level greater than or |
|                                       |                      |                  |                      |            |            |        | equal to 4x spike level.         |

#### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL** Evaluation: **▼** = Holding time breach ; **√** = Within holding time.

| matrix out                                  |             |                |                        |            |               |                  |            |
|---------------------------------------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|
| Method                                      | Sample Date | Ex             | traction / Preparation |            |               | Analysis         |            |
| Container / Client Sample ID(s)             |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA055: Moisture Content (Dried @ 105-110°C) |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EA055)                       |             |                |                        |            |               |                  |            |
| QA25A                                       | 10-Jul-2020 |                |                        |            | 13-Jul-2020   | 24-Jul-2020      | ✓          |
| EP231A: Perfluoroalkyl Sulfonic Acids       |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                      |             |                |                        |            |               |                  |            |
| QA25A                                       | 10-Jul-2020 | 14-Jul-2020    | 06-Jan-2021            | ✓          | 14-Jul-2020   | 23-Aug-2020      | ✓          |
| EP231B: Perfluoroalkyl Carboxylic Acids     |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                      |             |                |                        |            |               |                  |            |
| QA25A                                       | 10-Jul-2020 | 14-Jul-2020    | 06-Jan-2021            | ✓          | 14-Jul-2020   | 23-Aug-2020      | ✓          |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids  |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                      |             |                |                        |            |               |                  |            |
| QA25A                                       | 10-Jul-2020 | 14-Jul-2020    | 06-Jan-2021            | ✓          | 14-Jul-2020   | 23-Aug-2020      | ✓          |
| EP231P: PFAS Sums                           |             |                |                        |            |               |                  |            |
| HDPE Soil Jar (EP231X)                      |             |                |                        |            |               |                  |            |
| QA25A                                       | 10-Jul-2020 | 14-Jul-2020    | 06-Jan-2021            | ✓          | 14-Jul-2020   | 23-Aug-2020      | ✓          |

Matrix: WATER

Evaluation: **x** = Holding time breach; ✓ = Within holding time.

Page : 3 of 5 Work Order ES2023843 GHD PTY LTD Client 12516828 Project

QA26A

QA25A,



Matrix: WATER Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP231A: Perfluoroalkyl Sulfonic Acids HDPE (no PTFE) (EP231X-LL) QA25A, QA26A 08-Jul-2020 13-Jul-2020 04-Jan-2021 14-Jul-2020 04-Jan-2021 EP231B: Perfluoroalkyl Carboxylic Acids HDPE (no PTFE) (EP231X-LL) 04-Jan-2021 04-Jan-2021 08-Jul-2020 13-Jul-2020 14-Jul-2020 QA25A, QA26A EP231D: (n:2) Fluorotelomer Sulfonic Acids HDPE (no PTFE) (EP231X-LL) QA25A, QA26A 08-Jul-2020 13-Jul-2020 04-Jan-2021 1 14-Jul-2020 04-Jan-2021 EP231P: PFAS Sums HDPE (no PTFE) (EP231X-LL) 08-Jul-2020 13-Jul-2020 04-Jan-2021 14-Jul-2020 04-Jan-2021

 Page
 : 4 of 5

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                         |           |    |         | Evaluation | n: × = Quality Co | entrol frequency | not within specification; ✓ = Quality Control frequency within specificatio  |
|------------------------------------------------------|-----------|----|---------|------------|-------------------|------------------|------------------------------------------------------------------------------|
| Quality Control Sample Type                          |           | Co | Count   |            | Rate (%)          |                  | Quality Control Specification                                                |
| Analytical Methods                                   | Method    | QC | Regular | Actual     | Expected          | Evaluation       |                                                                              |
| Laboratory Duplicates (DUP)                          |           |    |         |            |                   |                  |                                                                              |
| Moisture Content                                     | EA055     | 1  | 10      | 10.00      | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1  | 1       | 100.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                               |
| Laboratory Control Samples (LCS)                     |           |    |         |            |                   |                  |                                                                              |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1  | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                               |
| Method Blanks (MB)                                   |           |    |         |            |                   |                  |                                                                              |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1  | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                               |
| Matrix Spikes (MS)                                   |           |    |         |            |                   |                  |                                                                              |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1  | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                               |
| Matrix: WATER                                        |           |    |         | Evaluation | n: × = Quality Co | ontrol frequency | not within specification ; ✓ = Quality Control frequency within specificatio |
| Quality Control Sample Type                          |           | Co | ount    |            | Rate (%)          |                  | Quality Control Specification                                                |
| Analytical Methods                                   | Method    | QC | Regular | Actual     | Expected          | Evaluation       |                                                                              |
| Laboratory Duplicates (DUP)                          |           |    |         |            |                   |                  |                                                                              |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 2       | 50.00      | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                               |
| Laboratory Control Samples (LCS)                     |           |    |         |            |                   |                  |                                                                              |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 2       | 50.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                               |
| Method Blanks (MB)                                   |           |    |         |            |                   |                  |                                                                              |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 2       | 50.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                               |
| Matrix Spikes (MS)                                   |           |    |         |            |                   |                  |                                                                              |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 2       | 50.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                               |

 Page
 : 5 of 5

 Work Order
 : ES2023843

 Client
 : GHD PTY LTD

 Project
 : 12516828



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                        | EA055     | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 6.1 and Table 1 (14 day holding time).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X    | SOIL   | In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                     |
| Per- and Polyfluoroalkyl Substances<br>(PFAS by LCMSMS  | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is concentrated, combined with an equal volume of reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample Extraction for PFAS in solid matrices            | ORG73     | SOIL   | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                                                                                          |
| Solid Phase Extraction (SPE) for PFAS in water          | ORG72     | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                  |



# **CHAIN OF CUSTODY FORM - Client**

[Copyright and Confidential]

| Client: GHD F | Pty Ltd                                                                | Client Project Name/Number/Site etc (ie report title):                                                                                 |
|---------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Contact Pers  | on: Sean Sparrow                                                       | 12516828                                                                                                                               |
| Project Mgr:  | Dilara Valiff                                                          | PO No.: 12516828                                                                                                                       |
| Sampler: Sea  | an Sparrow                                                             | Envirolab Quote No. :                                                                                                                  |
| Address:      |                                                                        | Date results required: standard                                                                                                        |
|               | Level 4, 211 Victoria Square, Adelaide 5000                            | Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharges apply |
| Phone:        | Mob: 0498 260 626                                                      | Additional report format: esdat / equis /                                                                                              |
| Email:        | GHDLabReports@ghd.com<br>sean.sparrow@ghd.com<br>dilara.valiff@ghd.com | Lab Comments:                                                                                                                          |

#### **ENVIROLAB GROUP**

National phone number 1300 424 344

Sydney Lab - Envirolab Services
12 Ashley St, Chatswood, NSW 2067

② 02 9910 6200 | ⊠ sydney@envirolab.com.au

Perth Lab - MPL Laboratories
16-18 Hayden Crt, Myaree, WA 6154

③ 08 9317 2505 | ⊠ lab@mpl.com.au

Melbourne Lab - Envirolab Services

25 Research Drive, Croydon South, VIC 3136

③ 03 9763 2500 | ⊠ melbourne@envirolab.com.au

Adelaide Office - Envirolab Services
7a The Parade, Norwood, SA 5067

③ 08 7087 6800 | ⊠ adelaide@envirolab.com.au

Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 ① 07 3266 9532 | ⊠ brisbane@envirolab.com.au

Darwin Office - Envirolab Services
Unit 20/119 Reichardt Road, Winnellie, NT 0820

① 08 8967 1201 | ⊠ darwin@envirolab.com.au

|                        | Sample inform                   | mation | المعادي المنطقية المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة |                 |                     | ام این آناد فی<br>چوانگیههای میش | و<br>مورب جسے کے | ر<br>انتيب بند بند | جائزا<br>به بيم ميرا | 4,0 - 1 - 1 | Tes | s Requ | iired   | د دور<br>پښتانينين د د | د دی کی دی<br>مهیمی بدیروس می | nter Minima Proper | 36 .<br>            |      | To be street | Commo                            | ents                 |
|------------------------|---------------------------------|--------|------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|----------------------------------|------------------|--------------------|----------------------|-------------|-----|--------|---------|------------------------|-------------------------------|--------------------|---------------------|------|--------------|----------------------------------|----------------------|
| Envirolab Sample<br>ID | Client Sample ID or information | Depth  | Date<br>sampled                                                                                                  | Type of sample  | PFAS Ultra<br>Trace | PFAS Short<br>Suite              |                  |                    |                      |             |     |        |         |                        |                               |                    |                     |      |              | Provide as information sample as | about the            |
| 1                      | DC16                            |        | 23/07/2020                                                                                                       | <u>water</u>    | х                   |                                  |                  |                    |                      |             |     |        | EŃ      | IROLA                  | R                             | rvirora<br>12      | A Service<br>Ashley | es   |              |                                  |                      |
| 2                      | DC17                            |        | 23/07/2020                                                                                                       | <u>water</u>    | х                   |                                  |                  |                    |                      |             |     |        |         | \$10yr                 | Cha                           | <b>Swood</b>       | NSW 20              | 67   |              |                                  | جس البحاد            |
| 3                      | DC18                            |        | 23/07/2020                                                                                                       | <u>water</u>    | х                   |                                  |                  |                    |                      |             |     |        | Job     | No:                    | <u> </u>                      | <del>n. (02)</del> | 910 62              | 0 (( | 115          | <u>a</u>                         | <del>्रे</del><br>(३ |
| Ÿ                      | DC19                            |        | 23/07/2020                                                                                                       | <u>water</u>    | Х                   |                                  |                  |                    |                      |             |     |        | Date    | Recei                  | un d.                         |                    |                     | 14   | 4-4          | 2                                |                      |
| 5                      | DC-UP01                         |        | 23/07/2020                                                                                                       | water           | Х                   |                                  |                  |                    |                      |             |     |        | Time    | Recei                  | ved:<br>ved:                  |                    | 271                 | the  | <b>20</b>    | <del></del>                      |                      |
| h                      | DC-UP02                         |        | 23/07/2020                                                                                                       | <u>water</u>    | Х                   |                                  |                  |                    |                      |             |     |        | Rece    | ived B                 | kU W                          | )                  |                     |      | 35.          |                                  |                      |
| 7                      | MBC01                           | İ      | 23/07/2020                                                                                                       | water           | Х                   |                                  |                  |                    |                      |             |     | ,      | l Cooli | カペラー                   | Ambie                         | L                  | <u> </u>            | ,    |              |                                  |                      |
| 8                      | MBC02                           | •      | 23/07/2020                                                                                                       | <u>water</u>    | x                   |                                  |                  |                    |                      |             |     |        | Secu    | ity in                 | ect/Bro                       | ken/No             | ine .               |      |              | ,                                |                      |
| 9                      | NC01                            |        | 23/07/2020                                                                                                       | water           | Х                   |                                  |                  |                    |                      |             |     |        |         |                        |                               |                    |                     |      |              | Ø** .± .                         | يه د د               |
| 10                     | NC02                            |        | 23/07/2020                                                                                                       | <u>water</u>    | Х                   |                                  |                  |                    |                      |             |     |        |         |                        |                               |                    | T                   |      |              |                                  |                      |
| [[                     | BR01                            |        | 23/07/2020                                                                                                       | water           | Х                   |                                  |                  |                    |                      |             |     |        |         |                        |                               | 1                  |                     |      |              |                                  | ¥                    |
| 13                     | BR02                            |        | 23/07/2020                                                                                                       | water           | X                   |                                  |                  |                    |                      |             |     |        |         |                        |                               |                    |                     |      |              |                                  |                      |
| 13                     | DC16S                           |        | 23/07/2020                                                                                                       | sediment        |                     | x                                | _                |                    |                      |             |     |        |         |                        |                               |                    |                     |      |              |                                  |                      |
| 14                     | DC17S                           |        | 23/07/2020                                                                                                       | <u>sediment</u> |                     | х                                |                  |                    |                      |             |     |        |         |                        |                               |                    |                     |      |              |                                  |                      |

Form 302\_V006 Issue date: 7 October 2019 Page 1 of 2

| l is l               | DC18S                           | 23/07/2020 | sediment                                                                | 1        | lx       | I  | l      | I              |                                                  | 1       | 1      | I        |     |   | [ ] |        | !      | I      | 1                     |
|----------------------|---------------------------------|------------|-------------------------------------------------------------------------|----------|----------|----|--------|----------------|--------------------------------------------------|---------|--------|----------|-----|---|-----|--------|--------|--------|-----------------------|
| • 1                  | DC19S                           | 23/07/2020 | sediment                                                                | 1        | +        | -  |        |                | <del> </del>                                     | +-      |        |          |     |   |     |        |        |        |                       |
| 19                   | DC-UP01S                        |            |                                                                         | +-       | <u> </u> |    |        |                | <del>                                     </del> | ├       |        | <u> </u> |     |   |     |        |        |        |                       |
|                      |                                 | 23/07/2020 | sediment                                                                | <b>↓</b> | <u>X</u> |    |        |                |                                                  |         |        |          |     |   |     |        |        |        | <del> </del>          |
| 18                   | DC-UP02S                        | 23/07/2020 | <u>sediment</u>                                                         |          | x        |    |        |                |                                                  |         |        |          |     |   |     |        |        | ļ      |                       |
| 199                  | MBC01S                          | 23/07/2020 | <u>sediment</u>                                                         | 1        | x        | ł  |        | ļ              |                                                  |         |        |          |     |   |     |        |        |        |                       |
| 20                   | MBC02S                          | 23/07/2020 | <u>sediment</u>                                                         |          | х        |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
| NR                   | NC01S                           | 23/07/2020 | <u>sediment</u>                                                         |          | х        |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
| 21                   | NC02S                           | 23/07/2020 | sediment                                                                |          | х        |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
| 22                   | BR01S                           | 23/07/2020 | <u>sediment</u>                                                         |          | х        |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
| 25                   | RB07                            | 23/07/2020 | <u>water</u>                                                            | Х        |          |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
| 24                   | TB07                            | 23/07/2020 | <u>water</u>                                                            | Х        |          |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
| 15                   | QC27                            | 23/07/2020 | water                                                                   | Х        |          |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
| 100                  | QC27A                           | 23/07/2020 | water                                                                   |          |          |    |        |                |                                                  |         |        |          |     |   |     |        |        |        | Please forward to ALS |
| 26                   | QC27S                           | 23/07/2020 | <u>sediment</u>                                                         |          | Х        |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
| 1                    | QC27AS                          | 23/07/2020 | <u>sediment</u>                                                         |          |          |    |        |                |                                                  |         |        |          |     |   |     |        |        |        | Please forward to ALS |
| 27                   | QC28                            | 23/07/2020 | <u>water</u>                                                            | X        |          |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
| ] 1                  | QC28A                           | 23/07/2020 | <u>water</u>                                                            |          |          |    |        |                |                                                  | 1       |        |          |     |   |     |        |        |        | Please forward to ALS |
| 28                   | QC28S                           | 23/07/2020 | <u>sediment</u>                                                         |          | Х        |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |
|                      | QC28AS                          | 23/07/2020 | <u>sediment</u>                                                         |          |          |    |        |                |                                                  |         |        |          |     |   |     |        |        |        | Please forward to ALS |
| PI:                  | ease tick the box if observed s |            |                                                                         |          |          |    | extrac | tion an        | id/or ar                                         | nalysis |        |          |     |   |     |        |        |        |                       |
| Relinquished by (Com | pany):                          |            | Received by (Comp                                                       | oany):   | El) !    | NY |        |                |                                                  |         |        |          |     |   | La  | b Use  | Only   |        |                       |
| Print Name:          |                                 | -          | Print Name:                                                             |          |          | 0- | MU     | en             |                                                  | Job nu  | ımber: | 24       | 745 | 3 |     | Coolin | g: lce | ice pa | açk / None            |
| Date & Time:         |                                 |            | Date & Time: 71700 Temperature: 9.2 Security seal: Intact+Broken / None |          |          |    |        | Heroken / None |                                                  |         |        |          |     |   |     |        |        |        |                       |
| Signature:           |                                 |            | Signature: TAT Req - SAME day / 1 / 2 / 3 / 4 / STD                     |          |          |    |        |                |                                                  |         |        |          |     |   |     |        |        |        |                       |

29 NCOZ sechwent - Extra remed. 30 QC29 WHEY - Extra 31 QC29A WHEY - Extra

Form 302\_V006

Page 2 of 2



Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 247753**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Sean Sparrow                     |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                       |
|--------------------------------------|-----------------------|
| Your Reference                       | <u>12516828</u>       |
| Number of Samples                    | 16 Water, 13 Sediment |
| Date samples received                | 27/07/2020            |
| Date completed instructions received | 28/07/2020            |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                     |                                                                    |  |
|------------------------------------|--------------------------------------------------------------------|--|
| Date results requested by          | 03/08/2020                                                         |  |
| Date of Issue                      | 04/08/2020                                                         |  |
| NATA Accreditation Number 2901.    | This document shall not be reproduced except in full.              |  |
| Accredited for compliance with ISO | /IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |

#### Results Approved By

Phalak Inthakesone, Organics Development Manager, Sydney

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 247753-1   | 247753-2   | 247753-3   | 247753-4   | 247753-5   |
| Your Reference                                     | UNITS | DC 16      | DC 17      | DC 18      | DC 19      | DC-UP01    |
| Date Sampled                                       |       | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 |
| Date analysed                                      | -     | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.072      | 0.070      | 0.014      | 0.014      | 0.0024     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.087      | 0.078      | 0.012      | 0.012      | 0.0021     |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0062     | 0.0054     | 0.0032     | 0.0029     | 0.0023     |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 98         | 100        | 100        | 94         | 107        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 109        | 104        | 106        | 105        | 111        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 103        | 99         | 94         | 97         | 107        |
| Extracted ISTD 13 C4 PFOS                          | %     | 83         | 81         | 74         | 83         | 79         |
| Extracted ISTD 13 C4 PFOA                          | %     | 115        | 114        | 96         | 106        | 108        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 185        | 188        | 158        | 152        | 187        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | #          | 187        | 157        | 154        | 159        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.16       | 0.15       | 0.027      | 0.026      | 0.0046     |
| Total Positive PFOS & PFOA                         | μg/L  | 0.093      | 0.083      | 0.016      | 0.015      | 0.0044     |
| Total Positive PFAS                                | μg/L  | 0.17       | 0.15       | 0.030      | 0.029      | 0.0069     |

| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 247753-6   | 247753-7   | 247753-8   | 247753-9   | 247753-10  |
| Your Reference                                     | UNITS | DC-UP02    | MBC01      | MBC02      | NC01       | NC02       |
| Date Sampled                                       |       | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 |
| Date analysed                                      | -     | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.0022     | 0.0021     | 0.0027     | 0.0049     | 0.0047     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.0020     | 0.0025     | 0.0029     | 0.0054     | 0.0061     |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0025     | 0.0031     | 0.0034     | 0.0009     | 0.001      |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 108        | 108        | 103        | 102        | 104        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 116        | 121        | 123        | 99         | 107        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 108        | 106        | 113        | 122        | 111        |
| Extracted ISTD 13 C4 PFOS                          | %     | 85         | 77         | 86         | 91         | 85         |
| Extracted ISTD 13 C4 PFOA                          | %     | 110        | 99         | 103        | 144        | 124        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | #          | #          | #          | #          | 185        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | #          | 183        | 189        | 181        | 186        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0042     | 0.0046     | 0.0055     | 0.010      | 0.011      |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0045     | 0.0055     | 0.0063     | 0.0062     | 0.0071     |
| Total Positive PFAS                                | μg/L  | 0.0067     | 0.0076     | 0.0090     | 0.011      | 0.012      |

| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 247753-11  | 247753-12  | 247753-23  | 247753-24  | 247753-25  |
| Your Reference                                     | UNITS | BR01       | BR02       | RB07       | TB07       | QC27       |
| Date Sampled                                       |       | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 |
| Date analysed                                      | -     | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.044      | 0.0002     | <0.0002    | <0.0002    | 0.011      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.027      | <0.0002    | <0.0002    | <0.0002    | 0.013      |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0036     | <0.0002    | <0.0002    | <0.0002    | 0.0034     |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 106        | 100        | 103        | 103        | 98         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 106        | 107        | 98         | 99         | 110        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 92         | 111        | 109        | 98         | 110        |
| Extracted ISTD 13 C4 PFOS                          | %     | 71         | 84         | 103        | 65         | 87         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 105        | 122        | 138        | 117        | 112        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 167        | 141        | 146        | 137        | 184        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 161        | 126        | 146        | 90         | 184        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.071      | 0.0002     | <0.0002    | <0.0002    | 0.024      |
| Total Positive PFOS & PFOA                         | μg/L  | 0.030      | <0.0002    | <0.0002    | <0.0002    | 0.016      |
| Total Positive PFAS                                | μg/L  | 0.075      | 0.0002     | <0.0002    | <0.0002    | 0.027      |

| PFAS in Water TRACE Short                          |       |            |
|----------------------------------------------------|-------|------------|
| Our Reference                                      |       | 247753-27  |
| Your Reference                                     | UNITS | QC28       |
| Date Sampled                                       |       | 23/07/2020 |
| Type of sample                                     |       | Water      |
| Date prepared                                      | -     | 03/08/2020 |
| Date analysed                                      | -     | 03/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.0030     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.0032     |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0033     |
| 6:2 FTS                                            | μg/L  | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 109        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 112        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 110        |
| Extracted ISTD 13 C4 PFOS                          | %     | 82         |
| Extracted ISTD 13 C4 PFOA                          | %     | 113        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | #          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 187        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0062     |
| Total Positive PFOS & PFOA                         | µg/L  | 0.0065     |
| Total Positive PFAS                                | μg/L  | 0.0095     |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 247753-13  | 247753-14  | 247753-15  | 247753-16  | 247753-17  |
| Your Reference                                     | UNITS | DC16S      | DC17S      | DC18S      | DC19S      | DC-UP01S   |
| Date Sampled                                       |       | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample                                     |       | Sediment   | Sediment   | Sediment   | Sediment   | Sediment   |
| Date prepared                                      | -     | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 |
| Date analysed                                      | -     | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 1.3        | 1.7        | 0.2        | <0.1       | <0.3       |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 34         | 48         | 5.8        | 0.4        | 1.4        |
| Perfluorooctanoic acid PFOA                        | μg/kg | 0.2        | 0.2        | 0.3        | <0.1       | <0.3       |
| 6:2 FTS                                            | μg/kg | <0.3       | <0.3       | <0.2       | <0.1       | <0.3       |
| 8:2 FTS                                            | μg/kg | <0.6       | <0.6       | <0.4       | <0.2       | <0.6       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 106        | 101        | 104        | 103        | 117        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 100        | 100        | 106        | 91         | 94         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 75         | 76         | 88         | 90         | 77         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 55         | 72         | 84         | 71         | 46         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 67         | 83         | 87         | 84         | 61         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 83         | 107        | 103        | 83         | 66         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 78         | 91         | 100        | 61         | 53         |
| Total Positive PFHxS & PFOS                        | μg/kg | 35         | 49         | 6.0        | 0.4        | 1.4        |
| Total Positive PFOS & PFOA                         | μg/kg | 34         | 48         | 6.0        | 0.4        | 1.4        |
| Total Positive PFAS                                | μg/kg | 35         | 50         | 6.3        | 0.4        | 1.4        |

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 247753-18  | 247753-19  | 247753-20  | 247753-21  | 247753-22  |
| Your Reference                                     | UNITS | DC-UP02S   | MBC01S     | MBC02S     | NC02S      | BR01S      |
| Date Sampled                                       |       | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample                                     |       | Sediment   | Sediment   | Sediment   | Sediment   | Sediment   |
| Date prepared                                      | -     | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 |
| Date analysed                                      | -     | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.1       | <0.3       | <0.2       | <0.2       | 0.4        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | <0.1       | 1.4        | 2.2        | 0.4        | 1.2        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.1       | <0.3       | 0.4        | <0.2       | 0.2        |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.3       | <0.2       | <0.2       | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.6       | <0.4       | <0.4       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 105        | 100        | 103        | 102        | 111        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 96         | 100        | 99         | 97         | 99         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 87         | 83         | 83         | 83         | 93         |
| Extracted ISTD 13 C4 PFOS                          | %     | 88         | 82         | 80         | 63         | 91         |
| Extracted ISTD 13 C4 PFOA                          | %     | 98         | 85         | 87         | 73         | 103        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 104        | 93         | 98         | 82         | 118        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 101        | 101        | 96         | 48         | 125        |
| Total Positive PFHxS & PFOS                        | μg/kg | <0.1       | 1.4        | 2.2        | 0.4        | 1.6        |
| Total Positive PFOS & PFOA                         | μg/kg | <0.1       | 1.4        | 2.5        | 0.4        | 1.4        |
| Total Positive PFAS                                | μg/kg | <0.1       | 1.4        | 2.5        | 0.4        | 1.7        |

| PFAS in Soils Short                                |       |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|
| Our Reference                                      |       | 247753-26  | 247753-28  | 247753-29  |
| Your Reference                                     | UNITS | QC27S      | QC28S      | NC01S      |
| Date Sampled                                       |       | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample                                     |       | Sediment   | Sediment   | Sediment   |
| Date prepared                                      | -     | 30/07/2020 | 30/07/2020 | 30/07/2020 |
| Date analysed                                      | -     | 30/07/2020 | 30/07/2020 | 30/07/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.1       | <0.3       | <0.2       |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 0.2        | 1.8        | 0.9        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.1       | 0.2        | <0.2       |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.3       | <0.2       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.6       | <0.4       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 103        | 101        | 103        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 96         | 103        | 100        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 89         | 83         | 90         |
| Extracted ISTD 13 C4 PFOS                          | %     | 88         | 77         | 81         |
| Extracted ISTD 13 C4 PFOA                          | %     | 97         | 81         | 79         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 111        | 84         | 94         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 79         | 85         | 86         |
| Total Positive PFHxS & PFOS                        | μg/kg | 0.2        | 1.8        | 0.9        |
| Total Positive PFOS & PFOA                         | μg/kg | 0.2        | 2.1        | 0.9        |
| Total Positive PFAS                                | μg/kg | 0.2        | 2.1        | 0.9        |

| Moisture       |       |            |            |            |            |            |
|----------------|-------|------------|------------|------------|------------|------------|
| Our Reference  |       | 247753-13  | 247753-14  | 247753-15  | 247753-16  | 247753-17  |
| Your Reference | UNITS | DC16S      | DC17S      | DC18S      | DC19S      | DC-UP01S   |
| Date Sampled   |       | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample |       | Sediment   | Sediment   | Sediment   | Sediment   | Sediment   |
| Date prepared  | -     | 29/07/2020 | 29/07/2020 | 29/07/2020 | 29/07/2020 | 29/07/2020 |
| Date analysed  | -     | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 |
| Moisture       | %     | 69         | 70         | 46         | 28         | 66         |

| Moisture       |       |            |            |            |            |            |
|----------------|-------|------------|------------|------------|------------|------------|
| Our Reference  |       | 247753-18  | 247753-19  | 247753-20  | 247753-21  | 247753-22  |
| Your Reference | UNITS | DC-UP02S   | MBC01S     | MBC02S     | NC02S      | BR01S      |
| Date Sampled   |       | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample |       | Sediment   | Sediment   | Sediment   | Sediment   | Sediment   |
| Date prepared  | -     | 29/07/2020 | 29/07/2020 | 29/07/2020 | 29/07/2020 | 29/07/2020 |
| Date analysed  | -     | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 | 30/07/2020 |
| Moisture       | %     | 36         | 62         | 54         | 54         | 36         |

| Moisture       |       |            |            |            |
|----------------|-------|------------|------------|------------|
| Our Reference  |       | 247753-26  | 247753-28  | 247753-29  |
| Your Reference | UNITS | QC27S      | QC28S      | NC01S      |
| Date Sampled   |       | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample |       | Sediment   | Sediment   | Sediment   |
| Date prepared  | -     | 29/07/2020 | 29/07/2020 | 29/07/2020 |
| Date analysed  | -     | 30/07/2020 | 30/07/2020 | 30/07/2020 |
| Moisture       | %     | 26         | 67         | 46         |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY CON                                        | TROL: PFAS | in Water | TRACE Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|----------|-------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL      | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | 247753-4   |
| Date prepared                                      | -          |          |             | 03/08/2020 | 3 | 03/08/2020 | 03/08/2020 |     | 03/08/2020 | 03/08/2020 |
| Date analysed                                      | -          |          |             | 03/08/2020 | 3 | 03/08/2020 | 03/08/2020 |     | 03/08/2020 | 03/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.0002   | Org-029     | <0.0002    | 3 | 0.014      | 0.015      | 7   | 95         | 114        |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.0002   | Org-029     | <0.0002    | 3 | 0.012      | 0.015      | 22  | 89         | 112        |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.0002   | Org-029     | <0.0002    | 3 | 0.0032     | 0.0029     | 10  | 92         | 104        |
| 6:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 3 | <0.0004    | <0.0004    | 0   | 100        | 94         |
| 8:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 3 | <0.0004    | <0.0004    | 0   | 89         | 99         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |          | Org-029     | 101        | 3 | 100        | 101        | 1   | 100        | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |          | Org-029     | 98         | 3 | 106        | 105        | 1   | 99         | 108        |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |          | Org-029     | 106        | 3 | 94         | 104        | 10  | 106        | 100        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |          | Org-029     | 84         | 3 | 74         | 84         | 13  | 87         | 77         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |          | Org-029     | 119        | 3 | 96         | 118        | 21  | 112        | 102        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |          | Org-029     | 130        | 3 | 158        | 184        | 15  | 123        | 176        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |          | Org-029     | 99         | 3 | 157        | 149        | 5   | 91         | 161        |

| QUALITY CONT                                      | TROL: PFAS | in Water | TRACE Short |       |    | Du         | plicate    |     | Spike Recovery % |      |
|---------------------------------------------------|------------|----------|-------------|-------|----|------------|------------|-----|------------------|------|
| Test Description                                  | Units      | PQL      | Method      | Blank | #  | Base       | Dup.       | RPD | [NT]             | [NT] |
| Date prepared                                     | -          |          |             | [NT]  | 12 | 03/08/2020 | 03/08/2020 |     |                  |      |
| Date analysed                                     | -          |          |             | [NT]  | 12 | 03/08/2020 | 03/08/2020 |     |                  |      |
| Perfluorohexanesulfonic acid - PFHxS              | μg/L       | 0.0002   | Org-029     | [NT]  | 12 | 0.0002     | 0.0002     | 0   |                  |      |
| Perfluorooctanesulfonic acid PFOS                 | μg/L       | 0.0002   | Org-029     | [NT]  | 12 | <0.0002    | 0.0003     | 40  |                  |      |
| Perfluorooctanoic acid PFOA                       | μg/L       | 0.0002   | Org-029     | [NT]  | 12 | <0.0002    | <0.0002    | 0   |                  |      |
| 6:2 FTS                                           | μg/L       | 0.0004   | Org-029     | [NT]  | 12 | <0.0004    | <0.0004    | 0   |                  |      |
| 8:2 FTS                                           | μg/L       | 0.0004   | Org-029     | [NT]  | 12 | <0.0004    | <0.0004    | 0   |                  |      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %          |          | Org-029     | [NT]  | 12 | 100        | 101        | 1   |                  |      |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA       | %          |          | Org-029     | [NT]  | 12 | 107        | 109        | 2   |                  |      |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %          |          | Org-029     | [NT]  | 12 | 111        | 110        | 1   |                  |      |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %          |          | Org-029     | [NT]  | 12 | 84         | 84         | 0   |                  |      |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %          |          | Org-029     | [NT]  | 12 | 122        | 117        | 4   | [NT]             | [NT] |

| QUALITY CONTROL: PFAS in Water TRACE Short         |       |     |         |       | Duplicate |      |      |     | Spike Recovery % |      |
|----------------------------------------------------|-------|-----|---------|-------|-----------|------|------|-----|------------------|------|
| Test Description                                   | Units | PQL | Method  | Blank | #         | Base | Dup. | RPD | [NT]             | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |     | Org-029 | [NT]  | 12        | 141  | 142  | 1   | [NT]             |      |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |     | Org-029 | [NT]  | 12        | 126  | 160  | 24  | [NT]             |      |

Envirolab Reference: 247753

Page | 12 of 17 Revision No: R00

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            | Duplicate |            |            |     | Spike Recovery % |            |  |
|----------------------------------------------------|------------|-----------|------------|------------|-----------|------------|------------|-----|------------------|------------|--|
| Test Description                                   | Units      | PQL       | Method     | Blank      | #         | Base       | Dup.       | RPD | LCS-1            | 247753-14  |  |
| Date prepared                                      | -          |           |            | 30/07/2020 | 13        | 30/07/2020 | 30/07/2020 |     | 30/07/2020       | 30/07/2020 |  |
| Date analysed                                      | -          |           |            | 30/07/2020 | 13        | 30/07/2020 | 30/07/2020 |     | 30/07/2020       | 30/07/2020 |  |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | 13        | 1.3        | 1.4        | 7   | 110              | 115        |  |
| Perfluorooctanesulfonic acid PFOS                  | µg/kg      | 0.1       | Org-029    | <0.1       | 13        | 34         | 36         | 6   | 94               | 103        |  |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | 13        | 0.2        | 0.4        | 67  | 99               | 96         |  |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | <0.1       | 13        | <0.3       | <0.3       | 0   | 107              | 104        |  |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | 13        | <0.6       | <0.6       | 0   | 103              | 106        |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 98         | 13        | 106        | 100        | 6   | 102              | 101        |  |
| Surrogate 13 C <sub>2</sub> PFOA                   | %          |           | Org-029    | 98         | 13        | 100        | 93         | 7   | 99               | 99         |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 104        | 13        | 75         | 76         | 1   | 101              | 73         |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 106        | 13        | 55         | 68         | 21  | 104              | 70         |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | 113        | 13        | 67         | 84         | 23  | 108              | 79         |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 113        | 13        | 83         | 115        | 32  | 117              | 91         |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | 114        | 13        | 78         | 128        | 49  | 121              | 76         |  |

| QUALITY CONTROL: PFAS in Soils Short              |       |     |         |       |    | Duplicate  |            |     |      | Spike Recovery % |  |
|---------------------------------------------------|-------|-----|---------|-------|----|------------|------------|-----|------|------------------|--|
| Test Description                                  | Units | PQL | Method  | Blank | #  | Base       | Dup.       | RPD | [NT] | [NT]             |  |
| Date prepared                                     | -     |     |         | [NT]  | 26 | 30/07/2020 | 30/07/2020 |     |      | [NT]             |  |
| Date analysed                                     | -     |     |         | [NT]  | 26 | 30/07/2020 | 30/07/2020 |     |      | [NT]             |  |
| Perfluorohexanesulfonic acid - PFHxS              | μg/kg | 0.1 | Org-029 | [NT]  | 26 | <0.1       | <0.1       | 0   |      | [NT]             |  |
| Perfluorooctanesulfonic acid PFOS                 | μg/kg | 0.1 | Org-029 | [NT]  | 26 | 0.2        | 0.3        | 40  |      | [NT]             |  |
| Perfluorooctanoic acid PFOA                       | μg/kg | 0.1 | Org-029 | [NT]  | 26 | <0.1       | <0.1       | 0   |      | [NT]             |  |
| 6:2 FTS                                           | μg/kg | 0.1 | Org-029 | [NT]  | 26 | <0.1       | <0.1       | 0   |      | [NT]             |  |
| 8:2 FTS                                           | μg/kg | 0.2 | Org-029 | [NT]  | 26 | <0.2       | <0.2       | 0   |      | [NT]             |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %     |     | Org-029 | [NT]  | 26 | 103        | 96         | 7   |      | [NT]             |  |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA       | %     |     | Org-029 | [NT]  | 26 | 96         | 106        | 10  |      | [NT]             |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %     |     | Org-029 | [NT]  | 26 | 89         | 92         | 3   |      | [NT]             |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %     |     | Org-029 | [NT]  | 26 | 88         | 89         | 1   |      | [NT]             |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %     |     | Org-029 | [NT]  | 26 | 97         | 97         | 0   | [NT] | [NT]             |  |

| QUALITY CONTROL: PFAS in Soils Short               |       |     |         | Duplicate |    |      |      | Spike Recovery % |      |      |
|----------------------------------------------------|-------|-----|---------|-----------|----|------|------|------------------|------|------|
| Test Description                                   | Units | PQL | Method  | Blank     | #  | Base | Dup. | RPD              | [NT] | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |     | Org-029 | [NT]      | 26 | 111  | 128  | 14               |      | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |     | Org-029 | [NT]      | 26 | 79   | 127  | 47               |      | [NT] |

| Result Definitions |                                           |  |  |  |  |
|--------------------|-------------------------------------------|--|--|--|--|
| NT                 | Not tested                                |  |  |  |  |
| NA                 | Test not required                         |  |  |  |  |
| INS                | Insufficient sample for this test         |  |  |  |  |
| PQL                | Practical Quantitation Limit              |  |  |  |  |
| <                  | Less than                                 |  |  |  |  |
| >                  | Greater than                              |  |  |  |  |
| RPD                | Relative Percent Difference               |  |  |  |  |
| LCS                | Laboratory Control Sample                 |  |  |  |  |
| NS                 | Not specified                             |  |  |  |  |
| NEPM               | National Environmental Protection Measure |  |  |  |  |
| NR                 | Not Reported                              |  |  |  |  |

| Quality Control Definitions        |                                                                                                                                                                                                                                  |  |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |  |  |  |  |  |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |  |  |  |  |  |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |  |  |  |  |  |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |  |  |  |  |  |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |  |  |  |  |  |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Page | 16 of 17

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

## **Report Comments**

PFAS\_S\_SHORT: PQLs have been raised for various samples due to high moisture content.

PFAS in Water TRACE Short - For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 247753 Page | 17 of 17 R00

### Ming To

From:

Aileen Hie

Sent:

Friday, 9 October 2020 5:39 PM

To:

Ming To

Subject:

FW: Envirolab Invoice No SY574974 for Registration 251682 12516828

Importance:

Flag Status:

High

Follow Up Flag:

Follow up Flagged Refs 247753-A

7A7: 1 day

Due:

: 12/10/2020 M

From: Alex Stenta <astenta@envirolab.com.au>

Sent: Friday, 9 October 2020 5:05 PM

To: Customer Service < Customer Service@envirolab.com.au>

Cc: Adelaide <adelaide@envirolab.com.au>; Alexander Maclean <AMaclean@envirolab.com.au>

Subject: FW: Envirolab Invoice No SY574974 for Registration 251682 12516828

Importance: High

Hi Guys,

Can we please report trace level PFAS extended suite for all samples in Job Number 251682?

Also, can we please have trace level PFAS extended suite for the following samples:

DC14 - 246709 - 11 DC15 - 246709 - 13 DC16 - 247753 - 1 DC17 - 247753 - 2 DC18 - 247753 - 3 DC19 - 247753 - 4



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 247753-A**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                       |
|--------------------------------------|-----------------------|
| Your Reference                       | <u>12516828</u>       |
| Number of Samples                    | 16 Water, 13 Sediment |
| Date samples received                | 27/07/2020            |
| Date completed instructions received | 09/10/2020            |

### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                     |                                                                    |  |
|------------------------------------|--------------------------------------------------------------------|--|
| Date results requested by          | 13/10/2020                                                         |  |
| Date of Issue                      | 13/10/2020                                                         |  |
| NATA Accreditation Number 2901.    | This document shall not be reproduced except in full.              |  |
| Accredited for compliance with ISC | /IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |

Results Approved By

Alexander Mitchell Maclean, Senior Chemist

**Authorised By** 

Nancy Zhang, Laboratory Manager

Envirolab Reference: 247753-A Revision No: R00



| PFAS in Waters Trace Extended                    |       |            |            |            |            |
|--------------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                                    |       | 247753-A-1 | 247753-A-2 | 247753-A-3 | 247753-A-4 |
| Your Reference                                   | UNITS | DC 16      | DC 17      | DC 18      | DC 19      |
| Date Sampled                                     |       | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample                                   |       | Water      | Water      | Water      | Water      |
| Date prepared                                    | -     | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 |
| Date analysed                                    | -     | 03/08/2020 | 03/08/2020 | 03/08/2020 | 03/08/2020 |
| Perfluorobutanesulfonic acid                     | μg/L  | 0.0087     | 0.0087     | 0.003      | 0.003      |
| Perfluoropentanesulfonic acid                    | μg/L  | 0.009      | 0.009      | 0.002      | 0.002      |
| Perfluorohexanesulfonic acid - PFHxS             | μg/L  | 0.072      | 0.070      | 0.014      | 0.014      |
| Perfluoroheptanesulfonic acid                    | μg/L  | 0.003      | 0.003      | <0.001     | <0.001     |
| Perfluorooctanesulfonic acid PFOS                | μg/L  | 0.087      | 0.078      | 0.012      | 0.012      |
| Perfluorodecanesulfonic acid                     | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     |
| Perfluorobutanoic acid                           | μg/L  | 0.01       | 0.01       | 0.007      | 0.006      |
| Perfluoropentanoic acid                          | μg/L  | 0.008      | 0.008      | 0.003      | 0.003      |
| Perfluorohexanoic acid                           | μg/L  | 0.021      | 0.018      | 0.0064     | 0.0055     |
| Perfluoroheptanoic acid                          | μg/L  | 0.0048     | 0.0046     | 0.002      | 0.002      |
| Perfluorooctanoic acid PFOA                      | μg/L  | 0.0062     | 0.0054     | 0.0032     | 0.0029     |
| Perfluorononanoic acid                           | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     |
| Perfluorodecanoic acid                           | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     |
| Perfluoroundecanoic acid                         | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     |
| Perfluorododecanoic acid                         | μg/L  | <0.005     | <0.005     | <0.005     | <0.005     |
| Perfluorotridecanoic acid                        | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorotetradecanoic acid                      | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      |
| 4:2 FTS                                          | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     |
| 6:2 FTS                                          | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                          | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 10:2 FTS                                         | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     |
| Perfluorooctane sulfonamide                      | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      |
| N-Methyl perfluorooctane sulfonamide             | μg/L  | <0.005     | <0.005     | <0.005     | <0.005     |
| N-Ethyl perfluorooctanesulfon amide              | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      |
| N-Me perfluorooctanesulfonamid oethanol          | μg/L  | <0.005     | <0.005     | <0.005     | <0.005     |
| N-Et perfluorooctanesulfonamid oethanol          | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      |
| MePerfluorooctanesulf- amid oacetic acid         | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     |
| EtPerfluorooctanesulf- amid oacetic acid         | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS      | %     | 98         | 100        | 100        | 94         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA      | %     | 109        | 104        | 106        | 105        |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFBS | %     | 87         | 84         | 74         | 84         |
| Extracted ISTD 18 O2 PFHxS                       | %     | 103        | 99         | 94         | 97         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS | %     | 83         | 81         | 74         | 83         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFBA | %     | 51         | 49         | 47         | 58         |

Envirolab Reference: 247753-A Revision No: R00

| PFAS in Waters Trace Extended                      |       |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                                      |       | 247753-A-1 | 247753-A-2 | 247753-A-3 | 247753-A-4 |
| Your Reference                                     | UNITS | DC 16      | DC 17      | DC 18      | DC 19      |
| Date Sampled                                       |       | 23/07/2020 | 23/07/2020 | 23/07/2020 | 23/07/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      |
| Extracted ISTD 13 C3 PFPeA                         | %     | 74         | 69         | 64         | 77         |
| Extracted ISTD 13 C2 PFHxA                         | %     | 94         | 96         | 85         | 94         |
| Extracted ISTD 13 C <sub>4</sub> PFHpA             | %     | 131        | 114        | 98         | 110        |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 115        | 114        | 96         | 106        |
| Extracted ISTD 13 C <sub>5</sub> PFNA              | %     | 136        | 138        | 125        | 127        |
| Extracted ISTD 13 C2 PFDA                          | %     | 146        | 124        | 118        | 113        |
| Extracted ISTD 13 C2 PFUnDA                        | %     | 94         | 76         | 65         | 66         |
| Extracted ISTD 13 C2 PFDoDA                        | %     | 73         | 65         | 43         | 47         |
| Extracted ISTD 13 C2 PFTeDA                        | %     | 78         | 74         | 38         | 46         |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS            | %     | 176        | 181        | 183        | 170        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 185        | 188        | 158        | 152        |
| Extracted ISTD 13 C2 8:2FTS                        | %     | 198        | 187        | 157        | 154        |
| Extracted ISTD 13 C8 FOSA                          | %     | 63         | 61         | 49         | 53         |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 40         | 39         | 26         | 29         |
| Extracted ISTD d₅ N EtFOSA                         | %     | 44         | 43         | 31         | 33         |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 53         | 49         | 35         | 40         |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 56         | 50         | 37         | 42         |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 86         | 81         | 69         | 67         |
| Extracted ISTD ds N EtFOSAA                        | %     | 77         | 67         | 51         | 49         |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.16       | 0.15       | 0.027      | 0.026      |
| Total Positive PFOS & PFOA                         | μg/L  | 0.093      | 0.083      | 0.016      | 0.015      |
| Total Positive PFAS                                | μg/L  | 0.23       | 0.22       | 0.053      | 0.048      |

Envirolab Reference: 247753-A

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 247753-A

| QUALITY CONTR                               | OL: PFAS ir | ı Waters | Trace Extended |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|---------------------------------------------|-------------|----------|----------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                            | Units       | PQL      | Method         | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | 247753-A-4 |
| Date prepared                               | -           |          |                | 03/08/2020 | 3 | 03/08/2020 | 03/08/2020 |     | 03/08/2020 | 03/08/2020 |
| Date analysed                               | -           |          |                | 03/08/2020 | 3 | 03/08/2020 | 03/08/2020 |     | 03/08/2020 | 03/08/2020 |
| Perfluorobutanesulfonic acid                | μg/L        | 0.0004   | Org-029        | <0.0004    | 3 | 0.003      | 0.003      | 0   | 88         | 102        |
| Perfluoropentanesulfonic acid               | μg/L        | 0.001    | Org-029        | <0.001     | 3 | 0.002      | 0.002      | 0   | 91         | 112        |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L        | 0.0002   | Org-029        | <0.0002    | 3 | 0.014      | 0.015      | 7   | 95         | 114        |
| Perfluoroheptanesulfonic acid               | μg/L        | 0.001    | Org-029        | <0.001     | 3 | <0.001     | <0.001     | 0   | 85         | 100        |
| Perfluorooctanesulfonic acid PFOS           | μg/L        | 0.0002   | Org-029        | <0.0002    | 3 | 0.012      | 0.015      | 22  | 89         | 112        |
| Perfluorodecanesulfonic acid                | μg/L        | 0.002    | Org-029        | <0.002     | 3 | <0.002     | <0.002     | 0   | 81         | 66         |
| Perfluorobutanoic acid                      | μg/L        | 0.002    | Org-029        | <0.002     | 3 | 0.007      | 0.008      | 13  | 95         | 121        |
| Perfluoropentanoic acid                     | μg/L        | 0.002    | Org-029        | <0.002     | 3 | 0.003      | 0.003      | 0   | 88         | 104        |
| Perfluorohexanoic acid                      | μg/L        | 0.0004   | Org-029        | <0.0004    | 3 | 0.0064     | 0.0062     | 3   | 91         | 108        |
| Perfluoroheptanoic acid                     | μg/L        | 0.0004   | Org-029        | <0.0004    | 3 | 0.002      | 0.002      | 0   | 90         | 112        |
| Perfluorooctanoic acid PFOA                 | μg/L        | 0.0002   | Org-029        | <0.0002    | 3 | 0.0032     | 0.0029     | 10  | 92         | 104        |
| Perfluorononanoic acid                      | μg/L        | 0.001    | Org-029        | <0.001     | 3 | <0.001     | <0.001     | 0   | 87         | 100        |
| Perfluorodecanoic acid                      | μg/L        | 0.002    | Org-029        | <0.002     | 3 | <0.002     | <0.002     | 0   | 90         | 91         |
| Perfluoroundecanoic acid                    | μg/L        | 0.002    | Org-029        | <0.002     | 3 | <0.002     | <0.002     | 0   | 90         | 82         |
| Perfluorododecanoic acid                    | μg/L        | 0.005    | Org-029        | <0.005     | 3 | <0.005     | <0.005     | 0   | 92         | 82         |
| Perfluorotridecanoic acid                   | μg/L        | 0.01     | Org-029        | <0.01      | 3 | <0.01      | <0.01      | 0   | 74         | 91         |
| Perfluorotetradecanoic acid                 | μg/L        | 0.05     | Org-029        | <0.05      | 3 | <0.05      | <0.05      | 0   | 86         | 95         |
| 4:2 FTS                                     | μg/L        | 0.001    | Org-029        | <0.001     | 3 | <0.001     | <0.001     | 0   | 99         | 127        |
| 6:2 FTS                                     | μg/L        | 0.0004   | Org-029        | <0.0004    | 3 | <0.0004    | <0.0004    | 0   | 100        | 94         |
| 8:2 FTS                                     | μg/L        | 0.0004   | Org-029        | <0.0004    | 3 | <0.0004    | <0.0004    | 0   | 89         | 99         |
| 10:2 FTS                                    | μg/L        | 0.002    | Org-029        | <0.002     | 3 | <0.002     | <0.002     | 0   | 77         | 86         |
| Perfluorooctane sulfonamide                 | μg/L        | 0.01     | Org-029        | <0.01      | 3 | <0.01      | <0.01      | 0   | 93         | 113        |
| N-Methyl perfluorooctane sulfonamide        | μg/L        | 0.005    | Org-029        | <0.005     | 3 | <0.005     | <0.005     | 0   | 75         | 60         |
| N-Ethyl perfluorooctanesulfon amide         | μg/L        | 0.01     | Org-029        | <0.01      | 3 | <0.01      | <0.01      | 0   | 66         | ##         |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L        | 0.005    | Org-029        | <0.005     | 3 | <0.005     | <0.005     | 0   | 97         | 103        |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L        | 0.05     | Org-029        | <0.05      | 3 | <0.05      | <0.05      | 0   | 99         | 102        |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L        | 0.002    | Org-029        | <0.002     | 3 | <0.002     | <0.002     | 0   | 97         | 84         |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L        | 0.002    | Org-029        | <0.002     | 3 | <0.002     | <0.002     | 0   | 88         | 91         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %           |          | Org-029        | 98         | 3 | 100        | 101        | 1   | 97         | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %           |          | Org-029        | 108        | 3 | 106        | 105        | 1   | 107        | 108        |

Envirolab Reference: 247753-A

| QUALITY CONTR                                      | ROL: PFAS ir | Waters | Trace Extended |       |   | Du   | Spike Recovery % |     |        |            |  |  |
|----------------------------------------------------|--------------|--------|----------------|-------|---|------|------------------|-----|--------|------------|--|--|
| Test Description                                   | Units        | PQL    | Method         | Blank | # | Base | Dup.             | RPD | LCS-W1 | 247753-A-4 |  |  |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFBS   | %            |        | Org-029        | 99    | 3 | 74   | 89               | 18  | 102    | 85         |  |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %            |        | Org-029        | 111   | 3 | 94   | 104              | 10  | 113    | 100        |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %            |        | Org-029        | 83    | 3 | 74   | 84               | 13  | 78     | 77         |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFBA   | %            |        | Org-029        | 102   | 3 | 47   | 50               | 6   | 101    | 57         |  |  |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFPeA  | %            |        | Org-029        | 105   | 3 | 64   | 74               | 14  | 107    | 77         |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFHxA  | %            |        | Org-029        | 111   | 3 | 85   | 100              | 16  | 103    | 92         |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %            |        | Org-029        | 118   | 3 | 98   | 121              | 21  | 134    | 104        |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %            |        | Org-029        | 107   | 3 | 96   | 118              | 21  | 108    | 102        |  |  |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %            |        | Org-029        | 105   | 3 | 125  | 139              | 11  | 109    | 124        |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDA   | %            |        | Org-029        | 97    | 3 | 118  | 131              | 10  | 99     | 121        |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %            |        | Org-029        | 74    | 3 | 65   | 77               | 17  | 67     | 78         |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDoDA | %            |        | Org-029        | 64    | 3 | 43   | 47               | 9   | 53     | 59         |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %            |        | Org-029        | 67    | 3 | 38   | 43               | 12  | 68     | 48         |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 4:2FTS | %            |        | Org-029        | 130   | 3 | 183  | #                |     | 112    | 195        |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %            |        | Org-029        | 109   | 3 | 158  | 184              | 15  | 115    | 176        |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %            |        | Org-029        | 101   | 3 | 157  | 149              | 5   | 109    | 161        |  |  |
| Extracted ISTD <sup>13</sup> C <sub>8</sub> FOSA   | %            |        | Org-029        | 78    | 3 | 49   | 56               | 13  | 71     | 56         |  |  |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %            |        | Org-029        | 58    | 3 | 26   | 28               | 7   | 54     | 38         |  |  |
| Extracted ISTD d <sub>5</sub> N EtFOSA             | %            |        | Org-029        | 60    | 3 | 31   | 32               | 3   | 56     | 43         |  |  |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %            |        | Org-029        | 74    | 3 | 35   | 40               | 13  | 66     | 45         |  |  |

Envirolab Reference: 247753-A

| QUALITY CONTR                           | OL: PFAS ir | ) Waters | Trace Extended |       |   | Du   |      | Spike Recovery % |        |            |  |
|-----------------------------------------|-------------|----------|----------------|-------|---|------|------|------------------|--------|------------|--|
| Test Description                        | Units       | PQL      | Method         | Blank | # | Base | Dup. | RPD              | LCS-W1 | 247753-A-4 |  |
| Extracted ISTD d <sub>9</sub> N EtFOSE  | %           |          | Org-029        | 76    | 3 | 37   | 41   | 10               | 68     | 46         |  |
| Extracted ISTD d <sub>3</sub> N MeFOSAA | %           |          | Org-029        | 72    | 3 | 69   | 73   | 6                | 69     | 78         |  |
| Extracted ISTD d <sub>5</sub> N EtFOSAA | %           |          | Org-029        | 70    | 3 | 51   | 49   | 4                | 68     | 59         |  |

Envirolab Reference: 247753-A

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 247753-A

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 247753-A Page | 9 of 10

## **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Matrix spike recovery for EtFOSA (52%) is outside global acceptance criteria (60-140%). However an acceptable recovery has been obatined for the LCS.

Envirolab Reference: 247753-A Page | 10 of 10 R00



# **CHAIN OF CUSTODY FORM - Client**

[Copyright and Confidential] Client: GHD Ptv Ltd Client Proiect Name/Number/Site etc (ie report title): Contact Person: Sean Sparrow 12516828 Project Mor: Dilara Valiff PO No.: 12516828 Sampler: Sean Sparrow Envirolab Quote No. : Date results required: standard Address: Level 4, 211 Victoria Square, Adelaide 5000 Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharges Additional report format: esdat / equis / Phone: Mob: 0498 260 626 GHDLabReports@ghd.com Lab Comments: Email: sean.sparrow@ghd.com dilara.valiff@qhd.com

### **ENVIROLAB GROUP**

National phone number 1300 424 344

Sydney Lab - Envirolab Services
12 Ashley St, Chatswood, NSW 2067
② 02 9910 6200 | ⊠ sydney@envirolab.com.au

Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 ① 08 9317 2505 | >> lab@mpl.com.au

Melbourne Lab - Envirolab Services

25 Research Drive, Croydon South, VIC 3136

○ 03 9763 2500 | > melbourne@envirolab.com.au

<u>Brisbane Office</u> - Envirolab Services 20a, 10-20 Depòt St, Banyo, QLD 4014 ② 07 3266 9532 | ☆ brisbane@envirolab.com.au

<u>Darwin Office</u> - Envirolab Services Unit 20/119 Reichardt Road, Winnellie, NT 0820 **೨ 08 8967 1201** ∤ ⊠ darwin@envirolab.com.au

|                        | Sample infor                    | rmation |                 |                |                     |                     |          |            |   |                                                  | Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ts Rec       | uired                  |               | 1945                      |                      |                  |             | Comments                                                |
|------------------------|---------------------------------|---------|-----------------|----------------|---------------------|---------------------|----------|------------|---|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|---------------|---------------------------|----------------------|------------------|-------------|---------------------------------------------------------|
| Envirolab Sample<br>ID | Client Sample ID or information | Depth   | Date<br>sampled | Type of sample | PFAS Ultra<br>Trace | PFAS Short<br>Suite |          |            |   |                                                  | NAME OF THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE |              |                        |               |                           |                      |                  |             | Provide as much information about the sample as you can |
| 1                      | DC16                            |         | 23/07/2020      | water          | ×                   |                     |          |            |   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | CONTROL OF             | E IV          | roiai<br>12 d             | Services<br>shlev st |                  | $\dashv$    |                                                         |
| 2                      | DC17                            |         | 23/07/2020      | water          | Х                   |                     |          |            |   | <b>†</b>                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Environ                |               |                           |                      | 7                |             |                                                         |
| 3                      | DC18                            |         | 23/07/2020      | <u>w</u> ater  | Х                   |                     |          |            |   | <b>†</b>                                         | <b>†</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | Sydney                 | menta         | וט וג                     | vision               |                  | 200         |                                                         |
| 4                      | DC19 *                          |         | 23/07/2020      | <u>water</u>   | Х                   |                     |          |            |   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Sydney Work of ES      | Order F       | Refere                    | nce                  | ۲                | 490         | 2                                                       |
| 5                      | DC-UP01                         | :       | 23/07/2020      | water          | Х                   |                     |          |            |   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | † ES                   | 202           | 259                       | 997                  | <br>   <b>25</b> | 5           |                                                         |
| h                      | DC-UP02                         |         | 23/07/2020      | water          | х                   |                     | <u> </u> |            |   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b> </b>     |                        |               |                           | _                    | <u>_</u>         |             |                                                         |
| 7                      | MBC01                           |         | 23/07/2020      | water          | х                   |                     |          |            |   | †                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                        | K/K           | 100                       |                      | 1                |             |                                                         |
| 8                      | MBC02                           |         | 23/07/2020      | water          | X                   |                     |          |            |   |                                                  | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                        |               |                           |                      |                  | <del></del> |                                                         |
| ণ                      | NC01                            |         | 23/07/2020      | water          | Х                   | <u> </u>            |          |            |   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>     | † <b>             </b> |               | 113                       |                      | <del> </del>     | 72          | 3                                                       |
| 10                     | NC02                            |         | 23/07/2020      | water          | X                   |                     |          | -          |   | <del>                                     </del> | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | Telephone: +           | 61-2-679      | 4 05€5<br>- Π. Ι <b>.</b> | <b>-</b> 1111        | _                |             |                                                         |
|                        | BR01                            |         | 23/07/2020      | water          | X                   |                     | <u> </u> |            |   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | †                      | -12-0/0       | 7 0000                    |                      | -                | _           |                                                         |
| 5)                     | BR02                            |         | 23/07/2020      | water          | X                   |                     |          |            | - | <del> </del> -                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        |               | 1                         | 1                    | -                | +           |                                                         |
| 13                     | DC16S                           |         | 23/07/2020      | sediment       |                     | x                   |          |            |   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> </del> |                        |               | -                         |                      |                  | +           |                                                         |
| 14                     | DC178                           | FLS     | 23/07/2020      | sediment 2     | Ø.3.                | х                   |          | <b>X</b> > |   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                        | <del> -</del> | +                         |                      |                  | +           |                                                         |

Relinquished by Els Syo

K-CLOR 28.7

for you

re Fin of 28124 4:29

|                                               | <b>3</b> 0400                      | ı                      | 1                                                |                 |                |                                                  |                                                  |                  |                                                  |                |                | _                                                |                |                |                                                  |                                                  |                                                  | •                                            |                       |
|-----------------------------------------------|------------------------------------|------------------------|--------------------------------------------------|-----------------|----------------|--------------------------------------------------|--------------------------------------------------|------------------|--------------------------------------------------|----------------|----------------|--------------------------------------------------|----------------|----------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------|-----------------------|
| <u> </u>                                      | DC18S                              | 23/07/2020             | <u>sediment</u>                                  |                 | х              |                                                  |                                                  |                  | Í                                                |                |                |                                                  | 1              |                |                                                  |                                                  |                                                  | 1                                            |                       |
| <u>                                      </u> | DC19S                              | 23/07/2020             | sediment                                         |                 | х              |                                                  |                                                  |                  |                                                  |                | 1              |                                                  |                | 1              | <del>                                     </del> | <del>                                     </del> | <del> </del>                                     | ┼                                            | <del> </del>          |
| (7                                            | DC-UP01S                           | 23/07/2020             | sediment                                         |                 | x              | 1:                                               | <u> </u>                                         |                  |                                                  | <del> </del>   | +              | +                                                | <del> </del>   | ┼─             | <del> </del>                                     | <del> </del>                                     | <del>                                     </del> | <del> </del>                                 |                       |
| 18                                            | DC-UP02S                           | 23/07/2020             | sediment                                         | 1               | x              | <del> </del> -                                   | <del> </del>                                     | <del> </del>     | ╁╾╴                                              | ╁              | <del> </del>   | <del>                                     </del> | ╁              | <del> </del> - | ├                                                | <del> </del>                                     | ├                                                | <del> </del>                                 | <u> </u>              |
| 199                                           | MBC01S                             | 23/07/2020             | sediment                                         | 1-              | x              | +                                                | +                                                | ╁                | +                                                | ╅              | +-             | <del> </del>                                     | -              | <del> </del>   | <del> </del>                                     | <del> </del> -                                   | ļ                                                | <b>├</b>                                     | ļ                     |
| 20                                            | MBC02S                             | 23/07/2020             | <del>                                     </del> | ╁┈              | x              | <del> </del>                                     | +                                                | <del>  -</del> - | -                                                | -              |                | ╁                                                | ├              | ļ              | <b> </b>                                         | <del> </del> -                                   | <u> </u>                                         | ļ                                            |                       |
| NC                                            | NC01S                              | 23/07/2020             |                                                  | ╂┈              | +              | +-                                               | <del> </del>                                     |                  |                                                  | +-             | <del> </del>   | ┿                                                |                | <del> </del> - | ļ                                                | <u> </u>                                         |                                                  | <del> </del>                                 |                       |
| 11                                            | NC02S                              | 23/07/2020             |                                                  | +-              | X              | +                                                | ┼                                                |                  | <del> </del>                                     | +              | ├              | <b>├</b> ─                                       | <b> </b>       |                |                                                  | ļ                                                | <u> </u>                                         |                                              |                       |
| 22                                            | BR01S                              | 23/07/2020             | sediment                                         | <del> </del>    | X              | -                                                | ┿                                                | -                | <u> </u>                                         | <del> </del>   | <b>├</b>       | <del> </del>                                     | <u> </u>       |                | <b>_</b>                                         | ļ                                                | ļ                                                |                                              |                       |
| 23                                            | RB07                               | 23/07/2020             | water                                            | X               | X              | +                                                | ┼—                                               | ļ <u>.</u> .     | 2                                                | <del> </del> - | -              | ļ                                                | <del>  _</del> | <u> </u>       |                                                  |                                                  |                                                  |                                              |                       |
| 24                                            | TB07                               | 23/07/2020             | water                                            | Î               | +              | <del> </del>                                     | <del> </del>                                     | <b>-</b>         | <del> </del>                                     | 1              | ├              | <del>-</del>                                     | ļ              | 1              |                                                  |                                                  |                                                  |                                              |                       |
| 15                                            | QC27                               | 23/07/2020             | water                                            | <del> </del>    | +              | <del></del>                                      | +                                                |                  | <del>                                     </del> | ┿              | ├—             | ļ                                                |                |                |                                                  |                                                  |                                                  | <u> </u>                                     |                       |
| , विह                                         | QC27A                              | 23/07/2020             | water                                            | <del>  ^</del>  | <del> </del> - | <del> </del> -                                   | -                                                |                  | <u> </u>                                         | +              | <del> </del> - | <u> </u>                                         |                |                |                                                  |                                                  | <u> </u>                                         | <u>                                     </u> |                       |
| 16                                            | QC27S                              | 23/07/2020             | sediment                                         | ╁┈╴             | ×              | <del>                                     </del> | +                                                |                  |                                                  | -              |                | -                                                |                |                |                                                  |                                                  |                                                  | LJ                                           | Please forward to ALS |
|                                               | QC27AS 2                           | 23/07/2020             | sediment                                         | <del>  -</del>  | <del> ``</del> |                                                  | <del> </del>                                     |                  | <del> </del>                                     | -              | ├              | -                                                | <del> </del>   |                |                                                  |                                                  |                                                  | <u> </u>                                     |                       |
| 1 2+                                          | QC28                               | 23/07/2020             | water                                            | ×               | _              | ┿-                                               | <del> </del>                                     |                  | <u> </u>                                         |                | <del> </del>   | <del>                                     </del> | ļ              |                |                                                  |                                                  |                                                  | <b></b>                                      | Please forward to ALS |
|                                               | QC28A 3                            | 23/07/2020             | water                                            | <del>- ^-</del> | <del> </del>   | <del> </del>                                     | +                                                |                  |                                                  | <del> </del>   | ļ              |                                                  | <u> </u>       |                |                                                  |                                                  |                                                  |                                              |                       |
| 181                                           | QC28S                              | 23/07/2020             | sediment                                         |                 | x              | <del>                                     </del> |                                                  |                  |                                                  | <del> </del>   | <del> </del>   |                                                  |                |                |                                                  |                                                  |                                                  | rl                                           | Please forward to ALS |
| /                                             | QC28AS iq                          | 23/07/2020             | sediment                                         | _               | _              |                                                  | <del>                                     </del> |                  |                                                  | <del> </del>   | <del> </del>   | <del> </del>                                     |                |                |                                                  |                                                  |                                                  | , <u>-</u>                                   |                       |
| '/                                            | Please tick the box if observed se | ttled sediment present | in water samples is                              | to be           | nclude         | d in the                                         | extrac                                           | tion an          | d/or er                                          | l              | <u> </u>       | L                                                | L              | L              |                                                  | l                                                |                                                  |                                              | Please forward to ALS |
| Relinquished by (Cor                          | mpany): ELS Syd                    |                        | Received by (Comp                                | anvi:           | FIT            | Mil                                              |                                                  | aan un           | wor ar                                           | urysis         |                |                                                  |                | · ·            |                                                  |                                                  |                                                  | <del></del>                                  | <del></del>           |
| Print Name:                                   | K. hore                            |                        | Print Name:                                      |                 | <u> </u>       |                                                  | Mala                                             | 2 IM             |                                                  | Joh            |                | 011-                                             | 1 18           | <del></del>    |                                                  | b Use C                                          |                                                  | <del>`</del>                                 | <del></del>           |
| Date & Time:                                  | 28/07/2020                         |                        | Date & Time:                                     |                 |                | 7-11                                             | 7/100<br>7/100                                   | <u> </u>         |                                                  |                | ımber:         |                                                  | 145            | <u> </u>       |                                                  |                                                  |                                                  |                                              | çk / None             |
| Signature:                                    | Va f                               |                        | Signature:                                       |                 |                | -6-11                                            |                                                  |                  |                                                  | Tempe          | rature:        | <u>9.2.</u>                                      |                |                |                                                  | Securit                                          | y seal:                                          | intect/                                      | Laroken / None        |

TAT Reg - SAME day / 1 / 2 / 3 / 4 / STD

signature: C'm TATREQ-SAME day / 1/2/2

29 NCOR Seillment - Extru recoverd.

30 QC29 WHAY - Extru

30 QC29 WHAY - Extru

30 QC29A is missing QC27A > send to ACS.



### **CERTIFICATE OF ANALYSIS**

Work Order : ES2025997

: GHD PTY LTD

Contact : GHD LAB REPORTS

Address : 2/11 VICTORIA SQUARE

ADELAIDE SA, AUSTRALIA 5000

Telephone : ---

Client

Project : 12516828 Order number : 12516828

C-O-C number : ----

Sampler : SEAN SPARROW

Site

Quote number : EN/005/19

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

 Telephone
 : +61 2 8784 8555

 Date Samples Received
 : 28-Jul-2020 16:00

 Date Analysis Commenced
 : 03-Aug-2020

Issue Date : 07-Aug-2020 13:14



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

SignatoriesPositionAccreditation CategoryFranco LentiniLCMS CoordinatorSydney Inorganics, Smithfield, NSWFranco LentiniLCMS CoordinatorSydney Organics, Smithfield, NSW

 Page
 : 2 of 7

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

 Page
 : 3 of 7

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: SEDIMENT (Matrix: SOIL)           |            | Clie          | ent sample ID  | QC27AS            | QC28AS            | <br> |  |
|-----------------------------------------------|------------|---------------|----------------|-------------------|-------------------|------|--|
|                                               | C          | lient samplii | ng date / time | 23-Jul-2020 00:00 | 23-Jul-2020 00:00 | <br> |  |
| Compound                                      | CAS Number | LOR           | Unit           | ES2025997-002     | ES2025997-004     | <br> |  |
|                                               |            |               |                | Result            | Result            | <br> |  |
| EA055: Moisture Content (Dried @ 105-         | -110°C)    |               |                |                   |                   |      |  |
| Moisture Content                              |            | 0.1           | %              | 32.7              | 62.4              | <br> |  |
| EP231A: Perfluoroalkyl Sulfonic Acids         |            |               |                |                   |                   |      |  |
| Perfluorobutane sulfonic acid (PFBS)          | 375-73-5   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluoropentane sulfonic acid (PFPeS)        | 2706-91-4  | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluoroheptane sulfonic acid (PFHpS)        | 375-92-8   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1  | 0.0002        | mg/kg          | 0.0003            | 0.0012            | <br> |  |
| Perfluorodecane sulfonic acid (PFDS)          | 335-77-3   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| EP231B: Perfluoroalkyl Carboxylic Aci         | ids        |               |                |                   |                   |      |  |
| Perfluorobutanoic acid (PFBA)                 | 375-22-4   | 0.001         | mg/kg          | <0.001            | <0.001            | <br> |  |
| Perfluoropentanoic acid (PFPeA)               | 2706-90-3  | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluorohexanoic acid (PFHxA)                | 307-24-4   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluoroheptanoic acid (PFHpA)               | 375-85-9   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluorooctanoic acid (PFOA)                 | 335-67-1   | 0.0002        | mg/kg          | <0.0002           | 0.0003            | <br> |  |
| Perfluorononanoic acid (PFNA)                 | 375-95-1   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluorodecanoic acid (PFDA)                 | 335-76-2   | 0.0002        | mg/kg          | <0.0002           | 0.0004            | <br> |  |
| Perfluoroundecanoic acid (PFUnDA)             | 2058-94-8  | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluorododecanoic acid (PFDoDA)             | 307-55-1   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluorotridecanoic acid (PFTrDA)            | 72629-94-8 | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| Perfluorotetradecanoic acid (PFTeDA)          | 376-06-7   | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| EP231C: Perfluoroalkyl Sulfonamides           |            |               |                |                   |                   |      |  |
| Perfluorooctane sulfonamide (FOSA)            | 754-91-6   | 0.0002        | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005        | mg/kg          | <0.0005           | <0.0005           | <br> |  |

 Page
 : 4 of 7

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: SEDIMENT (Matrix: SOIL)                             |                        | Clie         | ent sample ID  | QC27AS            | QC28AS            | <br> |  |
|-----------------------------------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|------|--|
|                                                                 | CI                     | ient samplii | ng date / time | 23-Jul-2020 00:00 | 23-Jul-2020 00:00 | <br> |  |
| Compound                                                        | CAS Number             | LOR          | Unit           | ES2025997-002     | ES2025997-004     | <br> |  |
|                                                                 |                        |              |                | Result            | Result            | <br> |  |
| EP231C: Perfluoroalkyl Sulfonamide                              | s - Continued          |              |                |                   |                   |      |  |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)                    | 4151-50-2              | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.0002       | mg/kg          | <0.0002           | <0.0002           | <br> |  |
| EP231D: (n:2) Fluorotelomer Sulfon                              | ic Acids               |              |                |                   |                   |      |  |
| 4:2 Fluorotelomer sulfonic acid<br>(4:2 FTS)                    | 757124-72-4            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.0005       | mg/kg          | <0.0005           | <0.0005           | <br> |  |
| EP231P: PFAS Sums                                               |                        |              |                |                   |                   |      |  |
| Sum of PFAS                                                     |                        | 0.0002       | mg/kg          | 0.0003            | 0.0019            | <br> |  |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.0002       | mg/kg          | 0.0003            | 0.0012            | <br> |  |
| Sum of PFAS (WA DER List)                                       |                        | 0.0002       | mg/kg          | 0.0003            | 0.0015            | <br> |  |
| EP231S: PFAS Surrogate                                          |                        |              |                |                   |                   |      |  |
| 13C4-PFOS                                                       |                        | 0.0002       | %              | 104               | 102               | <br> |  |
| 13C8-PFOA                                                       |                        | 0.0002       | %              | 102               | 106               | <br> |  |

 Page
 : 5 of 7

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER (Matrix: WATER)             |            | Clie         | ent sample ID  | QC27A             | QC28A             | QC29A             | <br> |
|-----------------------------------------------|------------|--------------|----------------|-------------------|-------------------|-------------------|------|
|                                               | Cli        | ient samplii | ng date / time | 23-Jul-2020 00:00 | 23-Jul-2020 00:00 | 23-Jul-2020 00:00 | <br> |
| Compound                                      | CAS Number | LOR          | Unit           | ES2025997-001     | ES2025997-003     | ES2025997-005     | <br> |
|                                               |            |              |                | Result            | Result            | Result            | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids         |            |              |                |                   |                   |                   |      |
| Perfluorobutane sulfonic acid                 | 375-73-5   | 0.002        | μg/L           | 0.004             | 0.005             | 0.004             | <br> |
| (PFBS)                                        |            |              |                |                   |                   |                   |      |
| Perfluoropentane sulfonic acid (PFPeS)        | 2706-91-4  | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4   | 0.002        | μg/L           | 0.014             | 0.004             | 0.015             | <br> |
| Perfluoroheptane sulfonic acid (PFHpS)        | 375-92-8   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1  | 0.002        | μg/L           | 0.020             | 0.004             | 0.020             | <br> |
| Perfluorodecane sulfonic acid (PFDS)          | 335-77-3   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| EP231B: Perfluoroalkyl Carboxylic Aci         | ids        |              |                |                   |                   |                   |      |
| Perfluorobutanoic acid (PFBA)                 | 375-22-4   | 0.01         | μg/L           | <0.01             | <0.01             | <0.01             | <br> |
| Perfluoropentanoic acid (PFPeA)               | 2706-90-3  | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Perfluorohexanoic acid (PFHxA)                | 307-24-4   | 0.002        | μg/L           | 0.005             | 0.005             | 0.007             | <br> |
| Perfluoroheptanoic acid (PFHpA)               | 375-85-9   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Perfluorooctanoic acid (PFOA)                 | 335-67-1   | 0.002        | μg/L           | 0.003             | 0.003             | 0.003             | <br> |
| Perfluorononanoic acid (PFNA)                 | 375-95-1   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Perfluorodecanoic acid (PFDA)                 | 335-76-2   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Perfluoroundecanoic acid (PFUnDA)             | 2058-94-8  | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Perfluorododecanoic acid (PFDoDA)             | 307-55-1   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Perfluorotridecanoic acid (PFTrDA)            | 72629-94-8 | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| Perfluorotetradecanoic acid (PFTeDA)          | 376-06-7   | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| Perfluorohexadecanoic acid (PFHxDA)           | 67905-19-5 | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| EP231C: Perfluoroalkyl Sulfonamides           |            |              |                |                   |                   |                   |      |
| Perfluorooctane sulfonamide (FOSA)            | 754-91-6   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <br> |

 Page
 : 6 of 7

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER (Matrix: WATER)                               |                        | Clie          | ent sample ID  | QC27A             | QC28A             | QC29A             | <br> |
|-----------------------------------------------------------------|------------------------|---------------|----------------|-------------------|-------------------|-------------------|------|
|                                                                 | CI                     | lient samplii | ng date / time | 23-Jul-2020 00:00 | 23-Jul-2020 00:00 | 23-Jul-2020 00:00 | <br> |
| Compound                                                        | CAS Number             | LOR           | Unit           | ES2025997-001     | ES2025997-003     | ES2025997-005     | <br> |
|                                                                 |                        |               |                | Result            | Result            | Result            | <br> |
| EP231C: Perfluoroalkyl Sulfonamide                              | s - Continued          |               |                |                   |                   |                   |      |
| N-Ethyl perfluorooctane                                         | 4151-50-2              | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| sulfonamide (EtFOSA)                                            |                        |               |                |                   |                   |                   |      |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.002         | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.002         | μg/L           | <0.002            | <0.002            | <0.002            | <br> |
| EP231D: (n:2) Fluorotelomer Sulfon                              | ic Acids               |               |                |                   |                   |                   |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.005         | μg/L           | <0.005            | <0.005            | <0.005            | <br> |
| EP231P: PFAS Sums                                               |                        |               |                |                   |                   |                   |      |
| Sum of PFAS                                                     |                        | 0.002         | μg/L           | 0.046             | 0.021             | 0.049             | <br> |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.002         | μg/L           | 0.034             | 0.008             | 0.035             | <br> |
| Sum of PFAS (WA DER List)                                       |                        | 0.002         | μg/L           | 0.046             | 0.021             | 0.049             | <br> |
| EP231S: PFAS Surrogate                                          |                        |               |                |                   |                   |                   |      |
| 13C4-PFOS                                                       |                        | 0.002         | %              | 91.6              | 91.0              | 91.3              | <br> |
| 13C8-PFOA                                                       |                        | 0.002         | %              | 97.7              | 95.7              | 99.7              | <br> |

 Page
 : 7 of 7

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



## **Surrogate Control Limits**

| Sub-Matrix: SEDIMENT   |            | Recovery | Limits (%) |
|------------------------|------------|----------|------------|
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |
| Sub-Matrix: WATER      |            | Recovery | Limits (%) |
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |



#### **QUALITY CONTROL REPORT**

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : **ES2025997** Page : 1 of 10

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

Contact : GHD LAB REPORTS Contact : Angus Harding

Address : 2/11 VICTORIA SQUARE Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : ---- Telephone : +61 2 8784 8555

Project: 12516828Date Samples Received: 28-Jul-2020Order number: 12516828Date Analysis Commenced: 03-Aug-2020

C-O-C number : ---- Issue Date : 07-Aug-2020

Sampler : SEAN SPARROW

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

ADELAIDE SA. AUSTRALIA 5000

• Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: EN/005/19

: 5

: 5

#### **Signatories**

No. of samples received

No. of samples analysed

Site Quote number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Inorganics, Smithfield, NSW Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW

 Page
 : 2 of 10

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                         |                                                |            |        |       | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------|------------------------------------------------|------------|--------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                               | CAS Number | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EA055: Moisture Co   | ontent (Dried @ 105-110 | °C) (QC Lot: 3180310)                          |            |        |       |                 |                        |         |                     |
| ES2026402-013        | Anonymous               | EA055: Moisture Content                        |            | 0.1    | %     | 15.8            | 16.5                   | 4.34    | 0% - 50%            |
| ES2026531-014        | Anonymous               | EA055: Moisture Content                        |            | 0.1    | %     | 16.7            | 17.3                   | 3.89    | 0% - 50%            |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC | Lot: 3178881)                                  |            |        |       |                 |                        |         |                     |
| EM2013258-001        | Anonymous               | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002 | mg/kg | 0.0008          | 0.0008                 | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
| ES2026298-001        | Anonymous               | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids( | (QC Lot: 3178881)                              |            |        |       |                 |                        |         |                     |
| EM2013258-001        | Anonymous               | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.0002 | mg/kg | 0.0002          | 0.0002                 | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit            |

 Page
 : 3 of 10

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: SOIL     |                       |                                                                   |            |        |       | Laboratory L    | Ouplicate (DUP) Report | <u> </u> |                     |
|----------------------|-----------------------|-------------------------------------------------------------------|------------|--------|-------|-----------------|------------------------|----------|---------------------|
| Laboratory sample ID | Client sample ID      | Method: Compound                                                  | CAS Number | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%)  | Recovery Limits (%) |
| EP231B: Perfluoroa   | lkyl Carboxylic Acids | (QC Lot: 3178881) - continued                                     |            |        |       |                 |                        |          |                     |
| EM2013258-001        | Anonymous             | EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8 | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7   | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4   | 0.001  | mg/kg | <0.001          | <0.001                 | 0.00     | No Limit            |
| ES2026298-001        | Anonymous             | EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorooctanoic acid (PFOA)                             | 335-67-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorononanoic acid (PFNA)                             | 375-95-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8 | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7   | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                       | EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4   | 0.001  | mg/kg | <0.001          | <0.001                 | 0.00     | No Limit            |
| EP231C: Perfluoroal  | lkyl Sulfonamides (Q0 | C Lot: 3178881)                                                   |            |        |       |                 |                        |          |                     |
| EM2013258-001        | Anonymous             | EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Methyl perfluorooctane                                  | 2355-31-9  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | sulfonamidoacetic acid (MeFOSAA)                                  |            |        |       |                 |                        |          |                     |
|                      |                       | EP231X: N-Ethyl perfluorooctane                                   | 2991-50-6  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | sulfonamidoacetic acid (EtFOSAA)                                  |            |        |       |                 |                        |          |                     |
|                      |                       | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |
| ES2026298-001        | Anonymous             | EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6  | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                       | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00     | No Limit            |

 Page
 : 4 of 10

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: SOIL     |                        |                                                     |             |        |       | Laboratory L    | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|-----------------------------------------------------|-------------|--------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                                    | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acid | ds (QC Lot: 3178881)                                |             |        |       |                 |                        |         |                     |
| EM2013258-001        | Anonymous              | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                        | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                        | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                        | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
| ES2026298-001        | Anonymous              | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                        | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                        | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                        | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
| Sub-Matrix: WATER    |                        | ·                                                   |             |        |       | Laboratory L    | Duplicate (DUP) Report |         |                     |
| Laboratory sample ID | Client sample ID       | Method: Compound                                    | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroal  | lkyl Sulfonic Acids (Q |                                                     |             |        |       |                 |                        |         |                     |
| EM2013117-001        | Anonymous              | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)     | 375-73-5    | 0.002  | μg/L  | 0.006           | 0.007                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)   | 2706-91-4   | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)    | 355-46-4    | 0.002  | μg/L  | 0.005           | 0.004                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)   | 375-92-8    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)     | 1763-23-1   | 0.002  | μg/L  | 0.008           | 0.009                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)     | 335-77-3    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
| EP231B: Perfluoroa   | lkyl Carboxylic Acids  | (QC Lot: 3174427)                                   |             |        |       |                 |                        |         |                     |
| EM2013117-001        | Anonymous              | EP231X-LL: Perfluoropentanoic acid (PFPeA)          | 2706-90-3   | 0.002  | μg/L  | 0.005           | 0.006                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorohexanoic acid (PFHxA)           | 307-24-4    | 0.002  | μg/L  | 0.010           | 0.010                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluoroheptanoic acid (PFHpA)          | 375-85-9    | 0.002  | μg/L  | 0.012           | 0.011                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorooctanoic acid (PFOA)            | 335-67-1    | 0.002  | μg/L  | 0.027           | 0.026                  | 0.00    | 0% - 50%            |
|                      |                        | EP231X-LL: Perfluorononanoic acid (PFNA)            | 375-95-1    | 0.002  | μg/L  | 0.003           | 0.003                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorodecanoic acid (PFDA)            | 335-76-2    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)        | 2058-94-8   | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorododecanoic acid (PFDoDA)        | 307-55-1    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)       | 72629-94-8  | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit            |

 Page
 : 5 of 10

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER    |                         |                                                                      |             |       |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------|----------------------------------------------------------------------|-------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                                     | CAS Number  | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids  | (QC Lot: 3174427) - continued                                        |             |       |      |                 |                        |         |                     |
| EM2013117-001        | Anonymous               | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorohexadecanoic acid (PFHxDA)                       | 67905-19-5  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.01  | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EP231C: Perfluoroa   | Ikyl Sulfonamides (QC   | Lot: 3174427)                                                        |             |       |      |                 |                        |         |                     |
| EM2013117-001        | Anonymous               | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
| EP231D: (n:2) Fluor  | rotelomer Sulfonic Acid | ds (QC Lot: 3174427)                                                 |             |       |      |                 |                        |         |                     |
| EM2013117-001        | Anonymous               | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |

 Page
 : 6 of 10

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                                  |             |        |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|-------------------------------------------------------------------|-------------|--------|-------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                   |             |        |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                                  | CAS Number  | LOR    | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 317888              | 1)          |        |       |                   |               |                              |           |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 104                          | 72.0      | 128        |
| EP231X: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 116                          | 73.0      | 123        |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 107                          | 67.0      | 130        |
| EP231X: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 104                          | 70.0      | 132        |
| EP231X: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 102                          | 68.0      | 136        |
| EP231X: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 101                          | 59.0      | 134        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3178              | 8881)       |        |       |                   |               |                              |           |            |
| EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.001  | mg/kg | <0.001            | 0.00625 mg/kg | 95.7                         | 71.0      | 135        |
| EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 117                          | 69.0      | 132        |
| EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 117                          | 70.0      | 132        |
| EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 112                          | 71.0      | 131        |
| EP231X: Perfluorooctanoic acid (PFOA)                             | 335-67-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 118                          | 69.0      | 133        |
| EP231X: Perfluorononanoic acid (PFNA)                             | 375-95-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 122                          | 72.0      | 129        |
| EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 101                          | 69.0      | 133        |
| EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 112                          | 64.0      | 136        |
| EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 123                          | 69.0      | 135        |
| EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8  | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 117                          | 66.0      | 139        |
| EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 95.7                         | 69.0      | 133        |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3178881               | 1)          |        |       |                   |               |                              |           |            |
| EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 113                          | 67.0      | 137        |
| EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 95.4                         | 71.6      | 129        |
| EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 100                          | 69.8      | 131        |
| EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 101                          | 68.7      | 130        |
| EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 102                          | 65.1      | 134        |
| EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 115                          | 63.0      | 144        |
| EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 117                          | 61.0      | 139        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3              | 178881)     |        |       |                   |               |                              |           |            |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 111                          | 62.0      | 145        |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 109                          | 64.0      | 140        |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 104                          | 65.0      | 137        |

 Page
 : 7 of 10

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: SOIL                                                     |                     |        |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|----------------------------------------------------------------------|---------------------|--------|-------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                      |                     |        |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                                     | CAS Number          | LOR    | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 31                | 178881) - continued |        |       |                   |               |                              |           |            |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                  | 120226-60-0         | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 105                          | 69.2      | 143        |
| Sub-Matrix: <b>WATER</b>                                             |                     |        |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|                                                                      |                     |        |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                                     | CAS Number          | LOR    | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 3174427                | 7)                  |        |       |                   |               |                              |           |            |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 111                          | 72.0      | 130        |
| EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 112                          | 71.0      | 127        |
| EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 100                          | 68.0      | 131        |
| EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 114                          | 69.0      | 134        |
| EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 118                          | 65.0      | 140        |
| EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 117                          | 53.0      | 142        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3174                 | 427)                |        |       |                   |               |                              |           |            |
| EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4            | 0.01   | μg/L  | <0.01             | 0.125 μg/L    | 104                          | 73.0      | 129        |
| EP231X-LL: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 117                          | 72.0      | 129        |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)                            | 307-24-4            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 114                          | 72.0      | 129        |
| EP231X-LL: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 112                          | 72.0      | 130        |
| EP231X-LL: Perfluorooctanoic acid (PFOA)                             | 335-67-1            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 116                          | 71.0      | 133        |
| EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 119                          | 69.0      | 130        |
| EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 109                          | 71.0      | 129        |
| EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 117                          | 69.0      | 133        |
| EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 110                          | 72.0      | 134        |
| EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8          | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 86.4                         | 65.0      | 144        |
| EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7            | 0.005  | μg/L  | <0.005            | 0.0625 μg/L   | 124                          | 71.0      | 132        |
| EP231X-LL: Perfluorohexadecanoic acid (PFHxDA)                       | 67905-19-5          | 0.005  | μg/L  | <0.005            | 0.025 μg/L    | 76.8                         | 65.6      | 133        |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3174427)                 |                     |        |       |                   |               |                              |           |            |
| EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 112                          | 67.0      | 137        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamide                      | 31506-32-8          | 0.005  | μg/L  | <0.005            | 0.0625 μg/L   | 120                          | 68.0      | 141        |
| (MeFOSA)                                                             |                     |        |       |                   | ·             |                              |           |            |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2           | 0.005  | μg/L  | <0.005            | 0.0625 μg/L   | 106                          | 61.1      | 139        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol<br>(MeFOSE)   | 24448-09-7          | 0.005  | μg/L  | <0.005            | 0.0625 μg/L   | 124                          | 72.3      | 128        |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2           | 0.005  | μg/L  | <0.005            | 0.0625 μg/L   | 124                          | 63.2      | 134        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 106                          | 65.0      | 136        |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 113                          | 61.0      | 135        |

 Page
 : 8 of 10

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER                                                       |             | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |                     |      |      |      |
|-------------------------------------------------------------------------|-------------|-------------------|---------------------------------------|--------------------|---------------------|------|------|------|
|                                                                         |             | Report            | Spike                                 | Spike Recovery (%) | Recovery Limits (%) |      |      |      |
| Method: Compound                                                        | CAS Number  | LOR               | Unit                                  | Result             | Concentration       | LCS  | Low  | High |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3174427) - continued |             |                   |                                       |                    |                     |      |      |      |
| EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                    | 757124-72-4 | 0.005             | μg/L                                  | <0.005             | 0.025 μg/L          | 112  | 63.0 | 143  |
| EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                    | 27619-97-2  | 0.005             | μg/L                                  | <0.005             | 0.025 μg/L          | 99.6 | 64.0 | 140  |
| EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                    | 39108-34-4  | 0.005             | μg/L                                  | <0.005             | 0.025 μg/L          | 116  | 67.0 | 138  |
| EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                  | 120226-60-0 | 0.005             | μg/L                                  | <0.005             | 0.025 μg/L          | 116  | 75.2 | 137  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL      |                                          | Matrix Spike (MS) Report                                     |            |               |                  |            |           |
|-----------------------|------------------------------------------|--------------------------------------------------------------|------------|---------------|------------------|------------|-----------|
|                       |                                          |                                                              |            | Spike         | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID  | Client sample ID                         | Method: Compound                                             | CAS Number | Concentration | MS               | Low        | High      |
| EP231A: Perfluoro     | oalkyl Sulfonic Acids (QCLot: 3178881)   |                                                              |            |               |                  |            |           |
| EM2013258-001         | Anonymous                                | EP231X: Perfluorobutane sulfonic acid (PFBS)                 | 375-73-5   | 0.00125 mg/kg | 110              | 72.0       | 128       |
|                       |                                          | EP231X: Perfluoropentane sulfonic acid (PFPeS)               | 2706-91-4  | 0.00125 mg/kg | 112              | 73.0       | 123       |
|                       |                                          | EP231X: Perfluorohexane sulfonic acid (PFHxS)                | 355-46-4   | 0.00125 mg/kg | 110              | 67.0       | 130       |
|                       |                                          | EP231X: Perfluoroheptane sulfonic acid (PFHpS)               | 375-92-8   | 0.00125 mg/kg | 102              | 70.0       | 132       |
|                       |                                          | EP231X: Perfluorooctane sulfonic acid (PFOS)                 | 1763-23-1  | 0.00125 mg/kg | 92.4             | 68.0       | 136       |
|                       |                                          | EP231X: Perfluorodecane sulfonic acid (PFDS)                 | 335-77-3   | 0.00125 mg/kg | 74.0             | 59.0       | 134       |
| EP231B: Perfluor      | oalkyl Carboxylic Acids (QCLot: 3178881) |                                                              |            |               |                  |            |           |
| EM2013258-001         | Anonymous                                | EP231X: Perfluorobutanoic acid (PFBA)                        | 375-22-4   | 0.00625 mg/kg | 96.3             | 71.0       | 135       |
|                       |                                          | EP231X: Perfluoropentanoic acid (PFPeA)                      | 2706-90-3  | 0.00125 mg/kg | 117              | 69.0       | 132       |
|                       |                                          | EP231X: Perfluorohexanoic acid (PFHxA)                       | 307-24-4   | 0.00125 mg/kg | 118              | 70.0       | 132       |
|                       |                                          | EP231X: Perfluoroheptanoic acid (PFHpA)                      | 375-85-9   | 0.00125 mg/kg | 117              | 71.0       | 131       |
|                       |                                          | EP231X: Perfluorooctanoic acid (PFOA)                        | 335-67-1   | 0.00125 mg/kg | 120              | 69.0       | 133       |
|                       |                                          | EP231X: Perfluorononanoic acid (PFNA)                        | 375-95-1   | 0.00125 mg/kg | 118              | 72.0       | 129       |
|                       |                                          | EP231X: Perfluorodecanoic acid (PFDA)                        | 335-76-2   | 0.00125 mg/kg | 100              | 69.0       | 133       |
|                       |                                          | EP231X: Perfluoroundecanoic acid (PFUnDA)                    | 2058-94-8  | 0.00125 mg/kg | 121              | 64.0       | 136       |
|                       |                                          | EP231X: Perfluorododecanoic acid (PFDoDA)                    | 307-55-1   | 0.00125 mg/kg | 120              | 69.0       | 135       |
|                       |                                          | EP231X: Perfluorotridecanoic acid (PFTrDA)                   | 72629-94-8 | 0.00125 mg/kg | 120              | 66.0       | 139       |
|                       |                                          | EP231X: Perfluorotetradecanoic acid (PFTeDA)                 | 376-06-7   | 0.00312 mg/kg | 106              | 69.0       | 133       |
| EP231C: Perfluoro     | oalkyl Sulfonamides (QCLot: 3178881)     |                                                              |            |               |                  |            |           |
| EM2013258-001 Anonymo | Anonymous                                | EP231X: Perfluorooctane sulfonamide (FOSA)                   | 754-91-6   | 0.00125 mg/kg | 119              | 67.0       | 137       |
|                       |                                          | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)        | 31506-32-8 | 0.00312 mg/kg | 106              | 71.6       | 129       |
|                       |                                          | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)         | 4151-50-2  | 0.00312 mg/kg | 94.7             | 69.8       | 131       |
|                       |                                          | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) | 24448-09-7 | 0.00312 mg/kg | 101              | 68.7       | 130       |

 Page
 : 9 of 10

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



Matrix Spike (MS) Report Sub-Matrix: SOIL Spike SpikeRecovery(%) Recovery Limits (%) Laboratory sample ID Client sample ID CAS Number Concentration Low Hiah Method: Compound EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3178881) - continued FM2013258-001 Anonymous 1691-99-2 0.00312 mg/kg 108 65.1 134 EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) 2355-31-9 0.00125 mg/kg 121 63.0 144 EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) EP231X: N-Ethyl perfluorooctane sulfonamidoacetic 2991-50-6 0.00125 ma/ka 116 61.0 139 acid (EtFOSAA) EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3178881) EM2013258-001 Anonymous 757124-72-4 EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 0.00125 mg/kg 113 62.0 145 EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 27619-97-2 0.00125 ma/ka 115 64 0 140 39108-34-4 118 65.0 137 EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) 0.00125 ma/ka 120226-60-0 0.00125 mg/kg 115 69.2 143 EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Recovery Limits (%) Laboratory sample ID Client sample ID CAS Number Concentration Low High Method: Compound EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 3174427) EM2013117-002 375-73-5 Anonymous  $0.025 \, \mu g/L$ 110 72.0 130 EP231X-LL: Perfluorobutane sulfonic acid (PFBS) 2706-91-4 71.0 127 0.025 ua/L 119 EP231X-LL: Perfluoropentane sulfonic acid (PFPeS) 355-46-4 94.0 68.0 131  $0.025 \, \mu g/L$ EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS) 375-92-8  $0.025 \, \mu g/L$ 112 69.0 134 1763-23-1  $0.025 \, \mu g/L$ 84.4 65.0 140 EP231X-LL: Perfluorooctane sulfonic acid (PFOS) 335-77-3  $0.025 \, \mu g/L$ 105 53.0 142 EP231X-LL: Perfluorodecane sulfonic acid (PFDS) EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3174427) FM2013117-002 Anonymous 375-22-4  $0.125 \, \mu g/L$ 998 73.0 129 EP231X-LL: Perfluorobutanoic acid (PFBA) 72.0 2706-90-3  $0.025 \, \mu g/L$ 114 129 EP231X-LL: Perfluoropentanoic acid (PFPeA) 307-24-4  $0.025 \, \mu g/L$ 105 72.0 129 EP231X-LL: Perfluorohexanoic acid (PFHxA) 375-85-9 114 72.0 130  $0.025 \, \mu g/L$ EP231X-LL: Perfluoroheptanoic acid (PFHpA) 335-67-1  $0.025 \mu g/L$ 102 71.0 133 EP231X-LL: Perfluorooctanoic acid (PFOA) 375-95-1  $0.025 \, \mu g/L$ 102 69.0 130 EP231X-LL: Perfluorononanoic acid (PFNA) 335-76-2  $0.025 \, \mu g/L$ 97.6 71.0 129 EP231X-LL: Perfluorodecanoic acid (PFDA) EP231X-LL: Perfluoroundecanoic acid (PFUnDA) 2058-94-8  $0.025 \, \mu g/L$ 105 69.0 133 134 307-55-1  $0.025 \, \mu g/L$ 106 72.0 EP231X-LL: Perfluorododecanoic acid (PFDoDA) 72629-94-8 916 65.0 144 EP231X-LL: Perfluorotridecanoic acid (PFTrDA)  $0.025 \, \mu g/L$ 376-06-7  $0.0625 \, \mu g/L$ 106 71.0 132 EP231X-LL: Perfluorotetradecanoic acid (PFTeDA) 67905-19-5  $0.025 \, \mu g/L$ 80.4 65.6 133 EP231X-LL: Perfluorohexadecanoic acid (PFHxDA) EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3174427) EM2013117-002 Anonymous 754-91-6  $0.025 \, \mu g/L$ 116 67.0 137 EP231X-LL: Perfluorooctane sulfonamide (FOSA) 31506-32-8 0.0625 µg/L 110 68.0 141 EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)

 Page
 : 10 of 10

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



137

Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Recovery Limits (%) Laboratory sample ID Client sample ID CAS Number Concentration MS Low High Method: Compound EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3174427) - continued EM2013117-002 Anonymous EP231X-LL: N-Ethyl perfluorooctane sulfonamide 4151-50-2 0.0625 µg/L 101 61.1 139 (EtFOSA) 24448-09-7 0.0625 µg/L 109 72.3 128 EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) EP231X-LL: N-Ethyl perfluorooctane 1691-99-2 0.0625 µg/L 111 63.2 134 sulfonamidoethanol (EtFOSE) 2355-31-9 EP231X-LL: N-Methyl perfluorooctane 0.025 µg/L 116 65.0 136 sulfonamidoacetic acid (MeFOSAA) 2991-50-6 0.025 µg/L 120 61.0 135 EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3174427) EM2013117-002 Anonymous 757124-72-4 0.025 µg/L 94.4 63.0 143 EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 27619-97-2 0.025 µg/L 119 64.0 140 EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 39108-34-4 0.025 µg/L 122 67.0 138 EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)

EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)

120226-60-0

0.025 µg/L

118

75.2



## QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **ES2025997** Page : 1 of 5

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : GHD LAB REPORTS
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 28-Jul-2020

Site : Issue Date : 07-Aug-2020
Sampler : SEAN SPARROW No. of samples received : 5

Order number : 12516828 No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 5

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| should be verified in case the reported breac | ch is a false positive or Vinyl Chloride and Styrene | e are not key analytes of interest/concern. |                          |                        |            |                     |                    |                 |
|-----------------------------------------------|------------------------------------------------------|---------------------------------------------|--------------------------|------------------------|------------|---------------------|--------------------|-----------------|
| Matrix: SOIL                                  |                                                      |                                             |                          |                        | Evaluation | ı: × = Holding time | breach ; ✓ = Withi | in holding time |
| Method                                        |                                                      |                                             | Extraction / Preparation |                        |            | Analysis            |                    |                 |
| Container / Client Sample ID(s)               |                                                      |                                             | Date extracted           | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation      |
| EA055: Moisture Content (Dried @ 105-110      | 0°C)                                                 |                                             |                          |                        |            |                     |                    |                 |
| HDPE Soil Jar (EA055)<br>QC27AS,              | QC28AS                                               | 23-Jul-2020                                 |                          |                        |            | 05-Aug-2020         | 06-Aug-2020        | <b>✓</b>        |
| EP231A: Perfluoroalkyl Sulfonic Acids         |                                                      |                                             |                          |                        |            |                     |                    |                 |
| HDPE Soil Jar (EP231X)<br>QC27AS,             | QC28AS                                               | 23-Jul-2020                                 | 04-Aug-2020              | 19-Jan-2021            | 1          | 05-Aug-2020         | 13-Sep-2020        | <b>✓</b>        |
| EP231B: Perfluoroalkyl Carboxylic Acids       |                                                      |                                             |                          |                        |            |                     |                    |                 |
| HDPE Soil Jar (EP231X)<br>QC27AS,             | QC28AS                                               | 23-Jul-2020                                 | 04-Aug-2020              | 19-Jan-2021            | ✓          | 05-Aug-2020         | 13-Sep-2020        | <b>✓</b>        |
| EP231C: Perfluoroalkyl Sulfonamides           |                                                      |                                             |                          |                        |            |                     |                    |                 |
| HDPE Soil Jar (EP231X)<br>QC27AS,             | QC28AS                                               | 23-Jul-2020                                 | 04-Aug-2020              | 19-Jan-2021            | ✓          | 05-Aug-2020         | 13-Sep-2020        | <b>✓</b>        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acid     | ds                                                   |                                             |                          |                        |            |                     |                    |                 |
| HDPE Soil Jar (EP231X)<br>QC27AS,             | QC28AS                                               | 23-Jul-2020                                 | 04-Aug-2020              | 19-Jan-2021            | ✓          | 05-Aug-2020         | 13-Sep-2020        | <b>✓</b>        |
| EP231P: PFAS Sums                             |                                                      |                                             |                          |                        |            |                     |                    |                 |
| HDPE Soil Jar (EP231X)<br>QC27AS,             | QC28AS                                               | 23-Jul-2020                                 | 04-Aug-2020              | 19-Jan-2021            | ✓          | 05-Aug-2020         | 13-Sep-2020        | ✓               |
| Matrix: WATER                                 |                                                      |                                             |                          |                        | Evaluation | ı: × = Holding time | breach ; ✓ = Withi | in holding time |
| Method                                        |                                                      | Sample Date                                 | Ex                       | traction / Preparation |            |                     | Analysis           |                 |
| Container / Client Sample ID(s)               |                                                      |                                             | Date extracted           | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation      |
| EP231A: Perfluoroalkyl Sulfonic Acids         |                                                      |                                             |                          |                        |            |                     |                    |                 |
| HDPE (no PTFE) (EP231X-LL)<br>QC27A,<br>QC29A | QC28A,                                               | 23-Jul-2020                                 | 03-Aug-2020              | 19-Jan-2021            | ✓          | 04-Aug-2020         | 19-Jan-2021        | ✓               |
| EP231B: Perfluoroalkyl Carboxylic Acids       |                                                      |                                             |                          |                        |            |                     |                    |                 |
| HDPE (no PTFE) (EP231X-LL)<br>QC27A,<br>QC29A | QC28A,                                               | 23-Jul-2020                                 | 03-Aug-2020              | 19-Jan-2021            | ✓          | 04-Aug-2020         | 19-Jan-2021        | ✓               |

 Page
 : 3 of 5

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828

QC29A



Matrix: WATER Evaluation: **x** = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP231C: Perfluoroalkyl Sulfonamides HDPE (no PTFE) (EP231X-LL) 23-Jul-2020 03-Aug-2020 19-Jan-2021 04-Aug-2020 19-Jan-2021 QC27A, QC28A, QC29A EP231D: (n:2) Fluorotelomer Sulfonic Acids HDPE (no PTFE) (EP231X-LL) 23-Jul-2020 03-Aug-2020 19-Jan-2021 04-Aug-2020 19-Jan-2021 QC27A, QC28A, QC29A EP231P: PFAS Sums HDPE (no PTFE) (EP231X-LL) 23-Jul-2020 03-Aug-2020 19-Jan-2021 04-Aug-2020 19-Jan-2021 QC27A, QC28A,

 Page
 : 4 of 5

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| 0 11 0 1 7                                           |           |       |         | Lvaidatio |                   | The or frequency | not within specification ; ✓ = Quality Control frequency within specification |
|------------------------------------------------------|-----------|-------|---------|-----------|-------------------|------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                          |           | Count |         | Rate (%)  |                   |                  | Quality Control Specification                                                 |
| Analytical Methods                                   | Method    | ОС    | Reaular | Actual    | Expected          | Evaluation       |                                                                               |
| Laboratory Duplicates (DUP)                          |           |       |         |           |                   |                  |                                                                               |
| Moisture Content                                     | EA055     | 2     | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 2     | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |           |       |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1     | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |           |       |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1     | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |           |       |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1     | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix: WATER                                        |           |       |         | Evaluatio | n: × = Quality Co | ntrol frequency  | not within specification ; ✓ = Quality Control frequency within specificati   |
| Quality Control Sample Type                          |           | С     | ount    |           | Rate (%)          |                  | Quality Control Specification                                                 |
| Analytical Methods                                   | Method    | QC    | Reaular | Actual    | Expected          | Evaluation       |                                                                               |
| Laboratory Duplicates (DUP)                          |           |       |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1     | 9       | 11.11     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |           |       |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1     | 9       | 11.11     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |           |       |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1     | 9       | 11.11     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |           |       |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1     | 9       | 11.11     | 5.00              | 1                | NEPM 2013 B3 & ALS QC Standard                                                |

 Page
 : 5 of 5

 Work Order
 : ES2025997

 Client
 : GHD PTY LTD

 Project
 : 12516828



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                        | EA055     | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X    | SOIL   | In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                     |
| Per- and Polyfluoroalkyl Substances<br>(PFAS by LCMSMS  | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is concentrated, combined with an equal volume of reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample Extraction for PFAS in solid matrices            | ORG73     | SOIL   | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                                                                                          |
| Solid Phase Extraction (SPE) for PFAS in water          | ORG72     | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                  |

| CDVIDOL GD | <b>ENVÎROLAB</b> |
|------------|------------------|
| ENVIROLAB  | <u>്ര</u> അ      |

# CHAIN OF CUSTODY FORM - Client

| Copyright and Confid   | empl                                                                   |              |                 | ), OOC              |                                 |                     | • •      | O.       | I XIV   |                                       |                                   |          |        |       | 12 A<br>① 02                                                                                                                                                                        | shley 8<br>9910 ( | Št, Cha<br>6200   ∅       | irolab S<br>tswood<br>⊠ sydn<br>.aborate | , NSW<br>ey@en         |                                                         |
|------------------------|------------------------------------------------------------------------|--------------|-----------------|---------------------|---------------------------------|---------------------|----------|----------|---------|---------------------------------------|-----------------------------------|----------|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|------------------------------------------|------------------------|---------------------------------------------------------|
| Client: GHD Pty Ltd    | i                                                                      |              |                 |                     | Client                          | Projec              | t Name   | /Numb    | er/Şite | etc (ie                               | report                            | title):  |        |       | 16-1                                                                                                                                                                                | 8 Hayd            | en Crt,                   | Myared<br>⊠ lab@                         | e, WA 6                | \$154<br>om au                                          |
| Contact Person: Se     | ean Sparrow                                                            |              |                 |                     |                                 |                     |          |          | 1251    | 6828                                  |                                   |          |        |       |                                                                                                                                                                                     |                   | •                         |                                          | -                      |                                                         |
| Project Mgr: Dilara    | Valiff                                                                 | _            |                 |                     | PO No                           | o. <b>: 125</b> 1   | 6828     |          |         | -                                     |                                   |          |        |       | Melt<br>25 R                                                                                                                                                                        | ourne<br>esearc   | <u>Lab</u> - E<br>h Drive | Envirola<br>e. Crovo                     | ib Serv<br>Ion Soi     | ices<br>uth, VIC 3136                                   |
| Sampler: Sean Spa      | irrow                                                                  |              |                 |                     | Enviro                          | olab Qı             | iote No  | . :      |         |                                       |                                   |          |        |       | <b>①</b> 03                                                                                                                                                                         | 9763              | 2500   🛭                  | .√ melb                                  | ourne@                 | @envirolab.com.au                                       |
| Address:               | Level 4, 211 Victoria Squ                                              | are, Adelaid | e 5000          |                     | Or che                          | oose:               | ab in ad | rd / san | •       | -                                     | 3 o<br>I 2 day<br>round is        |          |        |       | 7a T<br>① 08                                                                                                                                                                        | he Para<br>7087   | ade, No<br>6800   1       | Envirola<br>orwood<br>∛ adela<br>Envirol | , SA 50<br>iide@e      | 67<br>nvirolab.com.au                                   |
| Phone:                 |                                                                        | Mob:         | 0498 260 62     | 6                   | Additi                          | onal re             | port fo  | rmat: e  | esdat / | equis .                               | I                                 |          |        |       | 20a,                                                                                                                                                                                | 10-20             | Depot \$                  | St, Ban                                  | o, QLI                 | O 4014                                                  |
| Email:                 | GHDLabReports@ghd.com<br>sean.sparrow@ghd.com<br>dilara.valiff@ghd.com | <u>n</u>     |                 |                     | Lab C                           | ommei               | nts:     |          |         |                                       |                                   |          |        |       | ① 07 3266 9532   ▷ଐ brisbane@envirolab.com.au <u>Darwin Office</u> - Envirolab Services  Unit 20/119 Reichardt Road, Winnellie, NT 0820 ③ 08 8967 1201   ▷ଐ darwin@envirolab.com.au |                   |                           |                                          | es<br>nnellie, NT 0820 |                                                         |
|                        | Sample infor                                                           | mation       |                 |                     |                                 |                     |          |          |         |                                       | Tes                               | ts Req   | uired  |       |                                                                                                                                                                                     |                   | ,                         |                                          |                        | Comments                                                |
| Envirolab Sample<br>ID | Client Sample ID or information                                        | Depth        | Date<br>sampled | Type of sample      | PFAS Ultra<br>Trace             | PFAS Short<br>Suite |          |          |         |                                       |                                   | <b>-</b> | -      |       |                                                                                                                                                                                     |                   |                           |                                          |                        | Provide as much information about the sample as you can |
|                        | DC17A                                                                  |              | 10/08/2020      | Water               | Х                               |                     |          |          |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
| r                      | DC17AS                                                                 |              | 10/08/2020      | <u>Sediment</u>     |                                 | х                   |          |          |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
| 45                     | QC29                                                                   |              | 10/08/2020      | Water               | Х                               |                     |          |          |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
| N                      | QC29S                                                                  |              | 10/08/2020      | <u>Sediment</u>     |                                 | х                   |          |          |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
| •                      | QC29A                                                                  |              | 10/08/2020      | Water               |                                 |                     |          | -        |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        | Please forward to ALS                                   |
|                        | QC29AS                                                                 |              | 10/08/2020      | Sediment            |                                 |                     |          |          |         |                                       |                                   |          |        | -     |                                                                                                                                                                                     |                   |                           |                                          |                        | Please forward to ALS                                   |
| Ś                      | TB08                                                                   |              | 10/08/2020      | Water               | X                               |                     |          |          |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
| br                     | RB08                                                                   |              | 10/08/2020      | <u>Water</u>        | Х                               |                     |          |          |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
|                        |                                                                        |              |                 |                     |                                 |                     |          |          |         |                                       |                                   |          |        |       |                                                                                                                                                                                     | -                 |                           |                                          |                        |                                                         |
|                        |                                                                        | {            |                 |                     |                                 |                     |          | •        |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
|                        |                                                                        |              |                 | <u> </u>            |                                 |                     |          |          |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
|                        |                                                                        |              |                 | -                   |                                 |                     |          |          |         |                                       |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
|                        | Please tick the box if observed                                        | settled sed  | liment presen   | nt in water samples | is to be                        | includ              | ded in t | he extr  | action  | and/or                                | analys                            | is       |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
| Relinquished by (C     | ompany):                                                               |              |                 | Received by (Com    |                                 |                     |          |          |         |                                       |                                   |          | La     | b Use | Only                                                                                                                                                                                | 7                 | y - p b                   |                                          |                        |                                                         |
| Print Name:            |                                                                        |              |                 | Print Name: 12      | Job number: 2487                |                     |          |          |         | 887                                   | 75 Cooling: (Ice //ce pack / None |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
| Date & Time:           | P                                                                      |              |                 | Date & Time:        | 102/2020 14-50 Temperature: 6°( |                     |          |          | °C.     | Security seal (Intact / Broken / None |                                   |          |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |
| Signature:             |                                                                        |              |                 | Signature:          |                                 | P                   |          |          |         |                                       | TAT R                             | eq - SA  | ME day | //1/  | 2 / 3                                                                                                                                                                               | 141               | STD                       | ٠,٠٤٠                                    | <u> </u>               |                                                         |
|                        |                                                                        |              |                 | - Y/1               | CAT                             |                     |          |          | _       |                                       |                                   | 4        |        |       |                                                                                                                                                                                     |                   |                           |                                          |                        |                                                         |

Sample received COC Received: 12/08/2020, 14.50.

Page 1 of 1

10.15

**ENVIROLAB GROUP** 

National phone number 1300 424 344



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 248875**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                     |
|--------------------------------------|---------------------|
| Your Reference                       | <u>12516828</u>     |
| Number of Samples                    | 4 Water, 2 Sediment |
| Date samples received                | 11/08/2020          |
| Date completed instructions received | 12/08/2020          |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                                       |            |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| Date results requested by                                                                            | 17/08/2020 |  |  |  |  |  |
| Date of Issue                                                                                        | 17/08/2020 |  |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |  |  |  |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |  |  |  |  |

Results Approved By

Phalak Inthakesone, Organics Development Manager, Sydney

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Water TRACE Short                          |       |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                                      |       | 248875-1   | 248875-3   | 248875-5   | 248875-6   |
| Your Reference                                     | UNITS | DC17A      | QC29       | TB08       | RB08       |
| Date Sampled                                       |       | 10/08/2020 | 10/08/2020 | 10/08/2020 | 10/08/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 13/08/2020 | 13/08/2020 | 13/08/2020 | 13/08/2020 |
| Date analysed                                      | -     | 13/08/2020 | 13/08/2020 | 13/08/2020 | 13/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.0064     | 0.0060     | <0.0002    | <0.0002    |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.014      | 0.014      | <0.0002    | <0.0002    |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0028     | 0.0029     | <0.0002    | <0.0002    |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 100        | 105        | 97         | 107        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 97         | 97         | 110        | 102        |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 122        | 119        | 133        | 116        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 54         | 49         | 94         | 112        |
| Extracted ISTD 13 C4 PFOA                          | %     | 103        | 103        | 122        | 119        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | #          | #          | #          | #          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | #          | #          | #          | #          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.021      | 0.020      | <0.0002    | <0.0002    |
| Total Positive PFOS & PFOA                         | μg/L  | 0.017      | 0.017      | <0.0002    | <0.0002    |
| Total Positive PFAS                                | μg/L  | 0.024      | 0.023      | <0.0002    | <0.0002    |

| PFAS in Soils Short                                |       |            |            |
|----------------------------------------------------|-------|------------|------------|
| Our Reference                                      |       | 248875-2   | 248875-4   |
| Your Reference                                     | UNITS | DC17AS     | QC29S      |
| Date Sampled                                       |       | 10/08/2020 | 10/08/2020 |
| Type of sample                                     |       | Sediment   | Sediment   |
| Date prepared                                      | -     | 14/08/2020 | 14/08/2020 |
| Date analysed                                      | -     | 14/08/2020 | 14/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.1       | <0.2       |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 2.9        | 3.9        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.1       | <0.2       |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.2       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.4       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 103        | 103        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 99         | 99         |
| Extracted ISTD 18 O <sub>2</sub> PFHxS             | %     | 87         | 90         |
| Extracted ISTD 13 C4 PFOS                          | %     | 81         | 77         |
| Extracted ISTD 13 C4 PFOA                          | %     | 79         | 77         |
| Extracted ISTD 13 C2 6:2FTS                        | %     | 93         | 95         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 101        | 117        |
| Total Positive PFHxS & PFOS                        | μg/kg | 2.9        | 3.9        |
| Total Positive PFOS & PFOA                         | μg/kg | 2.9        | 3.9        |
| Total Positive PFAS                                | μg/kg | 2.9        | 3.9        |

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference  |       | 248875-2   | 248875-4   |
| Your Reference | UNITS | DC17AS     | QC29S      |
| Date Sampled   |       | 10/08/2020 | 10/08/2020 |
| Type of sample |       | Sediment   | Sediment   |
| Date prepared  | -     | 13/08/2020 | 13/08/2020 |
| Date analysed  | -     | 14/08/2020 | 14/08/2020 |
| Moisture       | %     | 39         | 46         |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 248875

Revision No: R00

| QUALITY CON                                        | TROL: PFA | S in Water | TRACE Short |            |      | Du   | ıplicate |      | Spike Recovery % |      |  |
|----------------------------------------------------|-----------|------------|-------------|------------|------|------|----------|------|------------------|------|--|
| Test Description                                   | Units     | PQL        | Method      | Blank      | #    | Base | Dup.     | RPD  | LCS-W1           | [NT] |  |
| Date prepared                                      | -         |            |             | 13/08/2020 | [NT] |      | [NT]     | [NT] | 13/08/2020       |      |  |
| Date analysed                                      | -         |            |             | 13/08/2020 | [NT] |      | [NT]     | [NT] | 13/08/2020       |      |  |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L      | 0.0002     | Org-029     | <0.0002    | [NT] |      | [NT]     | [NT] | 93               |      |  |
| Perfluorooctanesulfonic acid PFOS                  | μg/L      | 0.0002     | Org-029     | <0.0002    | [NT] |      | [NT]     | [NT] | 98               |      |  |
| Perfluorooctanoic acid PFOA                        | μg/L      | 0.0002     | Org-029     | <0.0002    | [NT] |      | [NT]     | [NT] | 101              |      |  |
| 6:2 FTS                                            | μg/L      | 0.0004     | Org-029     | <0.0004    | [NT] |      | [NT]     | [NT] | 106              |      |  |
| 8:2 FTS                                            | μg/L      | 0.0004     | Org-029     | <0.0004    | [NT] |      | [NT]     | [NT] | 106              |      |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %         |            | Org-029     | 92         | [NT] |      | [NT]     | [NT] | 92               |      |  |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %         |            | Org-029     | 96         | [NT] |      | [NT]     | [NT] | 98               |      |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %         |            | Org-029     | 112        | [NT] |      | [NT]     | [NT] | 113              |      |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %         |            | Org-029     | 81         | [NT] |      | [NT]     | [NT] | 90               |      |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %         |            | Org-029     | 114        | [NT] |      | [NT]     | [NT] | 108              |      |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %         |            | Org-029     | 145        | [NT] |      | [NT]     | [NT] | 133              |      |  |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %         |            | Org-029     | 130        | [NT] |      | [NT]     | [NT] | 115              |      |  |

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            |   | Du         | plicate    |     | Spike Recovery % |            |  |
|----------------------------------------------------|------------|-----------|------------|------------|---|------------|------------|-----|------------------|------------|--|
| Test Description                                   | Units      | PQL       | Method     | Blank      | # | Base       | Dup.       | RPD | LCS-1            | 248875-4   |  |
| Date prepared                                      | -          |           |            | 14/08/2020 | 2 | 14/08/2020 | 14/08/2020 |     | 14/08/2020       | 14/08/2020 |  |
| Date analysed                                      | -          |           |            | 14/08/2020 | 2 | 14/08/2020 | 14/08/2020 |     | 14/08/2020       | 14/08/2020 |  |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | <0.1       | <0.1       | 0   | 103              | 96         |  |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | 2.9        | 2.6        | 11  | 97               | 106        |  |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | <0.1       | <0.1       | 0   | 102              | 102        |  |
| 6:2 FTS                                            | µg/kg      | 0.1       | Org-029    | <0.1       | 2 | <0.1       | <0.1       | 0   | 100              | 94         |  |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | 2 | <0.2       | <0.2       | 0   | 111              | 89         |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 101        | 2 | 103        | 92         | 11  | 92               | 107        |  |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | 99         | 2 | 99         | 96         | 3   | 98               | 103        |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 105        | 2 | 87         | 80         | 8   | 105              | 88         |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 99         | 2 | 81         | 76         | 6   | 102              | 79         |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | 99         | 2 | 79         | 73         | 8   | 98               | 78         |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 109        | 2 | 93         | 83         | 11  | 102              | 105        |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | 113        | 2 | 101        | 90         | 12  | 103              | 139        |  |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 248875 Page | 9 of 10

Revision No: R00

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

PFAS in Soil Short - PQLs have been raised due to high moisture content in sample 248875-4.

Envirolab Reference: 248875

Revision No: R00

Page | 10 of 10

| ENVÎROLAB | <b>ยค</b> ุมดู <b>ร</b> ู้ทั้งกล |
|-----------|----------------------------------|
| GROUP     | wel                              |

| ENVIROLAB GROUP  [Copyright and Conf                                                                     | ENVIROLAB  Complete                                         | CH              | AIN (                                                                                                        | OF CUS                                                         | STO                                                       | DD                                                            | Y F                                                                               | ORN                       | 1 - Client                                                                                                    | Nati<br><u>Sydi</u><br>12 A                                              | onal phone<br><u>1ey Lab</u> - Er<br>shley St, Cl                                                                                                                                                | LAB GRO<br>number 1300<br>nvirolab Servi<br>hatswood, NS<br>I >> sydney@ | 0 424 344<br>ices                                                                                            |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Client: GHD Pty Li<br>Contact Person: S<br>Project Mgr: Dilari<br>Sampler: Sean Sp<br>Address:<br>Phone: | d<br>ean Sparrow<br>a Valiff                                | Mob:            | de 5000<br>0498 260 62                                                                                       | 26                                                             | PO N<br>Envir<br>Date<br>Or ch<br>Note:<br>surch<br>Addit | o.: 125<br>rolab Qu<br>results<br>noose:<br>Inform<br>arges a | 16828<br>uote No. :<br>required:<br>standard<br>lab in adva<br>pply<br>eport form | 1251<br>:<br>/ same day / | etc (ie report title):<br>16828<br>3 day<br>/ 1 day / 2 day / 3 day<br>nt turnaround is required -<br>equis / | 16-1: ① 08  Meit 25 R ① 03  Adel 7a Ti ① 08  Brist 20a, ① 07  Darw Unit: | 8 Hayden Cl<br>9317 2505<br>sourne Lab-<br>esearch Dri-<br>9763 2500<br>aide Office-<br>ne Parade, N<br>7087 6800  <br>pane Office-<br>10-20 Depol<br>3266 9532  <br>pin Office-<br>20/119 Reici | - Envirolab Si<br>Norwood, SA<br>                                        | A 6154 .com.au ervices South, VIC 3136 ne@envirolab.com.au ervices 5067 @envirolab.com.au ervices au ervices |
| Envirolab Sample<br>ID                                                                                   | Sample info  Client Sample ID or information                | mation<br>Depth | Date<br>sampled                                                                                              | Type of sample                                                 | PFAS Ultra<br>Trace                                       | PFAS Short<br>Suite                                           |                                                                                   |                           | Tes s Required                                                                                                |                                                                          |                                                                                                                                                                                                  |                                                                          | Provide as much information about the sample as you can                                                      |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                   | DC17A DC17AS QC29 QC29S QC29A QC29AS TB08 RB08              |                 | 10/08/2020<br>10/08/2020<br>10/08/2020<br>10/08/2020<br>10/08/2020<br>10/08/2020<br>10/08/2020<br>10/08/2020 | Water Sediment Water Sediment Water Sediment Water Water Water | X<br>X<br>X                                               | x                                                             |                                                                                   |                           | Environmental Divis<br>Sydney<br>Work Order Reference<br>ES202832                                             | 9                                                                        |                                                                                                                                                                                                  |                                                                          | Please forward to ALS Please forward to ALS                                                                  |
| elinquished by (Corint Name: Corate & Time:                                                              | Please tick the box if observed ompany): ELS SUD WALLEN XXQ |                 | iment presen                                                                                                 |                                                                | is to be                                                  | include<br>ELS                                                | 5.                                                                                | extraction and an ey      | Job number: 2437                                                                                              | 75-                                                                      |                                                                                                                                                                                                  | ng:(Ice /Ice p                                                           |                                                                                                              |
| ignature:                                                                                                | on on                                                       |                 |                                                                                                              | Signature:                                                     | M                                                         | 0                                                             |                                                                                   |                           | TAT Req - SAME day / 1                                                                                        | 1/2/3/                                                                   | 4 / STD                                                                                                                                                                                          |                                                                          | t) Broken / None                                                                                             |

Form 302\_V006

rec: FAM: \$ 13/8/20 2:39/

Fissue date: 7 October 2019 11/08/2020.

COC Received: 12/08/2020, 14,50.

### **Helen Simpson**

From:

Sean Sparrow <Sean.Sparrow@ghd.com>

Sent:

Friday, 14 August 2020 12:24 PM

To:

Helen Simpson; Dilara Valiff

Subject:

[EXTERNAL] - RE: ALS Workorder ES2028322, Client GHDSER, Project 12516828

CAUTION: This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi Helen.

Thank you for getting in touch, please go ahead and analyse the samples, QC29A (water) with PFAS Ultra-Trace (0.0002 ug/L) and QC29AS (sediment) with PFAS Short Suite.

Thank you,

# Sean Sparrow Environmental Scientist

#### GHD

Proudly employee owned

M: 0498 260 626 T: 61 8 8111 6608 V: 336608 E: Sean.Sparrow@ghd.com Level 4 211 Victoria Square Adelaide SA 5000 Australia | http://www.ghd.com/ Water | Energy & Resources | Environment | Property & Buildings | Transportation

#### Connect









Please consider the environment before printing this email

From: Helen Simpson < helen.simpson@alsglobal.com>

Sent: Friday, 14 August 2020 11:31 AM

To: Dilara Valiff < Dilara. Valiff@ghd.com>; Sean Sparrow < Sean. Sparrow@ghd.com>

Subject: ALS Workorder ES2028322, Client GHDSER, Project 12516828

Importance: High

Hi Dilara and Sean,

We have received the attached COC with no analysis requested. Do these samples need to be tested?

Kind Regards,

**Helen Simpson**Sample Admin, Environmental
Sydney



T +61 2 8784 8555 F +61 2 8784 8500 helen.simpson@alsglobal.com 277-289 Woodpark Road Smithfield NSW 2164 AUSTRALIA



We are keen for your feedback! Please click here for your 3 minute survey

EnviroMail™ 00 - All EnviroMails™ in one convenient library. Recent releases (click to access directly):

EnviroMail™ 127 - Bacterial Diversity Profiling in NGS

**EnviroMail™ 128** – Revised PFAS Bottle Requirements

Right Solutions · Right Partner www.alsglobal.com

This e-mail has been scanned for viruses

CONFIDENTIALITY NOTICE: This email, including any attachments, is confidential and may be privileged. If you are not the intended recipient please notify the sender immediately, and please delete it; you should not copy it or use it for any purpose or disclose its contents to any other person. GHD and its affiliates reserve the right to monitor and modify all email communications through their networks.



### **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES2028322** Page : 1 of 5

Amendment : 1

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

Contact : DILARA VALIFF Contact : Angus Harding

Address : 2/11 VICTORIA SQUARE Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8111 6600 Telephone : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 13-Aug-2020 14:00

 Order number
 : --- Date Analysis Commenced
 : 17-Aug-2020

 Order number
 : -- Date Analysis Commenced
 : 17-Aug-2020

 C-O-C number
 : -- Issue Date
 : 21-Aug-2020 08:13

Sampler : SEAN SPARROW

: EN/005

Site

Quote number

No. of samples received : 2

No. of samples analysed : 2

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 5

Work Order : ES2028322 Amendment 1

Client : GHD PTY LTD
Project : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- Amendment (21/08/2020): This report has been amended following the correction of sampling date for QC29AS. All analysis results are as per the previous report.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

Page

3 of 5 ES2028322 Amendment 1 Work Order

: GHD PTY LTD Client : 12516828 Project



## Analytical Results

| Sub-Matrix: SEDIMENT (Matrix: SOIL)          |                        | Clie         | ent sample ID  | QC29AS            | <br> | <br> |
|----------------------------------------------|------------------------|--------------|----------------|-------------------|------|------|
|                                              | C                      | lient sampli | ng date / time | 10-Aug-2020 00:00 | <br> | <br> |
| Compound                                     | CAS Number             | LOR          | Unit           | ES2028322-002     | <br> | <br> |
|                                              |                        |              |                | Result            | <br> | <br> |
| EA055: Moisture Content (Dried @ 105         | 5-110°C)               |              |                |                   |      |      |
| Moisture Content                             |                        | 0.1          | %              | 41.6              | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids        | ;                      |              |                |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5               | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.0002       | mg/kg          | 0.0043            | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Ac         | ids                    |              |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.001        | mg/kg          | <0.001            | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.0002       | mg/kg          | 0.0003            | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonic         | Acids                  |              |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2             | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |
| EP231P: PFAS Sums                            |                        |              |                |                   |      |      |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.0002       | mg/kg          | 0.0043            | <br> | <br> |
| Sum of PFAS (WA DER List)                    |                        | 0.0002       | mg/kg          | 0.0046            | <br> | <br> |
| EP231S: PFAS Surrogate                       |                        |              |                |                   |      |      |
| 13C4-PFOS                                    |                        | 0.0002       | %              | 96.5              | <br> | <br> |
| 13C8-PFOA                                    |                        | 0.0002       | %              | 103               | <br> | <br> |

Page

: 4 of 5 : ES2028322 Amendment 1 Work Order

: GHD PTY LTD Client : 12516828 Project

## Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)            |                        | Clie        | ent sample ID  | QC29A             | <br> | <br> |
|----------------------------------------------|------------------------|-------------|----------------|-------------------|------|------|
|                                              | CI                     | ient sampli | ng date / time | 10-Aug-2020 00:00 | <br> | <br> |
| Compound                                     | CAS Number             | LOR         | Unit           | ES2028322-001     | <br> | <br> |
|                                              |                        |             |                | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acid         | ls                     |             |                |                   |      |      |
| Perfluorobutane sulfonic acid                | 375-73-5               | 0.002       | μg/L           | 0.002             | <br> | <br> |
| (PFBS)                                       |                        |             |                |                   |      |      |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.002       | μg/L           | 0.012             | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.002       | μg/L           | 0.016             | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic A          | Acids                  |             |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.01        | μg/L           | <0.01             | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.002       | μg/L           | 0.004             | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.002       | μg/L           | 0.006             | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.002       | μg/L           | <0.002            | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.002       | μg/L           | 0.002             | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfoni          | c Acids                |             |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.005       | μg/L           | <0.005            | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2             | 0.005       | μg/L           | <0.005            | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.005       | μg/L           | <0.005            | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.005       | μg/L           | <0.005            | <br> | <br> |
| EP231P: PFAS Sums                            |                        |             |                |                   |      |      |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.002       | μg/L           | 0.028             | <br> | <br> |
| Sum of PFAS (WA DER List)                    |                        | 0.002       | μg/L           | 0.042             | <br> | <br> |
| EP231S: PFAS Surrogate                       |                        |             |                |                   |      |      |
| 13C4-PFOS                                    |                        | 0.002       | %              | 96.5              | <br> | <br> |
| 13C8-PFOA                                    |                        | 0.002       | %              | 95.9              | <br> | <br> |

Page

5 of 5 ES2028322 Amendment 1 Work Order

Client : GHD PTY LTD : 12516828 Project

# Surrogate Control Limits

| Sub-Matrix: SEDIMENT   |            | Recovery Limits (%) |      |  |  |  |
|------------------------|------------|---------------------|------|--|--|--|
| Compound               | CAS Number | Low                 | High |  |  |  |
| EP231S: PFAS Surrogate |            |                     |      |  |  |  |
| 13C4-PFOS              |            | 60                  | 120  |  |  |  |
| 13C8-PFOA              |            | 60                  | 120  |  |  |  |
|                        |            |                     |      |  |  |  |

| Sub-Matrix: WATER      | Recovery Limits (%) |     |      |  |
|------------------------|---------------------|-----|------|--|
| Compound               | CAS Number          | Low | High |  |
| EP231S: PFAS Surrogate |                     |     |      |  |
| 13C4-PFOS              |                     | 60  | 120  |  |
| 13C8-PFOA              |                     | 60  | 120  |  |





#### **QUALITY CONTROL REPORT**

Issue Date

· 21-Aug-2020

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

**Work Order** : **ES2028322** Page : 1 of 6

Amendment : 1

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

Contact : DILARA VALIFF Contact : Angus Harding

Address : 2/11 VICTORIA SQUARE Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

ADELAIDE SA, AUSTRALIA 5000

Telephone : +61 08 8111 6600 Telephone : +61 2 8784 8555

Project: 12516828Date Samples Received: 13-Aug-2020Order number: ---Date Analysis Commenced: 17-Aug-2020

Sampler · SEAN SPARROW

Site

Quote number : EN/005

No. of samples received : 2
No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 6

Work Order : ES2028322 Amendment 1

Client : GHD PTY LTD
Project : 12516828



#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                                         |                                                     |             |        |         | Laboratory I    | Duplicate (DUP) Report |          |                     |
|----------------------|-----------------------------------------|-----------------------------------------------------|-------------|--------|---------|-----------------|------------------------|----------|---------------------|
| Laboratory sample ID | Client sample ID                        | Method: Compound                                    | CAS Number  | LOR    | Unit    | Original Result | Duplicate Result       | RPD (%)  | Recovery Limits (%) |
| EA055: Moisture Co   | ntent (Dried @ 105-110°                 | °C) (QC Lot: 3204179)                               |             |        |         |                 |                        |          |                     |
| EP2008375-032        | Anonymous                               | EA055: Moisture Content                             |             | 0.1    | %       | 5.2             | 5.2                    | 0.00     | 0% - 20%            |
| EP2008375-043        | Anonymous                               | EA055: Moisture Content                             |             | 0.1    | %       | 3.4             | 3.2                    | 5.62     | 0% - 20%            |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC                 | Lot: 3201539)                                       |             |        |         |                 |                        |          |                     |
| ES2028322-002        | QC29AS                                  | EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.0002 | mg/kg   | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      |                                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.0002 | mg/kg   | <0.0002         | 0.0002                 | 0.00     | No Limit            |
|                      |                                         | EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.0002 | mg/kg   | 0.0043          | 0.0041                 | 5.31     | 0% - 20%            |
| EP231B: Perfluoroa   | ılkyl Carboxylic Acids(                 | (QC Lot: 3201539)                                   |             |        |         |                 |                        |          |                     |
| ES2028322-002        | QC29AS                                  | EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.0002 | mg/kg   | <0.0002         | <0.0002                | 0.00     | No Limit            |
|                      | EP231X: Perfluorohexanoic acid (PFHxA)  | 307-24-4                                            | 0.0002      | mg/kg  | <0.0002 | <0.0002         | 0.00                   | No Limit |                     |
|                      | EP231X: Perfluoroheptanoic acid (PFHpA) | 375-85-9                                            | 0.0002      | mg/kg  | <0.0002 | <0.0002         | 0.00                   | No Limit |                     |
|                      |                                         | EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.0002 | mg/kg   | 0.0003          | 0.0003                 | 0.00     | No Limit            |
|                      |                                         | EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.001  | mg/kg   | <0.001          | <0.001                 | 0.00     | No Limit            |
| EP231D: (n:2) Fluoi  | otelomer Sulfonic Acid                  | s (QC Lot: 3201539)                                 |             |        |         |                 |                        |          |                     |
| ES2028322-002        | QC29AS                                  | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.0005 | mg/kg   | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.0005 | mg/kg   | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.0005 | mg/kg   | <0.0005         | <0.0005                | 0.00     | No Limit            |
|                      |                                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.0005 | mg/kg   | <0.0005         | <0.0005                | 0.00     | No Limit            |
| Sub-Matrix: WATER    |                                         |                                                     |             | ·      |         | Laboratory I    | Duplicate (DUP) Report |          |                     |
| Laboratory sample ID | Client sample ID                        | Method: Compound                                    | CAS Number  | LOR    | Unit    | Original Result | Duplicate Result       | RPD (%)  | Recovery Limits (%) |

Page : 3 of 6

Work Order : ES2028322 Amendment 1

Client : GHD PTY LTD
Project : 12516828



| Sub-Matrix: WATER    |                        |                                                 |             |       |      | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|------------------------|-------------------------------------------------|-------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID       | Method: Compound                                | CAS Number  | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (Q | C Lot: 3202250) - continued                     |             |       |      |                 |                        |         |                     |
| ES2028322-001        | QC29A                  | EP231X-LL: Perfluorobutane sulfonic acid (PFBS) | 375-73-5    | 0.002 | μg/L | 0.002           | 0.002                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorohexane sulfonic acid        | 355-46-4    | 0.002 | μg/L | 0.012           | 0.015                  | 18.4    | No Limit            |
|                      |                        | (PFHxS)                                         |             |       |      |                 |                        |         |                     |
|                      |                        | EP231X-LL: Perfluorooctane sulfonic acid        | 1763-23-1   | 0.002 | μg/L | 0.016           | 0.020                  | 21.2    | No Limit            |
|                      |                        | (PFOS)                                          |             |       |      |                 |                        |         |                     |
| EM2014028-010        | Anonymous              | EP231X-LL: Perfluorobutane sulfonic acid (PFBS) | 375-73-5    | 0.002 | μg/L | 2.66            | 2.78                   | 4.56    | 0% - 20%            |
|                      |                        | EP231X-LL: Perfluorohexane sulfonic acid        | 355-46-4    | 0.002 | μg/L | 60.0            | 54.6                   | 9.52    | 0% - 20%            |
|                      |                        | (PFHxS)                                         |             |       |      |                 |                        |         |                     |
|                      |                        | EP231X-LL: Perfluorooctane sulfonic acid        | 1763-23-1   | 0.002 | μg/L | 76.0            | 75.1                   | 1.24    | 0% - 20%            |
|                      |                        | (PFOS)                                          |             |       |      |                 |                        |         |                     |
| EP231B: Perfluoroa   | lkyl Carboxylic Acids  | (QC Lot: 3202250)                               |             |       |      |                 |                        |         |                     |
| ES2028322-001        | QC29A                  | EP231X-LL: Perfluoropentanoic acid (PFPeA)      | 2706-90-3   | 0.002 | μg/L | 0.004           | 0.005                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorohexanoic acid (PFHxA)       | 307-24-4    | 0.002 | μg/L | 0.006           | 0.007                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluoroheptanoic acid (PFHpA)      | 375-85-9    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorooctanoic acid (PFOA)        | 335-67-1    | 0.002 | μg/L | 0.002           | 0.003                  | 0.00    | No Limit            |
|                      |                        | EP231X-LL: Perfluorobutanoic acid (PFBA)        | 375-22-4    | 0.01  | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EM2014028-010        | Anonymous              | EP231X-LL: Perfluoropentanoic acid (PFPeA)      | 2706-90-3   | 0.002 | μg/L | 2.75            | 3.01                   | 9.03    | 0% - 20%            |
|                      |                        | EP231X-LL: Perfluorohexanoic acid (PFHxA)       | 307-24-4    | 0.002 | μg/L | 6.41            | 7.48                   | 15.4    | 0% - 20%            |
|                      |                        | EP231X-LL: Perfluoroheptanoic acid (PFHpA)      | 375-85-9    | 0.002 | μg/L | 0.900           | 1.02                   | 12.1    | 0% - 20%            |
|                      |                        | EP231X-LL: Perfluorooctanoic acid (PFOA)        | 335-67-1    | 0.002 | μg/L | 2.39            | 2.76                   | 14.5    | 0% - 20%            |
|                      |                        | EP231X-LL: Perfluorobutanoic acid (PFBA)        | 375-22-4    | 0.01  | μg/L | 0.90            | 1.09                   | 19.4    | 0% - 20%            |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Aci  | ds (QC Lot: 3202250)                            |             |       |      |                 |                        |         |                     |
| ES2028322-001        | QC29A                  | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 | 757124-72-4 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                        | FTS)                                            |             |       |      |                 |                        |         |                     |
|                      |                        | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 | 27619-97-2  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                        | FTS)                                            |             |       |      |                 |                        |         |                     |
|                      |                        | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 | 39108-34-4  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                        | FTS)                                            |             |       |      |                 |                        |         |                     |
|                      |                        | EP231X-LL: 10:2 Fluorotelomer sulfonic acid     | 120226-60-0 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                        | (10:2 FTS)                                      |             |       |      |                 |                        |         |                     |
| EM2014028-010        | Anonymous              | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 | 757124-72-4 | 0.005 | μg/L | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                        | FTS)                                            |             |       |      |                 |                        |         |                     |
|                      |                        | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 | 27619-97-2  | 0.005 | μg/L | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                        | FTS)                                            |             |       |      |                 |                        |         |                     |
|                      |                        | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 | 39108-34-4  | 0.005 | μg/L | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                        | FTS)                                            |             |       |      |                 |                        |         |                     |
|                      |                        | EP231X-LL: 10:2 Fluorotelomer sulfonic acid     | 120226-60-0 | 0.005 | μg/L | <0.010          | <0.010                 | 0.00    | No Limit            |
|                      |                        | (10:2 FTS)                                      |             |       |      |                 |                        |         |                     |

Page : 4 of 6

Sub-Matrix: SOIL

Work Order : ES2028322 Amendment 1

Client : GHD PTY LTD
Project : 12516828



Laboratory Control Spike (LCS) Report

#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Method Blank (MB)

| Sub-Matrix: <b>SUIL</b>                                                                                                                                      |                         |                |              | Wethou Dialik (WD) |                          | Laboratory Control Spike (LC | o) Report           |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|--------------|--------------------|--------------------------|------------------------------|---------------------|------|
|                                                                                                                                                              |                         |                |              | Report             | Spike                    | Spike Recovery (%)           | Recovery Limits (%) |      |
| Method: Compound                                                                                                                                             | CAS Number              | LOR            | Unit         | Result             | Concentration            | LCS                          | Low                 | High |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 32015                                                                                                          | 539)                    |                |              |                    |                          |                              |                     |      |
| EP231X: Perfluorobutane sulfonic acid (PFBS)                                                                                                                 | 375-73-5                | 0.0002         | mg/kg        | <0.0002            | 0.00125 mg/kg            | 98.8                         | 72.0                | 128  |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                | 355-46-4                | 0.0002         | mg/kg        | <0.0002            | 0.00125 mg/kg            | 114                          | 67.0                | 130  |
| EP231X: Perfluorooctane sulfonic acid (PFOS)                                                                                                                 | 1763-23-1               | 0.0002         | mg/kg        | <0.0002            | 0.00125 mg/kg            | 119                          | 68.0                | 136  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 32                                                                                                           | 01539)                  |                |              |                    |                          |                              |                     |      |
| EP231X: Perfluorobutanoic acid (PFBA)                                                                                                                        | 375-22-4                | 0.001          | mg/kg        | <0.001             | 0.00625 mg/kg            | 90.4                         | 71.0                | 135  |
| EP231X: Perfluoropentanoic acid (PFPeA)                                                                                                                      | 2706-90-3               | 0.0002         | mg/kg        | <0.0002            | 0.00125 mg/kg            | 124                          | 69.0                | 132  |
| EP231X: Perfluorohexanoic acid (PFHxA)                                                                                                                       | 307-24-4                | 0.0002         | mg/kg        | <0.0002            | 0.00125 mg/kg            | 122                          | 70.0                | 132  |
| EP231X: Perfluoroheptanoic acid (PFHpA)                                                                                                                      | 375-85-9                | 0.0002         | mg/kg        | <0.0002            | 0.00125 mg/kg            | 122                          | 71.0                | 131  |
| EP231X: Perfluorooctanoic acid (PFOA)                                                                                                                        | 335-67-1                | 0.0002         | mg/kg        | <0.0002            | 0.00125 mg/kg            | 114                          | 69.0                | 133  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:                                                                                                           | 3201539)                |                |              |                    |                          |                              |                     |      |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                                                                                                            | 757124-72-4             | 0.0005         | mg/kg        | <0.0005            | 0.00125 mg/kg            | 126                          | 62.0                | 145  |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                                                                                                            | 27619-97-2              | 0.0005         | mg/kg        | <0.0005            | 0.00125 mg/kg            | 118                          | 64.0                | 140  |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                                                                                                            | 39108-34-4              | 0.0005         | mg/kg        | <0.0005            | 0.00125 mg/kg            | 117                          | 65.0                | 137  |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                                                                                                          | 120226-60-0             | 0.0005         | mg/kg        | <0.0005            | 0.00125 mg/kg            | 89.2                         | 69.2                | 143  |
| Sub-Matrix: WATER                                                                                                                                            |                         |                |              | Method Blank (MB)  |                          | Laboratory Control Spike (LC | S) Report           |      |
|                                                                                                                                                              |                         |                |              | Report             | Spike                    | Spike Recovery (%)           | Recovery Limits (%) |      |
| Method: Compound                                                                                                                                             | CAS Number              | LOR            | Unit         | Result             | Concentration            | LCS                          | Low                 | High |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 32022                                                                                                          | 250)                    |                |              |                    |                          |                              |                     |      |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                                                                                                              | 375-73-5                | 0.002          | μg/L         | <0.002             | 0.025 μg/L               | 109                          | 72.0                | 130  |
| EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                                                                                                             | 355-46-4                | 0.002          | μg/L         | <0.002             | 0.025 μg/L               | 115                          | 68.0                | 131  |
| EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                                                                                                              | 1763-23-1               | 0.002          | μg/L         | <0.002             | 0.025 μg/L               | 117                          | 65.0                | 140  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 32                                                                                                           | 02250)                  |                |              |                    |                          |                              |                     |      |
| EP231X-LL: Perfluorobutanoic acid (PFBA)                                                                                                                     | 375-22-4                | 0.01           | μg/L         | <0.01              | 0.125 μg/L               | 96.7                         | 73.0                | 129  |
| EP231X-LL: Perfluoropentanoic acid (PFPeA)                                                                                                                   | 2706-90-3               | 0.002          | μg/L         | <0.002             | 0.025 μg/L               | 114                          | 72.0                | 129  |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)                                                                                                                    | 307-24-4                | 0.002          | μg/L         | <0.002             | 0.025 μg/L               | 111                          | 72.0                | 129  |
| EP231X-LL: Perfluoroheptanoic acid (PFHpA)                                                                                                                   | 375-85-9                | 0.002          | μg/L         | <0.002             | 0.025 μg/L               | 112                          | 72.0                | 130  |
| EP231X-LL: Perfluorooctanoic acid (PFOA)                                                                                                                     | 335-67-1                | 0.002          | μg/L         | <0.002             | 0.025 μg/L               | 117                          | 71.0                | 133  |
|                                                                                                                                                              |                         |                |              |                    |                          |                              |                     |      |
| EP231D: (n:2) Fluorotelomer Sulfonic A <u>cids(QCLot:</u>                                                                                                    | 3202250)                |                |              |                    |                          |                              |                     | 440  |
| <u> </u>                                                                                                                                                     | 3202250)<br>757124-72-4 | 0.005          | μg/L         | <0.005             | 0.025 μg/L               | 120                          | 63.0                | 143  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) |                         | 0.005<br>0.005 | μg/L<br>μg/L | <0.005<br><0.005   | 0.025 μg/L<br>0.025 μg/L | 120<br>115                   | 63.0<br>64.0        | 143  |
| EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                                                                                                         | 757124-72-4             |                |              |                    |                          |                              |                     |      |

Page : 5 of 6

Work Order : ES2028322 Amendment 1

Client : GHD PTY LTD
Project : 12516828



#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: SOIL                                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                              |                                                                                    | IVI                                                                                            | atrix Spike (MS) Report                       |                                                      |                                               |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|-----------------------------------------------|
|                                                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                              |                                                                                    | Spike                                                                                          | SpikeRecovery(%)                              | Recovery L                                           | imits (%)                                     |
| aboratory sample ID                                                     | Client sample ID                                                                                                                            | Method: Compound                                                                                                                                                                                                                                                                                                                                             | CAS Number                                                                         | Concentration                                                                                  | MS                                            | Low                                                  | High                                          |
| EP231A: Perfluoro                                                       | palkyl Sulfonic Acids (QCLot: 3201539)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                                |                                               |                                                      |                                               |
| ES2028322-002                                                           | QC29AS                                                                                                                                      | EP231X: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                                 | 375-73-5                                                                           | 0.00125 mg/kg                                                                                  | 72.8                                          | 72.0                                                 | 128                                           |
|                                                                         |                                                                                                                                             | EP231X: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                                | 355-46-4                                                                           | 0.00125 mg/kg                                                                                  | 79.6                                          | 67.0                                                 | 130                                           |
|                                                                         |                                                                                                                                             | EP231X: Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                                                                                 | 1763-23-1                                                                          | 0.00125 mg/kg                                                                                  | 101                                           | 68.0                                                 | 136                                           |
| EP231B: Perfluor                                                        | oalkyl Carboxylic Acids (QCLot: 3201539)                                                                                                    |                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                                |                                               |                                                      |                                               |
| ES2028322-002                                                           | QC29AS                                                                                                                                      | EP231X: Perfluorobutanoic acid (PFBA)                                                                                                                                                                                                                                                                                                                        | 375-22-4                                                                           | 0.00625 mg/kg                                                                                  | 72.5                                          | 71.0                                                 | 135                                           |
|                                                                         |                                                                                                                                             | EP231X: Perfluoropentanoic acid (PFPeA)                                                                                                                                                                                                                                                                                                                      | 2706-90-3                                                                          | 0.00125 mg/kg                                                                                  | 105                                           | 69.0                                                 | 132                                           |
|                                                                         |                                                                                                                                             | EP231X: Perfluorohexanoic acid (PFHxA)                                                                                                                                                                                                                                                                                                                       | 307-24-4                                                                           | 0.00125 mg/kg                                                                                  | 88.0                                          | 70.0                                                 | 132                                           |
|                                                                         |                                                                                                                                             | EP231X: Perfluoroheptanoic acid (PFHpA)                                                                                                                                                                                                                                                                                                                      | 375-85-9                                                                           | 0.00125 mg/kg                                                                                  | 82.8                                          | 71.0                                                 | 131                                           |
|                                                                         |                                                                                                                                             | EP231X: Perfluorooctanoic acid (PFOA)                                                                                                                                                                                                                                                                                                                        | 335-67-1                                                                           | 0.00125 mg/kg                                                                                  | 86.0                                          | 69.0                                                 | 133                                           |
| EP231D: (n:2) Flu                                                       | orotelomer Sulfonic Acids (QCLot: 3201539)                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                                |                                               |                                                      |                                               |
| ES2028322-002                                                           | QC29AS                                                                                                                                      | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                                                                                                                                                                                                                                                                                                            | 757124-72-4                                                                        | 0.00125 mg/kg                                                                                  | 75.6                                          | 62.0                                                 | 145                                           |
|                                                                         |                                                                                                                                             | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                                                                                                                                                                                                                                                                                                            | 27619-97-2                                                                         | 0.00125 mg/kg                                                                                  | 81.2                                          | 64.0                                                 | 140                                           |
|                                                                         |                                                                                                                                             | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                                                                                                                                                                                                                                                                                                            | 39108-34-4                                                                         | 0.00125 mg/kg                                                                                  | 88.4                                          | 65.0                                                 | 137                                           |
|                                                                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                                                                                         | 120226-60-0                                                                                                                                                                                                                                                                                                                                                  | 0.00125 mg/kg                                                                      | 74.8                                                                                           | 69.2                                          | 143                                                  |                                               |
| Sub-Matrix: WATER                                                       |                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                     |                                                                                    | M                                                                                              | atrix Spike (MS) Report                       |                                                      |                                               |
|                                                                         |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                              |                                                                                    | Spike                                                                                          | SpikeRecovery(%)                              | Recovery L                                           | Limits (%)                                    |
| aboratory sample ID                                                     | Client sample ID                                                                                                                            | Method: Compound                                                                                                                                                                                                                                                                                                                                             | CAS Number                                                                         | Concentration                                                                                  | MS                                            | Low                                                  | High                                          |
| aboratory sample ib                                                     |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                                |                                               |                                                      |                                               |
|                                                                         | palkyl Sulfonic Acids (QCLot: 3202250)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                                |                                               |                                                      |                                               |
| EP231A: Perfluoro                                                       |                                                                                                                                             | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                                                                                                                                                                                                                                                                                                              | 375-73-5                                                                           | 0.025 μg/L                                                                                     | 110                                           | 72.0                                                 | 130                                           |
| EP231A: Perfluoro                                                       | palkyl Sulfonic Acids (QCLot: 3202250)                                                                                                      | EP231X-LL: Perfluorobutane sulfonic acid (PFBS) EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                             | 375-73-5<br>355-46-4                                                               | 0.025 μg/L<br>0.025 μg/L                                                                       | 110<br>121                                    | 72.0<br>68.0                                         |                                               |
|                                                                         | palkyl Sulfonic Acids (QCLot: 3202250)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                                |                                               |                                                      | 130<br>131<br>140                             |
| EP231A: Perfluoro<br>ES2028322-001                                      | palkyl Sulfonic Acids (QCLot: 3202250)                                                                                                      | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                             | 355-46-4                                                                           | 0.025 μg/L                                                                                     | 121                                           | 68.0                                                 | 131                                           |
| EP231A: Perfluoro<br>ES2028322-001<br>EP231B: Perfluor                  | oalkyl Sulfonic Acids (QCLot: 3202250) QC29A                                                                                                | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                                                                                                                                                                                                                                                             | 355-46-4                                                                           | 0.025 μg/L                                                                                     | 121                                           | 68.0                                                 | 131<br>140                                    |
| EP231A: Perfluoro<br>ES2028322-001                                      | Oalkyl Sulfonic Acids (QCLot: 3202250) QC29A Oalkyl Carboxylic Acids (QCLot: 3202250)                                                       | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                                                                                                                                                                                                                                                                                                             | 355-46-4<br>1763-23-1                                                              | 0.025 μg/L<br>0.025 μg/L                                                                       | 121<br>133                                    | 68.0<br>65.0                                         | 131<br>140<br>129                             |
| EP231A: Perfluoro<br>ES2028322-001<br>EP231B: Perfluor                  | Oalkyl Sulfonic Acids (QCLot: 3202250) QC29A Oalkyl Carboxylic Acids (QCLot: 3202250)                                                       | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA)                                                                                                                                                                                                                   | 355-46-4<br>1763-23-1<br>375-22-4                                                  | 0.025 µg/L<br>0.025 µg/L<br>0.125 µg/L                                                         | 121<br>133                                    | 68.0<br>65.0<br>73.0                                 | 131<br>140<br>129<br>129                      |
| EP231A: Perfluoro<br>ES2028322-001<br>EP231B: Perfluor                  | Oalkyl Sulfonic Acids (QCLot: 3202250) QC29A Oalkyl Carboxylic Acids (QCLot: 3202250)                                                       | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPeA)                                                                                                                                                                        | 355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3                                     | 0.025 μg/L<br>0.025 μg/L<br>0.125 μg/L<br>0.025 μg/L                                           | 121<br>133<br>115<br>116                      | 68.0<br>65.0<br>73.0<br>72.0                         | 131<br>140<br>129<br>129<br>129               |
| EP231A: Perfluoro<br>ES2028322-001<br>EP231B: Perfluor                  | Oalkyl Sulfonic Acids (QCLot: 3202250) QC29A Oalkyl Carboxylic Acids (QCLot: 3202250)                                                       | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPeA) EP231X-LL: Perfluorohexanoic acid (PFHxA)                                                                                                                              | 355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4                         | 0.025 μg/L<br>0.025 μg/L<br>0.125 μg/L<br>0.025 μg/L<br>0.025 μg/L                             | 121<br>133<br>115<br>116<br>112               | 73.0<br>72.0<br>72.0                                 | 131<br>140<br>129<br>129<br>129<br>130        |
| EP231A: Perfluoro<br>ES2028322-001<br>EP231B: Perfluor<br>ES2028322-001 | Oalkyl Sulfonic Acids (QCLot: 3202250) QC29A Oalkyl Carboxylic Acids (QCLot: 3202250)                                                       | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPeA) EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluoroheptanoic acid (PFHpA) EP231X-LL: Perfluorooctanoic acid (PFOA)                                          | 355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9             | 0.025 μg/L<br>0.025 μg/L<br>0.125 μg/L<br>0.025 μg/L<br>0.025 μg/L<br>0.025 μg/L               | 121<br>133<br>115<br>116<br>112<br>130        | 73.0<br>72.0<br>72.0<br>72.0                         | 131<br>140<br>129<br>129<br>129<br>130        |
| EP231A: Perfluoro<br>ES2028322-001<br>EP231B: Perfluor<br>ES2028322-001 | oalkyl Sulfonic Acids (QCLot: 3202250)  QC29A  oalkyl Carboxylic Acids (QCLot: 3202250)  QC29A                                              | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPeA) EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluoroheptanoic acid (PFHpA) EP231X-LL: Perfluorooctanoic acid (PFOA)                                          | 355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9             | 0.025 μg/L<br>0.025 μg/L<br>0.125 μg/L<br>0.025 μg/L<br>0.025 μg/L<br>0.025 μg/L               | 121<br>133<br>115<br>116<br>112<br>130        | 73.0<br>72.0<br>72.0<br>72.0                         | 131<br>140<br>129<br>129<br>129<br>130<br>133 |
| EP231A: Perfluoro<br>ES2028322-001<br>EP231B: Perfluor<br>ES2028322-001 | oalkyl Sulfonic Acids (QCLot: 3202250)  QC29A  oalkyl Carboxylic Acids (QCLot: 3202250)  QC29A  oorotelomer Sulfonic Acids (QCLot: 3202250) | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPeA) EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluorohexanoic acid (PFHpA) EP231X-LL: Perfluorooctanoic acid (PFOA)                                           | 355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9<br>335-67-1 | 0.025 µg/L<br>0.025 µg/L<br>0.125 µg/L<br>0.025 µg/L<br>0.025 µg/L<br>0.025 µg/L<br>0.025 µg/L | 121<br>133<br>115<br>116<br>112<br>130<br>120 | 68.0<br>65.0<br>73.0<br>72.0<br>72.0<br>72.0<br>71.0 | 131                                           |
| EP231A: Perfluoro<br>ES2028322-001<br>EP231B: Perfluor<br>ES2028322-001 | oalkyl Sulfonic Acids (QCLot: 3202250)  QC29A  oalkyl Carboxylic Acids (QCLot: 3202250)  QC29A  oorotelomer Sulfonic Acids (QCLot: 3202250) | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  EP231X-LL: Perfluorobutanoic acid (PFBA) EP231X-LL: Perfluoropentanoic acid (PFPeA) EP231X-LL: Perfluorohexanoic acid (PFHxA) EP231X-LL: Perfluorohexanoic acid (PFHpA) EP231X-LL: Perfluorooctanoic acid (PFOA)  EP231X-LL: Perfluorooctanoic acid (PFOA) | 355-46-4<br>1763-23-1<br>375-22-4<br>2706-90-3<br>307-24-4<br>375-85-9<br>335-67-1 | 0.025 µg/L 0.025 µg/L 0.025 µg/L 0.025 µg/L 0.025 µg/L 0.025 µg/L 0.025 µg/L 0.025 µg/L        | 121<br>133<br>115<br>116<br>112<br>130<br>120 | 68.0<br>65.0<br>73.0<br>72.0<br>72.0<br>72.0<br>71.0 | 131<br>140<br>129<br>129<br>129<br>130<br>133 |

Page : 6 of 6

Work Order : ES2028322 Amendment 1

Client : GHD PTY LTD
Project : 12516828





# QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2028322** Page : 1 of 4

Amendment : 1

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : DILARA VALIFF
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 13-Aug-2020

 Site
 : sue Date
 : 21-Aug-2020

Sampler : SEAN SPARROW No. of samples received : 2

Order number : --- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 4

Work Order : ES2028322 Amendment 1

Client : GHD PTY LTD

Project : 12516828



#### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| should be verified in case the reported breach is a false positive or Vinyl Chloride and Styre | ene are not key analytes of interestronicem. |                |                                            |            |                    |                            |                |
|------------------------------------------------------------------------------------------------|----------------------------------------------|----------------|--------------------------------------------|------------|--------------------|----------------------------|----------------|
| Matrix: SOIL                                                                                   |                                              | 5              | tuesties / Decreasities                    | Evaluation | : × = Holding time | breach ; ✓ = Withi         | in holding tim |
| Method  Container / Client Sample ID(s)                                                        | Sample Date                                  | Date extracted | traction / Preparation  Due for extraction | Evaluation | Date analysed      | Analysis  Due for analysis | Evaluation     |
|                                                                                                |                                              | Date extracted | Due for extraction                         | Evaluation | Date analysed      | Due for analysis           | Evaluation     |
| EA055: Moisture Content (Dried @ 105-110°C)                                                    |                                              | I              |                                            |            | I                  |                            |                |
| HDPE Soil Jar (EA055)<br>QC29AS                                                                | 10-Aug-2020                                  |                |                                            |            | 18-Aug-2020        | 24-Aug-2020                | 1              |
| EP231A: Perfluoroalkyl Sulfonic Acids                                                          |                                              |                |                                            |            |                    |                            |                |
| HDPE Soil Jar (EP231X)                                                                         |                                              |                |                                            |            |                    |                            |                |
| QC29AS                                                                                         | 10-Aug-2020                                  | 17-Aug-2020    | 06-Feb-2021                                | ✓          | 18-Aug-2020        | 26-Sep-2020                | ✓              |
| EP231B: Perfluoroalkyl Carboxylic Acids                                                        |                                              |                |                                            |            |                    |                            |                |
| HDPE Soil Jar (EP231X)                                                                         |                                              |                | 00 5 1 0004                                |            |                    |                            |                |
| QC29AS                                                                                         | 10-Aug-2020                                  | 17-Aug-2020    | 06-Feb-2021                                | ✓          | 18-Aug-2020        | 26-Sep-2020                | ✓              |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids                                                     |                                              | I              |                                            |            | 1                  |                            | T              |
| HDPE Soil Jar (EP231X)  QC29AS                                                                 | 10-Aug-2020                                  | 17-Aug-2020    | 06-Feb-2021                                | 1          | 18-Aug-2020        | 26-Sep-2020                | 1              |
| EP231P: PFAS Sums                                                                              |                                              | g zzz          |                                            | <u> </u>   |                    |                            | <b>V</b>       |
| HDPE Soil Jar (EP231X)                                                                         |                                              |                |                                            |            |                    |                            |                |
| QC29AS                                                                                         | 10-Aug-2020                                  | 17-Aug-2020    | 06-Feb-2021                                | ✓          | 18-Aug-2020        | 26-Sep-2020                | ✓              |
| Matrix: WATER                                                                                  |                                              |                |                                            | Evaluation | : × = Holding time | breach ; ✓ = Withi         | in holdina tim |
| Method                                                                                         | Sample Date                                  | Ex             | ktraction / Preparation                    |            | 1 3 1              | Analysis                   |                |
| Container / Client Sample ID(s)                                                                |                                              | Date extracted | Due for extraction                         | Evaluation | Date analysed      | Due for analysis           | Evaluation     |
| EP231A: Perfluoroalkyl Sulfonic Acids                                                          |                                              |                |                                            |            |                    |                            |                |
| HDPE (no PTFE) (EP231X-LL)                                                                     |                                              |                |                                            |            |                    |                            |                |
| QC29A                                                                                          | 10-Aug-2020                                  | 17-Aug-2020    | 06-Feb-2021                                | ✓          | 18-Aug-2020        | 06-Feb-2021                | ✓              |
| EP231B: Perfluoroalkyl Carboxylic Acids                                                        |                                              |                |                                            |            |                    |                            |                |
| HDPE (no PTFE) (EP231X-LL)                                                                     | 40.4                                         | 47.4           | 00 Fab 0004                                | ,          | 40.4               | 00 5-4 0004                | ,              |
| QC29A                                                                                          | 10-Aug-2020                                  | 17-Aug-2020    | 06-Feb-2021                                | ✓          | 18-Aug-2020        | 06-Feb-2021                | ✓              |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids                                                     |                                              |                |                                            |            |                    |                            |                |
| HDPE (no PTFE) (EP231X-LL)  QC29A                                                              | 10-Aug-2020                                  | 17-Aug-2020    | 06-Feb-2021                                | 1          | 18-Aug-2020        | 06-Feb-2021                | /              |
| EP231P: PFAS Sums                                                                              |                                              |                |                                            |            | , g <del>_ v</del> |                            |                |
| HDPE (no PTFE) (EP231X-LL)                                                                     |                                              |                |                                            |            |                    |                            |                |
| QC29A                                                                                          | 10-Aug-2020                                  | 17-Aug-2020    | 06-Feb-2021                                | 1          | 18-Aug-2020        | 06-Feb-2021                | 1              |

Page : 3 of 4

Work Order : ES2028322 Amendment 1

Client : GHD PTY LTD
Project : 12516828



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                         |           |       |         | Evaluation | n: × = Quality Co | ntrol frequency  | not within specification ; ✓ = Quality Control frequency within specification |
|------------------------------------------------------|-----------|-------|---------|------------|-------------------|------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                          |           | Count |         |            | Rate (%)          |                  | Quality Control Specification                                                 |
| Analytical Methods                                   | Method    | QC    | Regular | Actual     | Expected          | Evaluation       |                                                                               |
| Laboratory Duplicates (DUP)                          |           |       |         |            |                   |                  |                                                                               |
| Moisture Content                                     | EA055     | 2     | 20      | 10.00      | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1     | 1       | 100.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |           |       |         |            |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1     | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |           |       |         |            |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1     | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |           |       |         |            |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1     | 1       | 100.00     | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix: WATER                                        |           |       |         | Evaluation | n: × = Quality Co | ontrol frequency | not within specification; ✓ = Quality Control frequency within specification  |
| Quality Control Sample Type                          |           | Co    | ount    | Rate (%)   |                   |                  | Quality Control Specification                                                 |
| Analytical Methods                                   | Method    | QC    | Regular | Actual     | Expected          | Evaluation       |                                                                               |
| Laboratory Duplicates (DUP)                          |           |       |         |            |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 2     | 17      | 11.76      | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |           |       |         |            |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1     | 17      | 5.88       | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |           |       |         |            |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1     | 17      | 5.88       | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |           |       |         |            |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1     | 17      | 5.88       | 5.00              | <b>√</b>         | NEPM 2013 B3 & ALS QC Standard                                                |

Page : 4 of 4

Work Order : ES2028322 Amendment 1

Client : GHD PTY LTD
Project : 12516828



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                        | EA055     | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X    | SOIL   | In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                     |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS     | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is concentrated, combined with an equal volume of reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample Extraction for PFAS in solid matrices            | ORG73     | SOIL   | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                                                                                          |
| Solid Phase Extraction (SPE) for PFAS in water          | ORG72     | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                  |



# **CHAIN OF CUSTODY FORM - Client**

|                                             | (Acceptable)                    |             |               |                                           |                                                                                                                                        |                     |          |        |               |           |          |         |              |                          | 12 A                | shley S                        | St, Chat                   | tswood                        | , NSW 2              | 2067                                                        |
|---------------------------------------------|---------------------------------|-------------|---------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|--------|---------------|-----------|----------|---------|--------------|--------------------------|---------------------|--------------------------------|----------------------------|-------------------------------|----------------------|-------------------------------------------------------------|
| Copyright and Confid                        | lential]                        |             |               |                                           | ⊕ 02 9910 6200                                                                                                                         |                     |          |        |               |           |          |         | moiau.com.au |                          |                     |                                |                            |                               |                      |                                                             |
| Client: GHD Pty Ltd                         | l                               |             |               |                                           | Client                                                                                                                                 | Projec              | t Name   | /Numb  | er/Site       | etc (ie ı | report t | itle):  |              |                          | 16-1                | B Hayd                         | en Crt,                    | .aborato<br>Myaree<br>⊠ lab@i | e, WA 6              |                                                             |
| Contact Person: Se                          | Ct Person: Sean Sparrow         |             | 1             |                                           |                                                                                                                                        |                     | 1251     | 6828   |               |           |          |         |              |                          | •                   | _                              | •                          |                               |                      |                                                             |
| Project Mgr: Dilara Valiff                  |                                 |             |               | PO No                                     | o.: 1251                                                                                                                               | 6828                |          |        |               |           |          |         |              |                          |                     |                                | invirola<br>Crovd          |                               | ces<br>ith, VIC 3136 |                                                             |
| Sampler: Sean Spa                           | rrow                            |             |               |                                           | Envirolab Quote No. :                                                                                                                  |                     |          |        |               |           |          |         |              |                          |                     |                                |                            | genvirolab.com.au             |                      |                                                             |
| Address:                                    |                                 |             |               |                                           | Date r                                                                                                                                 | esults              | require  | d:     |               |           | € 3 d    | ay      | ]            |                          | Adel                | aide O                         | ffice - f                  | Envirola                      | ab Serv              | ices                                                        |
| Level 4, 211 Victoria Square, Adelaide 5000 |                                 |             |               |                                           | Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharges apply |                     |          |        |               |           |          |         | D 08         | 7087                     | 680Ó J 🛭            | orwood,<br>⊠ adela<br>Envirola | aide@eı                    | nvirolab.com.au               |                      |                                                             |
| Phone:                                      |                                 | Mob:        | 0498 260 62   | 3                                         | Additi                                                                                                                                 | ional re            | port fo  | rmat:  | esdat / e     | equis /   |          |         |              |                          | 20a,                | 10-20                          | Depot S                    | St, Bany                      | yo, QLD              | 4014                                                        |
| Emall:                                      | sean.sparrow@ghd.com            | <u>n</u>    |               |                                           | Lab C                                                                                                                                  | ommer               | nts:     |        |               |           | _        |         |              |                          | <u>Darv</u><br>Unit | vin Off<br>20/119              | i <u>ce</u> - En<br>Reicha | nvirolab<br>ardt Ro           | Servic<br>ad, Wi     | nvirolab.com.au<br>es<br>nnellie, NT 0820<br>virolab.com.au |
|                                             | Sample infon                    | mation      | 5 E           | N U 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                                                                                                                        | 100                 | . 44     |        |               | * ±       | Test     | s Requ  | uired        |                          |                     |                                | , k                        |                               | N B                  | Comments                                                    |
| Envirolab Sample<br>ID                      | •                               | Depth       |               | Type of sample                            | PFAS Ultra<br>Trace                                                                                                                    | PFAS Short<br>Suite |          |        |               |           |          |         |              |                          |                     |                                |                            |                               |                      | Provide as much information about the sample as you can     |
|                                             | 6627-5944                       |             | 17/08/2020    | <u>water</u>                              | Х                                                                                                                                      |                     |          |        |               |           |          |         |              |                          |                     |                                |                            |                               |                      |                                                             |
| 2                                           | DC02A                           |             | 17/08/2020    | water                                     | Х                                                                                                                                      |                     |          |        |               |           |          |         |              |                          |                     |                                |                            |                               |                      |                                                             |
| 3                                           | DC02AS                          |             | 17/08/2020    | sediment                                  |                                                                                                                                        | x                   | _        |        |               |           |          |         |              |                          |                     |                                |                            |                               |                      |                                                             |
| 4                                           | QC30                            |             | 17/08/2020    | water                                     | х                                                                                                                                      |                     |          |        |               |           |          |         |              |                          |                     |                                |                            |                               |                      |                                                             |
| 7                                           | QC30S                           |             | 17/08/2020    | sediment                                  |                                                                                                                                        | х                   |          |        | ,             |           |          |         |              |                          |                     |                                |                            |                               |                      |                                                             |
| -                                           | QC30A                           |             | 17/08/2020    | <u>water</u>                              | Х                                                                                                                                      |                     |          |        |               |           |          |         |              |                          |                     |                                |                            |                               |                      | Please forward to ALS                                       |
|                                             | QC30AS                          |             | 17/08/2020    | <u>sediment</u>                           |                                                                                                                                        | х                   |          |        |               |           |          |         |              |                          |                     |                                |                            |                               |                      | Please forward to ALS                                       |
| 6                                           | TB09                            |             | 17/08/2020    | <u>water</u>                              | Х                                                                                                                                      |                     |          |        |               | EU        | SIAC     | nei     | h            |                          |                     |                                |                            |                               |                      | ,                                                           |
| 7                                           | RB09                            |             | 17/08/2020    | <u>water</u>                              | Х                                                                                                                                      |                     |          |        |               |           |          |         |              | 61/1                     |                     |                                |                            |                               |                      |                                                             |
|                                             |                                 | _           |               |                                           |                                                                                                                                        |                     |          |        |               |           |          | 18      | 18 r         | $\overline{\mathcal{O}}$ | 812                 |                                |                            |                               |                      |                                                             |
| <u> </u>                                    |                                 |             |               |                                           |                                                                                                                                        |                     |          |        |               |           |          |         | 1            |                          | W                   |                                |                            |                               |                      |                                                             |
|                                             |                                 |             |               |                                           |                                                                                                                                        |                     |          |        |               |           |          |         |              |                          |                     |                                |                            |                               |                      |                                                             |
|                                             | Please tick the box if observed | settled see | diment presei | nt in water samples                       | is to b                                                                                                                                | e inclu             | ded in t | he ext | action        | and/or    | analys   | is      | ·            |                          |                     |                                |                            |                               |                      | •                                                           |
| Relinquished by (C                          | ompany):                        |             |               | Received by (Com                          | pany):                                                                                                                                 | Εİ                  | 77 K     | LOLA   | B             |           | y y      |         |              |                          |                     | Lé                             | ab Use                     | Only                          | *.                   |                                                             |
| Print Name:                                 | <u> </u>                        |             |               | Print Name: J                             | · 80                                                                                                                                   | WDE                 | 17       |        |               |           | Job nı   | ımber:  | 20           | (°(10                    | 18                  |                                | Cooli                      | ng: Ice                       | //se pa              | ack / None                                                  |
| Date & Time:                                |                                 |             |               | Date & Time:                              | 7-08                                                                                                                                   | - <del>2</del> 0    | 20,      |        |               |           | Tempe    | erature | :            | 123                      | · ~                 |                                | Secur                      | ity sea                       | : Intaci             | / Broken / None                                             |
| Signature:                                  | <u></u>                         |             |               | Signature:                                |                                                                                                                                        |                     | 11       | 2/     | $\overline{}$ |           | TAT R    | eq - SA | ME da        | y / 1 /                  | 2/3                 | )41                            | STD                        |                               | $\overline{}$        |                                                             |
| •                                           |                                 |             |               |                                           | $\overline{}$                                                                                                                          |                     | 10       | )      |               |           |          |         |              |                          |                     |                                |                            |                               |                      |                                                             |

Form 302\_V006

Issue date: 7 October 2019

Page 1 of 1

**ENVIROLAB GROUP** 

National phone number 1300 424 344



**Envirolab Services Pty Ltd** 

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 249198**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Sean Sparrow                     |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                     |
|--------------------------------------|---------------------|
| Your Reference                       | <u>12516828</u>     |
| Number of Samples                    | 5 Water, 2 Sediment |
| Date samples received                | 18/08/2020          |
| Date completed instructions received | 18/08/2020          |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                        |                                                                 |
|---------------------------------------|-----------------------------------------------------------------|
| Date results requested by             | 21/08/2020                                                      |
| Date of Issue                         | 21/08/2020                                                      |
| NATA Accreditation Number 2901. Th    | nis document shall not be reproduced except in full.            |
| Accredited for compliance with ISO/IE | C 17025 - Testing. Tests not covered by NATA are denoted with * |

Results Approved By

Manju Dewendrage, Chemist

Phalak Inthakesone, Organics Development Manager, Sydney

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 249198-1   | 249198-2   | 249198-4   | 249198-6   | 249198-7   |
| Your Reference                                     | UNITS | 6627-5944  | DC02A      | QC30       | TB09       | RB09       |
| Date Sampled                                       |       | 17/08/2020 | 17/08/2020 | 17/08/2020 | 17/08/2020 | 17/08/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 19/08/2020 | 19/08/2020 | 19/08/2020 | 19/08/2020 | 19/08/2020 |
| Date analysed                                      | -     | 19/08/2020 | 19/08/2020 | 19/08/2020 | 19/08/2020 | 19/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.037      | 0.070      | 0.039      | <0.0002    | <0.0002    |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.049      | 0.058      | 0.043      | <0.0002    | <0.0002    |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0046     | 0.0092     | 0.0047     | <0.0002    | <0.0002    |
| 6:2 FTS                                            | μg/L  | 0.001      | <0.0004    | 0.001      | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 111        | 102        | 101        | 108        | 108        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 111        | 111        | 114        | 109        | 108        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 126        | 126        | 128        | 129        | 135        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 64         | 61         | 64         | 78         | 111        |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 112        | 100        | 112        | 120        | 131        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | #          | #          | #          | 177        | 194        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | 178        | #          | 189        | 118        | #          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.086      | 0.13       | 0.082      | <0.0002    | <0.0002    |
| Total Positive PFOS & PFOA                         | μg/L  | 0.054      | 0.067      | 0.047      | <0.0002    | <0.0002    |
| Total Positive PFAS                                | μg/L  | 0.092      | 0.14       | 0.088      | <0.0002    | <0.0002    |

| PFAS in Soils Short                                |       |            |            |
|----------------------------------------------------|-------|------------|------------|
| Our Reference                                      |       | 249198-3   | 249198-5   |
| Your Reference                                     | UNITS | DC02AS     | QC30S      |
| Date Sampled                                       |       | 17/08/2020 | 17/08/2020 |
| Type of sample                                     |       | Sediment   | Sediment   |
| Date prepared                                      | -     | 21/08/2020 | 21/08/2020 |
| Date analysed                                      | -     | 21/08/2020 | 21/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 1.2        | 1.0        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 34         | 26         |
| Perfluorooctanoic acid PFOA                        | μg/kg | 0.2        | 0.2        |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 98         | 108        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 99         | 102        |
| Extracted ISTD 18 O <sub>2</sub> PFHxS             | %     | 91         | 84         |
| Extracted ISTD 13 C4 PFOS                          | %     | 88         | 74         |
| Extracted ISTD 13 C4 PFOA                          | %     | 91         | 85         |
| Extracted ISTD 13 C2 6:2FTS                        | %     | 122        | 116        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 188        | 162        |
| Total Positive PFHxS & PFOS                        | μg/kg | 35         | 27         |
| Total Positive PFOS & PFOA                         | μg/kg | 34         | 26         |
| Total Positive PFAS                                | μg/kg | 35         | 27         |

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference  |       | 249198-3   | 249198-5   |
| Your Reference | UNITS | DC02AS     | QC30S      |
| Date Sampled   |       | 17/08/2020 | 17/08/2020 |
| Type of sample |       | Sediment   | Sediment   |
| Date prepared  | -     | 21/08/2020 | 21/08/2020 |
| Date analysed  | -     | 24/08/2020 | 24/08/2020 |
| Moisture       | %     | 42         | 39         |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 249198

Revision No: R00

| QUALITY CON                                        | TROL: PFAS | in Water | TRACE Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|----------|-------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL      | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | 249198-2   |
| Date prepared                                      | -          |          |             | 19/08/2020 | 1 | 19/08/2020 | 19/08/2020 |     | 19/08/2020 | 19/08/2020 |
| Date analysed                                      | -          |          |             | 19/08/2020 | 1 | 19/08/2020 | 19/08/2020 |     | 19/08/2020 | 19/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | 0.037      | 0.039      | 5   | 86         | 87         |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | 0.049      | 0.043      | 13  | 96         | 76         |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | 0.0046     | 0.0048     | 4   | 96         | 102        |
| 6:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 1 | 0.001      | 0.001      | 0   | 103        | 115        |
| 8:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 106        | 70         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |          | Org-029     | 103        | 1 | 111        | 100        | 10  | 101        | 101        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |          | Org-029     | 103        | 1 | 111        | 113        | 2   | 101        | 110        |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |          | Org-029     | 119        | 1 | 126        | 118        | 7   | 111        | 120        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |          | Org-029     | 81         | 1 | 64         | 65         | 2   | 83         | 61         |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %          |          | Org-029     | 119        | 1 | 112        | 118        | 5   | 107        | 108        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |          | Org-029     | 142        | 1 | #          | #          |     | 112        | #          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |          | Org-029     | 108        | 1 | 178        | 183        | 3   | 87         | #          |

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            |   | Du         | plicate    |     | Spike Re   | covery % |
|----------------------------------------------------|------------|-----------|------------|------------|---|------------|------------|-----|------------|----------|
| Test Description                                   | Units      | PQL       | Method     | Blank      | # | Base       | Dup.       | RPD | LCS-1      | [NT]     |
| Date prepared                                      | -          |           |            | 21/08/2020 | 3 | 21/08/2020 | 21/08/2020 |     | 21/08/2020 |          |
| Date analysed                                      | -          |           |            | 21/08/2020 | 3 | 21/08/2020 | 21/08/2020 |     | 21/08/2020 |          |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | 3 | 1.2        | 1.2        | 0   | 93         |          |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | <0.1       | 3 | 34         | 39         | 14  | 91         |          |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | 3 | 0.2        | 0.2        | 0   | 97         |          |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | <0.1       | 3 | <0.1       | <0.1       | 0   | 101        |          |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | 3 | <0.2       | <0.2       | 0   | 95         |          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 100        | 3 | 98         | 97         | 1   | 94         |          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | 105        | 3 | 99         | 104        | 5   | 103        |          |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 110        | 3 | 91         | 102        | 11  | 109        |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 100        | 3 | 88         | 90         | 2   | 107        |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | 105        | 3 | 91         | 92         | 1   | 105        |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 114        | 3 | 122        | 152        | 22  | 102        |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | 128        | 3 | 188        | #          |     | 124        |          |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 249198 Page | 9 of 10

Revision No: R00

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 249198 Page | 10 of 10

Revision No: R00



# **CHAIN OF CUSTODY FORM - Client**

**ENVIROLAB GROUP** 

Sydney Lab - Envirolab Services

National phone number 1300 424 344

| [Copyright and Confi   | idential]                                     |              |                 |                                       |                     |                             | t<br>- :                                         |                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 12 Ashley St,<br>① 02 9910 62                           | Chatswoo<br>00   ⊡ syd                | d, NSW<br>ney@en                                 | 2067<br>virolab.com | ı.au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|------------------------|-----------------------------------------------|--------------|-----------------|---------------------------------------|---------------------|-----------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|---------------------------------------|--------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Client: GHD Pty Lt     | d                                             |              |                 |                                       | Clien               | t Proje                     | ct Nam                                           | e/Numi                                           | har/Sit                           | to etc (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ie report title):                         | Perth Lab - M<br>16-18 Hayden                           | Crt. Mvar                             | ee. WA                                           | 6154                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Contact Person: S      | ean Sparrow                                   |              |                 |                                       | 1                   |                             | JE 140(1)                                        | i Grid (11)                                      |                                   | 516828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | ⊅ 08 9317 25                                            | )5   🗔 lab                            | @mpl.co                                          | m.au                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Project Mgr: Dilara    | Valiff                                        | 1            |                 |                                       | PO N                | o.: 125                     | 16828                                            |                                                  | 12.                               | 0 10020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                         | Melbourne La                                            | <u>ıb</u> - Enviro                    | lab Serv                                         | rices               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Sampler: Sean Spa      | arrow                                         |              |                 |                                       | +                   | olab Q                      |                                                  | <u> </u>                                         |                                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | 25 Research                                             | 25 Research Drive, Croydon South, VIC |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Address:               |                                               |              |                 |                                       |                     | results                     |                                                  |                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 day                                     |                                                         |                                       |                                                  | _                   | Joinau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                        | Level 4, 211 Victoria Squ                     | uare, Adelai | de 5000         | · · · · · · · · · · · · · · · · · · · | Note:               | ioose:<br>Inform<br>araes a | lab in a                                         | ard / sai                                        | me day                            | y / 1 da<br>ent turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | y / 2 day / 3 day<br>around is required - | Adelaide Offic<br>7a The Parad<br>① 08 7087 68          | e, Norwoo<br>00   ⊠ ade               | d, SA 50<br>laide@e                              | 67<br>envirolab.co  | m.au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Phone:                 |                                               | Mob:         | 0498 260 62     | 26                                    | Addit               | ional re                    | port f                                           | ormat:                                           | esdat                             | / equis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/                                        | Brisbane Office 20a, 10-20 De                           |                                       |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Email:                 | GHDLabReports@ghd.co                          | <u>m</u> .   |                 |                                       | Lab C               | omme                        | nts:                                             |                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | <b>① 07 3266 95</b> 3                                   |                                       |                                                  |                     | m.au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                        | sean.sparrow@ghd.com<br>dilara.valiff@ghd.com |              | •               |                                       |                     |                             |                                                  |                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                         | <u>Darwin Office</u><br>Unit 20/119 Ro<br>③ 08 8967 120 | eichardt R                            | oad, Wi                                          | inneilie, NT (      | )820<br>.au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                        | Sample Info                                   | mation       |                 |                                       |                     |                             |                                                  |                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tests Required                            |                                                         |                                       |                                                  |                     | mments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ĺ                      |                                               |              |                 |                                       |                     |                             |                                                  |                                                  |                                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                           |                                                         | WIT NEEDEN                            | / / HATTLE                                       |                     | mments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Envirolab Sample<br>ID | Client Sample ID or<br>information            | Depth        | Date<br>sampled | Type of sample                        | PFAS Ultra<br>Trace | PFAS Short<br>Suite         |                                                  |                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sydney<br>Work Ord                        | ental Division er Reference                             |                                       |                                                  | informat            | de as much<br>tion about the<br>e as you can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                        | 6627-5944                                     |              | 17/08/2020      | water                                 | х                   |                             | <del>                                     </del> | <del>                                     </del> | <u> </u>                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del> -</del> E32                         | 028971                                                  | _                                     |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 2                      | DC02A                                         |              | 17/08/2020      | water                                 | X                   | <b>—</b> —                  |                                                  | <del>                                     </del> | <del> </del> -                    | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | MILE. MILE. MILE.                                       | <del> </del>                          | -                                                |                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 3                      | DC02AS                                        |              | 17/08/2020      | sediment                              | <u> </u>            | Y                           | -                                                | <del>                                     </del> |                                   | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                         | -                                     | - 1                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4                      | QC30                                          |              | 17/08/2020      | water                                 | Х                   | <u> </u>                    |                                                  | <del> </del>                                     |                                   | ┼─                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                         |                                       | <del>  </del>                                    |                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 7                      | QC30S                                         |              | 17/08/2020      | sediment                              | _^_                 | v                           |                                                  |                                                  |                                   | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | <b>以外部分間</b>                                            |                                       | <del>                                     </del> |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                        | QC30A                                         |              | 17/08/2020      | water                                 | х                   | <u> </u>                    |                                                  |                                                  | <del> </del>                      | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | ili viet, i premi ii i                                  | <del></del>                           |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                        | 2 QC30AS                                      |              | 17/08/2020      | sediment                              | <u>^</u>            | ~                           |                                                  | -                                                |                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Telephone : + 6*                          | -2-8784 8555                                            | -                                     |                                                  | Please forwa        | ard to ALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 6                      | TB09                                          |              | 17/08/2020      | water                                 | ×                   | <u> </u>                    | -                                                | -                                                | ļ ——                              | FU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sudren                                    | <del></del>                                             | <del></del>                           |                                                  | Please forwa        | ird to ALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 7                      | RB09                                          |              | 17/08/2020      | water                                 | ×                   |                             |                                                  |                                                  |                                   | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1101110                                   |                                                         |                                       |                                                  | 7-                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                        |                                               |              |                 |                                       |                     |                             |                                                  |                                                  |                                   | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>  CMUIE</u>                            |                                                         |                                       | /                                                | <b>A \</b>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                        |                                               |              |                 |                                       |                     |                             |                                                  |                                                  |                                   | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18/8/1                                    | 812                                                     | _#                                    | -/4                                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                        |                                               |              |                 |                                       |                     |                             |                                                  |                                                  |                                   | ╁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                               | M                                                       |                                       | <i></i>                                          | $\dashv \perp$      | Ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                        | Please tick the box if observed               | settled sed  | iment presen    | nt in water samples i                 | s to be             | includ                      | ed in t                                          | he extra                                         | action                            | and/or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r analysis                                |                                                         |                                       |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Relinquished by (Co    | ompany): ELS Suc                              | dneu         |                 | Received by (Compa                    |                     |                             |                                                  | OLA                                              |                                   | direr or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | amenysis                                  |                                                         |                                       | Serie Espellano                                  | GANGERAS IN THE     | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Print Name: R. L       | hazpen.                                       | <del></del>  |                 |                                       | Bov                 |                             |                                                  | 000                                              | (2)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Job number: 7-49                          | 10 -                                                    | se Only                               | 7                                                |                     | A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp |  |
| Date & Time: 12/       | ,                                             | 09.          |                 |                                       | -08                 |                             |                                                  |                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cos maniser:                              | 7                                                       | oling: Ice                            |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Signature: √) ~        | $\rho$                                        |              |                 | Signature:                            | <u> 3</u>           |                             | 1                                                | 77                                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAT Box SAME don't                        |                                                         |                                       | Intact                                           | Broken / N          | one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| M                      | 20/2                                          |              |                 |                                       | C                   |                             | 19                                               | )                                                | $\frac{\mathcal{L}}{\mathcal{L}}$ | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAT Req - SAME day /                      | 1/2/3/4/STC                                             | £ 0.                                  | 101                                              | /EV                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Form 302_V006_         | #                                             |              |                 |                                       | lee                 | ua data                     | . 70.                                            | <b>.</b>                                         | . N                               | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ceived b                                  | 7- AL                                                   | > 56                                  |                                                  | 100                 | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

Issue date: 7 October 2019



## **CERTIFICATE OF ANALYSIS**

Work Order : **ES2028971** 

Client : GHD PTY LTD

Contact : GHD LAB REPORTS

Address : 2/11 VICTORIA SQUARE

ADELAIDE SA, AUSTRALIA 5000

Telephone : ---

Project : 12516828 Order number : 12516828

C-O-C number : ----

Sampler : SEAN SPARROW

Site

Quote number : EN/005

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 18-Aug-2020 17:30

Date Analysis Commenced : 20-Aug-2020

Issue Date : 25-Aug-2020 12:06



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

 Page
 : 2 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231X: Poor matrix spike recoveries due to matrix interferences.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

 Page
 : 3 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



## Analytical Results

| Sub-Matrix: SOIL (Matrix: SOIL)              |                        | Clie         | ent sample ID  | QC30AS            | <br> | <br> |
|----------------------------------------------|------------------------|--------------|----------------|-------------------|------|------|
|                                              | C                      | lient sampli | ng date / time | 17-Aug-2020 00:00 | <br> | <br> |
| Compound                                     | CAS Number             | LOR          | Unit           | ES2028971-002     | <br> | <br> |
| ·                                            |                        |              |                | Result            | <br> | <br> |
| EA055: Moisture Content (Dried @ 10          | 5-110°C)               |              |                |                   |      |      |
| Moisture Content                             |                        | 0.1          | %              | 66.4              | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acid         | s                      |              |                |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5               | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.0002       | mg/kg          | 0.0018            | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.0002       | mg/kg          | 0.0403            | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic A          | cids                   |              |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.001        | mg/kg          | <0.001            | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.0002       | mg/kg          | 0.0002            | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.0002       | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.0002       | mg/kg          | 0.0002            | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonio         | C Acids                |              |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid (6:2 FTS)    | 27619-97-2             | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.0005       | mg/kg          | <0.0005           | <br> | <br> |
| EP231P: PFAS Sums                            |                        |              |                |                   |      |      |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.0002       | mg/kg          | 0.0421            | <br> | <br> |
| Sum of PFAS (WA DER List)                    |                        | 0.0002       | mg/kg          | 0.0425            | <br> | <br> |
| EP231S: PFAS Surrogate                       |                        |              |                |                   |      |      |
| 13C4-PFOS                                    |                        | 0.0002       | %              | 96.5              | <br> | <br> |
| 13C8-PFOA                                    |                        | 0.0002       | %              | 85.5              | <br> | <br> |

 Page
 : 4 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



## Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)            |                        | Clie         | ent sample ID  | QC30A             | <br> | <br> |
|----------------------------------------------|------------------------|--------------|----------------|-------------------|------|------|
|                                              | C                      | lient sampli | ng date / time | 17-Aug-2020 00:00 | <br> | <br> |
| Compound                                     | CAS Number             | LOR          | Unit           | ES2028971-001     | <br> | <br> |
|                                              |                        |              |                | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids        |                        |              |                |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5               | 0.002        | μg/L           | 0.008             | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.002        | μg/L           | 0.047             | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.002        | μg/L           | 0.063             | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Ac         | cids                   |              |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.01         | μg/L           | <0.01             | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.002        | μg/L           | 0.006             | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.002        | μg/L           | 0.019             | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.002        | μg/L           | 0.002             | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.002        | μg/L           | 0.005             | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonic         | Acids                  |              |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.005        | μg/L           | <0.005            | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.005        | μg/L           | <0.005            | <br> | <br> |
| EP231P: PFAS Sums                            |                        |              |                |                   |      |      |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.002        | μg/L           | 0.110             | <br> | <br> |
| Sum of PFAS (WA DER List)                    |                        | 0.002        | μg/L           | 0.150             | <br> | <br> |
| EP231S: PFAS Surrogate                       |                        |              |                |                   |      |      |
| 13C4-PFOS                                    |                        | 0.002        | %              | 108               | <br> | <br> |
| 13C8-PFOA                                    |                        | 0.002        | %              | 103               | <br> | <br> |

 Page
 : 5 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Surrogate Control Limits**

| Sub-Matrix: <b>SOIL</b> |            | Recovery | Limits (%) |
|-------------------------|------------|----------|------------|
| Compound                | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate  |            |          |            |
| 13C4-PFOS               |            | 60       | 120        |
| 13C8-PFOA               |            | 60       | 120        |
| Sub-Matrix: WATER       |            | Recovery | Limits (%) |
| Compound                | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate  |            |          |            |
| 13C4-PFOS               |            | 60       | 120        |
| 13C8-PFOA               |            | 60       | 120        |



#### **QUALITY CONTROL REPORT**

· ES2028971 Work Order

: GHD PTY LTD Contact : GHD LAB REPORTS

Address : 2/11 VICTORIA SQUARE

ADELAIDE SA. AUSTRALIA 5000

Telephone

Project : 12516828 Order number : 12516828

C-O-C number

Sampler : SEAN SPARROW

Site

Quote number : EN/005

No. of samples received : 2 No. of samples analysed : 2 Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 18-Aug-2020 **Date Analysis Commenced** : 20-Aug-2020

: 25-Aug-2020 Issue Date



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

Client

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Sydney Inorganics, Smithfield, NSW Ivan Taylor Analyst

 Page
 : 2 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                          | Laboratory Duplicate (DUP) Report                 |             |        |       |                 |                  |         |                     |
|----------------------|--------------------------|---------------------------------------------------|-------------|--------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                                  | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EA055: Moisture Co   | ntent (Dried @ 105-110°  | C) (QC Lot: 3211712)                              |             |        |       |                 |                  |         |                     |
| ES2028688-039        | Anonymous                | EA055: Moisture Content                           |             | 0.1    | %     | 5.4             | 5.7              | 6.38    | 0% - 20%            |
| ES2028763-011        | Anonymous                | EA055: Moisture Content                           |             | 0.1    | %     | 14.2            | 14.2             | 0.00    | 0% - 50%            |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC  | Lot: 3211362)                                     |             |        |       |                 |                  |         |                     |
| ES2028625-069        | Anonymous                | EP231X: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5    | 0.0002 | mg/kg | 0.0008          | 0.0006           | 22.2    | No Limit            |
|                      |                          | EP231X: Perfluorohexane sulfonic acid (PFHxS)     | 355-46-4    | 0.0002 | mg/kg | 0.0242          | 0.0211           | 13.5    | 0% - 20%            |
|                      |                          | EP231X: Perfluorooctane sulfonic acid (PFOS)      | 1763-23-1   | 0.0002 | mg/kg | 0.100           | 0.0967           | 3.76    | 0% - 20%            |
| ES2028686-028        | Anonymous                | EP231X: Perfluorobutane sulfonic acid (PFBS)      | 375-73-5    | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorohexane sulfonic acid (PFHxS)     | 355-46-4    | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorooctane sulfonic acid (PFOS)      | 1763-23-1   | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
| EP231B: Perfluoro    | alkyl Carboxylic Acids(  | QC Lot: 3211362)                                  |             |        |       |                 |                  |         |                     |
| ES2028625-069        | Anonymous                | EP231X: Perfluoropentanoic acid (PFPeA)           | 2706-90-3   | 0.0002 | mg/kg | 0.0025          | 0.0025           | 0.00    | 0% - 50%            |
|                      |                          | EP231X: Perfluorohexanoic acid (PFHxA)            | 307-24-4    | 0.0002 | mg/kg | 0.0085          | 0.0087           | 2.54    | 0% - 20%            |
|                      |                          | EP231X: Perfluoroheptanoic acid (PFHpA)           | 375-85-9    | 0.0002 | mg/kg | 0.0015          | 0.0014           | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorooctanoic acid (PFOA)             | 335-67-1    | 0.0002 | mg/kg | 0.0058          | 0.0058           | 0.00    | 0% - 20%            |
|                      |                          | EP231X: Perfluorobutanoic acid (PFBA)             | 375-22-4    | 0.001  | mg/kg | 0.001           | 0.001            | 0.00    | No Limit            |
| ES2028686-028        | Anonymous                | EP231X: Perfluoropentanoic acid (PFPeA)           | 2706-90-3   | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorohexanoic acid (PFHxA)            | 307-24-4    | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluoroheptanoic acid (PFHpA)           | 375-85-9    | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorooctanoic acid (PFOA)             | 335-67-1    | 0.0002 | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorobutanoic acid (PFBA)             | 375-22-4    | 0.001  | mg/kg | <0.001          | <0.001           | 0.00    | No Limit            |
| EP231D: (n:2) Fluo   | rotelomer Sulfonic Acids | s (QC Lot: 3211362)                               |             |        |       |                 |                  |         |                     |
| ES2028625-069        | Anonymous                | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) | 757124-72-4 | 0.0005 | mg/kg | <0.0005         | <0.0005          | 0.00    | No Limit            |

 Page
 : 3 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: SOIL     |                         |                                                 |             |        |       | Laboratory      | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------|-------------------------------------------------|-------------|--------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acid  | ls (QC Lot: 3211362) - continued                |             |        |       |                 |                        |         |                     |
| ES2028625-069        | Anonymous               | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2    | 27619-97-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        |       |                 |                        |         |                     |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2    | 39108-34-4  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        |       |                 |                        |         |                     |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2  | 120226-60-0 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        |       |                 |                        |         |                     |
| ES2028686-028        | Anonymous               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2    | 757124-72-4 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        |       |                 |                        |         |                     |
|                      |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2    | 27619-97-2  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        |       |                 |                        |         |                     |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2    | 39108-34-4  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        |       |                 |                        |         |                     |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2  | 120226-60-0 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        |       |                 |                        |         |                     |
| Sub-Matrix: WATER    |                         |                                                 |             |        |       | Laboratory      | Duplicate (DUP) Report |         |                     |
| Laboratory sample ID | Client sample ID        | Method: Compound                                | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroal  | lkyl Sulfonic Acids (QC | C Lot: 3213638)                                 |             |        |       |                 |                        |         |                     |
| ES2028971-001        | QC30A                   | EP231X-LL: Perfluorobutane sulfonic acid (PFBS) | 375-73-5    | 0.002  | μg/L  | 0.008           | 0.007                  | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorohexane sulfonic acid        | 355-46-4    | 0.002  | μg/L  | 0.047           | 0.046                  | 2.39    | 0% - 20%            |
|                      |                         | (PFHxS)                                         |             |        |       |                 |                        |         |                     |
|                      |                         | EP231X-LL: Perfluorooctane sulfonic acid        | 1763-23-1   | 0.002  | μg/L  | 0.063           | 0.056                  | 13.3    | 0% - 20%            |
|                      |                         | (PFOS)                                          |             |        |       |                 |                        |         |                     |
| EP231B: Perfluoroa   | lkyl Carboxylic Acids   | (QC Lot: 3213638)                               |             |        |       |                 |                        |         |                     |
| ES2028971-001        | QC30A                   | EP231X-LL: Perfluoropentanoic acid (PFPeA)      | 2706-90-3   | 0.002  | μg/L  | 0.006           | 0.006                  | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorohexanoic acid (PFHxA)       | 307-24-4    | 0.002  | μg/L  | 0.019           | 0.020                  | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluoroheptanoic acid (PFHpA)      | 375-85-9    | 0.002  | μg/L  | 0.002           | 0.003                  | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorooctanoic acid (PFOA)        | 335-67-1    | 0.002  | μg/L  | 0.005           | 0.004                  | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorobutanoic acid (PFBA)        | 375-22-4    | 0.01   | μg/L  | <0.01           | <0.01                  | 0.00    | No Limit            |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acid  | ds (QC Lot: 3213638)                            |             |        |       |                 |                        |         |                     |
| ES2028971-001        | QC30A                   | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 | 757124-72-4 | 0.005  | μg/L  | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        | . 3   |                 |                        |         |                     |
|                      |                         | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 | 27619-97-2  | 0.005  | μg/L  | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        |       |                 |                        |         |                     |
|                      |                         | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 | 39108-34-4  | 0.005  | μg/L  | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | FTS)                                            |             |        |       |                 |                        |         |                     |
|                      |                         | EP231X-LL: 10:2 Fluorotelomer sulfonic acid     | 120226-60-0 | 0.005  | μg/L  | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | (10:2 FTS)                                      |             |        |       |                 |                        |         |                     |

 Page
 : 4 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                       |             |        |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
|--------------------------------------------------------|-------------|--------|-------|-------------------|---------------|-------------------------------|-----------|------------|
|                                                        |             |        |       | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                       | CAS Number  | LOR    | Unit  | Result            | Concentration | LCS                           | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 32113    | 362)        |        |       |                   |               |                               |           |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)           | 375-73-5    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 92.0                          | 72.0      | 128        |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)          | 355-46-4    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 82.0                          | 67.0      | 130        |
| EP231X: Perfluorooctane sulfonic acid (PFOS)           | 1763-23-1   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 103                           | 68.0      | 136        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 32     | 11362)      |        |       |                   |               |                               |           |            |
| EP231X: Perfluorobutanoic acid (PFBA)                  | 375-22-4    | 0.001  | mg/kg | <0.001            | 0.00625 mg/kg | 111                           | 71.0      | 135        |
| EP231X: Perfluoropentanoic acid (PFPeA)                | 2706-90-3   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 112                           | 69.0      | 132        |
| EP231X: Perfluorohexanoic acid (PFHxA)                 | 307-24-4    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 109                           | 70.0      | 132        |
| EP231X: Perfluoroheptanoic acid (PFHpA)                | 375-85-9    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 100                           | 71.0      | 131        |
| EP231X: Perfluorooctanoic acid (PFOA)                  | 335-67-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 109                           | 69.0      | 133        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:     | 3211362)    |        |       |                   |               |                               |           |            |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)      | 757124-72-4 | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 104                           | 62.0      | 145        |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)      | 27619-97-2  | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 103                           | 64.0      | 140        |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)      | 39108-34-4  | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 101                           | 65.0      | 137        |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)    | 120226-60-0 | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 111                           | 69.2      | 143        |
| Sub-Matrix: WATER                                      |             |        |       | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report |            |
| Sub-wattix. WATER                                      |             |        |       | Report            | Spike         | Spike Recovery (%)            | Recovery  | Limits (%) |
| Method: Compound                                       | CAS Number  | LOR    | Unit  | Result            | Concentration | LCS                           | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 32136    | 638)        |        |       |                   |               |                               |           |            |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 75.6                          | 72.0      | 130        |
| EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 84.0                          | 68.0      | 131        |
| EP231X-LL: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 84.8                          | 65.0      | 140        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 32     | 13638)      |        |       |                   |               |                               |           |            |
| EP231X-LL: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.01   | μg/L  | <0.01             | 0.125 μg/L    | 79.8                          | 73.0      | 129        |
| EP231X-LL: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 85.6                          | 72.0      | 129        |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 88.0                          | 72.0      | 129        |
| EP231X-LL: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 85.6                          | 72.0      | 130        |
| EP231X-LL: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 87.2                          | 71.0      | 133        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:     | 3213638)    |        |       |                   |               |                               |           |            |
| EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.005  | μg/L  | <0.005            | 0.025 μg/L    | 91.6                          | 63.0      | 143        |
| EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.005  | μg/L  | <0.005            | 0.025 μg/L    | 85.6                          | 64.0      | 140        |
| EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.005  | μg/L  | <0.005            | 0.025 μg/L    | 93.2                          | 67.0      | 138        |
| EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.005  | μg/L  | <0.005            | 0.025 μg/L    | 94.0                          | 75.2      | 137        |

 Page
 : 5 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL     |                                            |                                                     |             | Ма            | trix Spike (MS) Report |             |          |
|----------------------|--------------------------------------------|-----------------------------------------------------|-------------|---------------|------------------------|-------------|----------|
|                      |                                            |                                                     |             | Spike         | SpikeRecovery(%)       | Recovery Li | mits (%) |
| Laboratory sample ID | Client sample ID                           | Method: Compound                                    | CAS Number  | Concentration | MS                     | Low         | High     |
| EP231A: Perfluoro    | alkyl Sulfonic Acids (QCLot: 3211362)      |                                                     |             |               |                        |             |          |
| ES2028625-069        | Anonymous                                  | EP231X: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.00125 mg/kg | 74.8                   | 72.0        | 128      |
|                      |                                            | EP231X: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4    | 0.00125 mg/kg | # Not                  | 67.0        | 130      |
|                      |                                            |                                                     |             |               | Determined             |             |          |
|                      |                                            | EP231X: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1   | 0.00125 mg/kg | # Not                  | 68.0        | 136      |
|                      |                                            |                                                     |             |               | Determined             |             |          |
| EP231B: Perfluoro    | alkyl Carboxylic Acids (QCLot: 3211362)    |                                                     |             |               |                        |             |          |
| ES2028625-069        | Anonymous                                  | EP231X: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.00625 mg/kg | 88.1                   | 71.0        | 135      |
|                      |                                            | EP231X: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.00125 mg/kg | 77.6                   | 69.0        | 132      |
|                      |                                            | EP231X: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.00125 mg/kg | # Not                  | 70.0        | 132      |
|                      |                                            |                                                     |             |               | Determined             |             |          |
|                      |                                            | EP231X: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.00125 mg/kg | # 69.6                 | 71.0        | 131      |
|                      |                                            | EP231X: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.00125 mg/kg | 96.8                   | 69.0        | 133      |
| EP231D: (n:2) Fluc   | protelomer Sulfonic Acids (QCLot: 3211362) |                                                     |             |               |                        |             |          |
| ES2028625-069        | Anonymous                                  | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.00125 mg/kg | 72.0                   | 62.0        | 145      |
|                      |                                            | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.00125 mg/kg | 70.0                   | 64.0        | 140      |
|                      |                                            | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.00125 mg/kg | 70.8                   | 65.0        | 137      |
|                      |                                            | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.00125 mg/kg | 75.2                   | 69.2        | 143      |



# QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **ES2028971** Page : 1 of 5

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : GHD LAB REPORTS
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 18-Aug-2020

 Site
 : Issue Date
 : 25-Aug-2020

 Site
 :
 Issue Date
 : 25-Aug-2020

 Sampler
 : SEAN SPARROW
 No. of samples received
 : 2

Sampler : SEAN SPARROW No. or samples received : 2
Order number : 12516828 No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

 Page
 : 2 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



**Outliers: Quality Control Samples** 

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                     | Laboratory Sample ID | Client Sample ID | Analyte                | CAS Number | Data       | Limits    | Comment                               |
|-----------------------------------------|----------------------|------------------|------------------------|------------|------------|-----------|---------------------------------------|
| Matrix Spike (MS) Recoveries            |                      |                  |                        |            |            |           |                                       |
| EP231A: Perfluoroalkyl Sulfonic Acids   | ES2028625069         | Anonymous        | Perfluorohexane        | 355-46-4   | Not        |           | MS recovery not determined,           |
|                                         |                      |                  | sulfonic acid          |            | Determined |           | background level greater than or      |
|                                         |                      |                  | (PFHxS)                |            |            |           | equal to 4x spike level.              |
| EP231A: Perfluoroalkyl Sulfonic Acids   | ES2028625069         | Anonymous        | Perfluorooctane        | 1763-23-1  | Not        |           | MS recovery not determined,           |
|                                         |                      |                  | sulfonic acid (PFOS)   |            | Determined |           | background level greater than or      |
|                                         |                      |                  |                        |            |            |           | equal to 4x spike level.              |
| EP231B: Perfluoroalkyl Carboxylic Acids | ES2028625069         | Anonymous        | Perfluorohexanoic acid | 307-24-4   | Not        |           | MS recovery not determined,           |
|                                         |                      |                  | (PFHxA)                |            | Determined |           | background level greater than or      |
|                                         |                      |                  |                        |            |            |           | equal to 4x spike level.              |
| EP231B: Perfluoroalkyl Carboxylic Acids | ES2028625069         | Anonymous        | Perfluoroheptanoic     | 375-85-9   | 69.6 %     | 71.0-131% | Recovery less than lower data quality |
|                                         |                      |                  | acid (PFHpA)           |            |            |           | objective                             |

#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Madrix WATER                                        |       |         |        |          |                                |
|-----------------------------------------------------|-------|---------|--------|----------|--------------------------------|
| Quality Control Sample Type                         | Count |         | Rate   | e (%)    | Quality Control Specification  |
| Method                                              | QC    | Regular | Actual | Expected |                                |
| Matrix Spikes (MS)                                  |       |         |        |          |                                |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS | 0     | 1       | 0.00   | 5.00     | NEPM 2013 B3 & ALS QC Standard |

#### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not quarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: × = Holding time breach; ✓ = Within holding time.

| wathx: SOIL                                 |             |                |                        | Evaluation | i. 🔻 = Holding time | breach, V = With | n notaing time |
|---------------------------------------------|-------------|----------------|------------------------|------------|---------------------|------------------|----------------|
| Method                                      | Sample Date | Ex             | traction / Preparation |            |                     | Analysis         |                |
| Container / Client Sample ID(s)             |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis | Evaluation     |
| EA055: Moisture Content (Dried @ 105-110°C) |             |                |                        |            |                     |                  |                |
| HDPE Soil Jar (EA055) QC30AS                | 17-Aug-2020 |                |                        |            | 20-Aug-2020         | 31-Aug-2020      | ✓              |
| EP231A: Perfluoroalkyl Sulfonic Acids       |             |                |                        |            |                     |                  |                |
| HDPE Soil Jar (EP231X) QC30AS               | 17-Aug-2020 | 20-Aug-2020    | 13-Feb-2021            | 1          | 21-Aug-2020         | 29-Sep-2020      | ✓              |
| EP231B: Perfluoroalkyl Carboxylic Acids     |             |                |                        |            |                     |                  |                |
| HDPE Soil Jar (EP231X) QC30AS               | 17-Aug-2020 | 20-Aug-2020    | 13-Feb-2021            | 1          | 21-Aug-2020         | 29-Sep-2020      | ✓              |

 Page
 : 3 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Matrix: SOIL                               |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|--------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                     | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)            |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                        |            |                    |                    |                |
| HDPE Soil Jar (EP231X)                     |             |                |                        |            |                    |                    |                |
| QC30AS                                     | 17-Aug-2020 | 20-Aug-2020    | 13-Feb-2021            | ✓          | 21-Aug-2020        | 29-Sep-2020        | ✓              |
| EP231P: PFAS Sums                          |             |                |                        |            |                    |                    |                |
| HDPE Soil Jar (EP231X)                     |             |                |                        |            |                    |                    |                |
| QC30AS                                     | 17-Aug-2020 | 20-Aug-2020    | 13-Feb-2021            | <b>√</b>   | 21-Aug-2020        | 29-Sep-2020        | ✓              |
| Matrix: WATER                              |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
| Method                                     | Sample Date | Ex             |                        | Analysis   |                    |                    |                |
| Container / Client Sample ID(s)            |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP231A: Perfluoroalkyl Sulfonic Acids      |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL)                 |             |                |                        |            |                    |                    |                |
| QC30A                                      | 17-Aug-2020 | 24-Aug-2020    | 13-Feb-2021            | ✓          | 24-Aug-2020        | 13-Feb-2021        | ✓              |
| EP231B: Perfluoroalkyl Carboxylic Acids    |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL)                 |             |                |                        |            |                    |                    |                |
| QC30A                                      | 17-Aug-2020 | 24-Aug-2020    | 13-Feb-2021            | ✓          | 24-Aug-2020        | 13-Feb-2021        | ✓              |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL)                 |             |                |                        |            |                    |                    |                |
| QC30A                                      | 17-Aug-2020 | 24-Aug-2020    | 13-Feb-2021            | ✓          | 24-Aug-2020        | 13-Feb-2021        | ✓              |
| EP231P: PFAS Sums                          |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL)                 |             |                | 40.5.1.0004            |            |                    | 40 5 1 0004        |                |
| QC30A                                      | 17-Aug-2020 | 24-Aug-2020    | 13-Feb-2021            | <u> </u>   | 24-Aug-2020        | 13-Feb-2021        | ✓              |

 Page
 : 4 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                         | -         |    |         | Evaluatio |                   | introl frequency | not within specification; ✓ = Quality Control frequency within specification  |
|------------------------------------------------------|-----------|----|---------|-----------|-------------------|------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                          |           |    | ount    |           | Rate (%)          |                  | Quality Control Specification                                                 |
| Analytical Methods                                   | Method    | QC | Reaular | Actual    | Expected          | Evaluation       |                                                                               |
| Laboratory Duplicates (DUP)                          |           |    |         |           |                   |                  |                                                                               |
| Moisture Content                                     | EA055     | 2  | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 2  | 20      | 10.00     | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |           |    |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |           |    |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |           |    |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X    | 1  | 20      | 5.00      | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix: WATER                                        |           |    |         | Evaluatio | n: × = Quality Co | ntrol frequency  | not within specification ; ✓ = Quality Control frequency within specification |
| Quality Control Sample Type                          |           | C  | ount    | Rate (%)  |                   |                  | Quality Control Specification                                                 |
| Analytical Methods                                   | Method    | QC | Reaular | Actual    | Expected          | Evaluation       |                                                                               |
| Laboratory Duplicates (DUP)                          |           |    |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 1       | 100.00    | 10.00             | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |           |    |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 1       | 100.00    | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |           |    |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 1  | 1       | 100.00    | 5.00              | ✓                | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |           |    |         |           |                   |                  |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL | 0  | 1       | 0.00      | 5.00              | ×                | NEPM 2013 B3 & ALS QC Standard                                                |

 Page
 : 5 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                       | EA055     | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS   | EP231X    | SOIL   | In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                     |
| Per- and Polyfluoroalkyl Substances<br>(PFAS by LCMSMS | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is concentrated, combined with an equal volume of reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                    | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample Extraction for PFAS in solid matrices           | ORG73     | SOIL   | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                                                                                          |
| Solid Phase Extraction (SPE) for PFAS in water         | ORG72     | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                  |

| EŃVIROLAB                                | ENVÍROLAB<br>EMPI                             | CHA          | AIN C           | F CUS            | то                           | D              | / F                                          | OF               | RIV        | l - (                                            | ––<br>Cli | en                  | t      |          | Nati<br>Sydr<br>12 A                          | ional pl<br>ney Lab<br>shley S | ROLA<br>hone no<br>b - Envi<br>St, Char<br>6200   S | umber<br>rolab S<br>Iswood | 1300 4:<br>Service<br>I, NSW | 4 344                                                         |                        |       |         |        |
|------------------------------------------|-----------------------------------------------|--------------|-----------------|------------------|------------------------------|----------------|----------------------------------------------|------------------|------------|--------------------------------------------------|-----------|---------------------|--------|----------|-----------------------------------------------|--------------------------------|-----------------------------------------------------|----------------------------|------------------------------|---------------------------------------------------------------|------------------------|-------|---------|--------|
| [Copyright and Confid                    |                                               |              |                 |                  |                              |                |                                              |                  |            |                                                  |           |                     |        |          | Pert                                          | h Lab -<br>8 Havd              | MPLL<br>len Crt,                                    | aborat<br>Myare            | ories<br>e. WA (             | 154                                                           |                        |       |         |        |
| Client: GHD Pty Ltd                      |                                               |              |                 | 1                | Client                       | Projec         | t Nam                                        | e/Numb           |            |                                                  | report    | title):             |        |          | ○ 08                                          | 9317 2                         | 2505   2                                            | lab@                       | mpl.co                       | m.au                                                          |                        |       |         |        |
| Contact Person: Se                       | <del>'</del>                                  |              |                 | 1                | <del></del>                  |                |                                              |                  | 125        | 16828                                            |           |                     |        |          | Melt                                          | ourne                          | <u>Lab</u> - E                                      | nvirol                     | ab Serv                      | ices                                                          |                        |       |         |        |
| Project Mgr: Dilara<br>Sampler: Sean Spa |                                               |              |                 | <del>.</del>     | PO No                        |                |                                              |                  |            |                                                  |           |                     |        |          | 25 R                                          | esearc<br>3 9763 2             | th Drive<br>2500 ] 🛭                                | , Croy∈<br>∰ melt          | don So<br>œurne(             | uth, VIC 3136<br>genvirolab.com.au                            |                        |       |         |        |
| Address:                                 | inom                                          |              |                 |                  | Date n                       |                | require                                      |                  |            |                                                  | star      | ndard               |        |          |                                               |                                | ffice - E                                           |                            |                              | _                                                             |                        |       |         |        |
| Address,                                 | Level 4, 211 Victoria Squ                     | are, Adelaid | le 5000         | ,                | Or cho                       | oose: 1        | standa                                       | rd / san         |            |                                                  | / 2 day   | / 3 day<br>required |        | harges   | 7aT<br>0≻08                                   | he Para<br>3 7087 (            | ade, No                                             | rwood<br>⊠adel             | , SA 50<br>alde@e            | 67<br>nvirolab.com.au                                         |                        |       |         |        |
| Phone:                                   | <del></del>                                   | Mob:         | 0498 260 62     | 6 1              |                              | onal re        | port fo                                      | rmat:            | esdat /    | equis /                                          | ,         |                     |        |          | 20a.                                          | 10-20 I                        | Depot 9                                             | St. Ban                    | vo. QL                       | 4014                                                          |                        |       |         |        |
| Email:                                   | GHDLabReports@ghd.co                          |              |                 | · \              | Lab C                        |                |                                              |                  |            |                                                  |           |                     |        |          | l                                             |                                |                                                     |                            | _                            | nvirolab.com.au                                               |                        |       |         |        |
|                                          | sean.sparrow@ghd.com<br>dilara.valiff@ghd.com |              | ٠.              | `                |                              |                |                                              |                  |            |                                                  |           |                     |        |          | Unit                                          | 20/119                         | ice - En<br>Reich<br>1201   E                       | ardt Ro                    | ad, W                        | es<br>nnellie, NT 0820<br>/irolab.com.au                      |                        |       |         |        |
|                                          | Sample Infor                                  | mation       |                 |                  |                              |                |                                              |                  |            |                                                  | Tes       | its Req             | ulred  |          | 1                                             |                                |                                                     |                            |                              | Comments                                                      |                        |       |         |        |
| Envirolab Sample                         | Client Sample ID or<br>Information            | Depth        | Date<br>sampled | Type of sample   | PFAS Ultra Trace<br>in Water |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              | Provide as much<br>information about the<br>sample as you can |                        |       |         |        |
|                                          | BR03_1A                                       |              | 11/09/2020      | water            | ×                            |                |                                              |                  |            | <del>                                     </del> |           | 1                   |        |          | $\vdash$                                      |                                | $\vdash$                                            |                            |                              |                                                               | 1                      |       |         |        |
| 2                                        | BR03_1B                                       | ĺ            | 11/09/2020      | <u>water</u>     | ×                            |                |                                              |                  |            | 1                                                | İ         | 1                   | i i    |          |                                               |                                |                                                     |                            | i                            | -                                                             | 1                      |       |         |        |
| 3.                                       | BR03_1C                                       |              | 11/09/2020      | water            | x                            |                |                                              |                  | -          |                                                  | l         |                     | t –    | -        | _                                             | -                              | İ                                                   |                            | -                            |                                                               | 1                      |       |         |        |
| V                                        | BR02_1A                                       |              | 11/09/2020      | <u>water</u>     | ×                            |                |                                              | 1                |            |                                                  | 1         |                     |        |          |                                               |                                |                                                     |                            | T                            |                                                               | 1                      |       |         |        |
| 5                                        | BR02_1B                                       |              | 11/09/2020      | <u>water</u>     | ×                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                | i i                                                 |                            |                              |                                                               | 1                      |       |         |        |
| 6                                        | BR02_1C                                       |              | 11/09/2020      | water            | ×                            |                |                                              | 1                |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              |                                                               | 1                      |       |         |        |
| 7                                        | MBC02_1A                                      |              | 11/09/2020      | <u>water</u>     | х                            |                |                                              | $\top$           |            |                                                  | 1         | T                   |        |          |                                               |                                |                                                     |                            |                              |                                                               | 1                      |       |         |        |
| 8                                        | MBC02_1B                                      |              | 11/09/2020      | water            | х                            |                |                                              |                  | 1          |                                                  |           |                     |        |          |                                               |                                |                                                     | İ                          |                              | -                                                             | 1                      |       |         |        |
| <u> </u>                                 | MBC02_1C                                      |              | 11/09/2020      | water            | ×                            |                |                                              |                  |            | Ì                                                | 1         |                     | 1      |          |                                               |                                |                                                     | 1                          |                              |                                                               | 1                      |       |         |        |
| 10                                       | MBC01_1A                                      |              | 11/09/2020      | water            | ×                            |                | 1                                            | 1                |            |                                                  | <b> </b>  |                     |        |          |                                               |                                |                                                     |                            |                              |                                                               | 1                      |       |         |        |
| 1)                                       | MBC01_1B                                      |              | 11/09/2020      | water            | ×                            |                |                                              |                  |            |                                                  |           |                     |        | $\Box$   |                                               |                                |                                                     |                            |                              | -                                                             | 1                      |       |         |        |
| 12                                       | MBC01_1C                                      |              | 11/09/2020      | <u>water</u>     | ×                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               | T-                             | 1                                                   |                            |                              |                                                               | 1 .                    |       |         |        |
| 13                                       | BR03_2A                                       |              | 17/09/2020      | <u>water</u>     | х                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              |                                                               | 122F 6                 | smi c | D9      | ived). |
| 14                                       | BR03_2B                                       |              | 17/09/2020      | <u>water</u>     | х                            | Ĭ              |                                              | Ĭ                |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              |                                                               | 1 `                    | , h   |         |        |
| 15                                       | BR03_2C                                       |              | 17/09/2020      | water            | x                            |                |                                              | Ĭ                |            |                                                  | $\vdash$  |                     |        |          |                                               |                                | Ī                                                   | 1                          |                              |                                                               | 1 15                   | 5 9 1 | $\sim$  | (O)    |
| 16                                       | BR02_2A                                       |              | 17/09/2020      | water            | х                            | Ì              |                                              | 1                |            |                                                  |           |                     |        |          | 1                                             |                                |                                                     | i i                        |                              |                                                               | 1 `                    | 1,1   |         |        |
| 14                                       | BR02_2B                                       |              | 17/09/2020      | water            | х                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              |                                                               | 1                      |       |         |        |
| 18                                       | BR02_2C                                       |              | 17/09/2020      | water            | X                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                |                                                     | П                          |                              |                                                               | 1200                   | eshi  | 1 v     | Also 0 |
| 10                                       | MBC02_2A                                      |              | 17/09/2020      | <u>water</u>     | Х                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              |                                                               | 1ste<br>19<br>2nu<br>2 |       | } '     |        |
| Ja                                       | MBC02_2B                                      |              | 17/09/2020      | <u>water</u>     | х                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              |                                                               | _ [                    | . 1.  | ·<br>~~ | 1.00   |
| 71                                       | MBC02_2C                                      |              | 17/09/2020      | water            | х                            |                |                                              | $L^-$            | $\Box$     |                                                  |           |                     |        |          |                                               |                                |                                                     | <u></u>                    |                              |                                                               | j 'l                   | 1141  | $\odot$ | (0)    |
| 71                                       | MBC01_2A                                      |              | 17/09/2020      | water            | Х                            |                |                                              |                  |            |                                                  |           |                     |        |          | L                                             |                                | I                                                   |                            |                              |                                                               | ]                      | , (   |         |        |
| 2.5                                      | MBC01_2B                                      |              | 17/09/2020      | <u>water</u>     | х                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            | L                            |                                                               |                        |       |         |        |
| 24                                       | MBC01_2C                                      |              | 17/09/2020      | water            | х                            |                |                                              | $\mathbb{L}_{-}$ |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              |                                                               | ]                      |       |         |        |
| 25                                       | QC31                                          |              | 11/09/2020      | <u>water</u>     | х                            |                |                                              |                  |            |                                                  | $L^{T}$   | $L^-$               | $\Box$ |          |                                               |                                | $L^{-}$                                             |                            |                              |                                                               | ]                      |       |         | /      |
|                                          | QC31A                                         |              | 11/09/2020      | water            | х                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              | Please forward to ALS                                         | Extra                  | 2     | 1       |        |
| 26                                       | QC32                                          | L            | 11/09/2020      | <u>water</u>     | х                            |                |                                              |                  |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            |                              |                                                               | ] ייריי                | ·//   | · .     | ,, /a  |
| <b>-</b>                                 | QC32A                                         |              | 11/09/2020      | <u>water</u>     | ×                            |                |                                              |                  |            | $oxed{oxed}$                                     |           |                     |        | $L^-$    |                                               |                                |                                                     |                            |                              | Please forward to ALS                                         | ]#29                   | FBO   | 1       | WA     |
| 2.7                                      | QC35                                          |              | 17/09/2020      | water            | ·x                           |                |                                              | L                |            |                                                  |           |                     |        |          |                                               |                                |                                                     |                            | Ŀ                            |                                                               | ] '.'                  | 02.   | ,       |        |
| 7                                        | QC35A                                         |              | 17/09/2020      | water            | х                            |                |                                              |                  |            | 匚                                                |           |                     |        | L.,      | L                                             |                                |                                                     |                            |                              | Please forward to ALS                                         | #29<br>30<br>31        | KBO   | (       | 11/9   |
| 18                                       | QC36 ·                                        | <u> </u>     | 17/09/2020      | <u>water</u>     | х                            |                | <u> </u>                                     | 1                | lacksquare | 1                                                | <u> </u>  | _                   | 1      |          | <u> </u>                                      |                                | <u> </u>                                            | <u> </u>                   |                              |                                                               | 1 ′                    | ,7 17 |         | ,- 10  |
|                                          | QC36A                                         | L            | 17/09/2020      | water            | x                            |                | <u>L_</u>                                    |                  |            | <u></u>                                          | <u> </u>  | <u> </u>            | L      | Ц_       | <u> </u>                                      | L                              | <u> </u>                                            |                            |                              | Please forward to ALS                                         | 1 31                   | 1-15  |         | 1711   |
|                                          | Please tick the box if observed               | settled sed  | iment presen    |                  |                              |                |                                              |                  | tion a     | nd/or at                                         |           |                     |        |          |                                               |                                | -h (*-                                              | G=1:                       |                              |                                                               | 1 '                    | . 00  |         | 12/0   |
|                                          | Company): SCS                                 |              |                 | Received by (Com | pany):                       | Ċ              | <u>"                                    </u> | ΨŲ               | Han        | _                                                | $\vdash$  | umber               | 96     | 74       | रित                                           |                                | ab Uso                                              |                            | 7-                           |                                                               | <u>ተ 3</u> 2           | L KB  |         | (7/ 1  |
|                                          | he Stell                                      |              |                 | Print Name:      | 41                           | <del>}</del> } | 4                                            | W                | N          | ➾                                                | -         |                     |        | <u> </u> | <u>y ,                                   </u> |                                |                                                     |                            |                              | ack / None                                                    | `` ⊦                   |       |         |        |
| Date & Time;<br>Signature;               | 181912009.31                                  | 20-          |                 | Date & Time;     | U                            | प              | 41                                           |                  |            | $\sim$                                           | _         | erature             |        |          | _                                             | _                              |                                                     | rity sea                   | l: Intac                     | Broken / None                                                 | 4                      |       |         |        |
| Signature: \ \                           | 34-V                                          |              |                 | Signature:       |                              | ١.             | . •                                          | ·                |            |                                                  | ITAT      | Req - S/            | AME da | v / 1    | 1213                                          | 141                            | STD                                                 |                            | <u> </u>                     | 7                                                             | ı                      |       |         |        |

TAT Req - SAME day / 1 / 2 / 3 / 4 / STD



Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 251682**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                 |
|--------------------------------------|-----------------|
| Your Reference                       | <u>12516828</u> |
| Number of Samples                    | 32 Water        |
| Date samples received                | 21/09/2020      |
| Date completed instructions received | 21/09/2020      |

## **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                   |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| Date results requested by                                                             | 28/09/2020                                                        |  |  |  |  |  |  |
| Date of Issue                                                                         | 28/09/2020                                                        |  |  |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                   |  |  |  |  |  |  |
| Accredited for compliance with ISO/                                                   | IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |  |  |  |

#### Results Approved By

Phalak Inthakesone, Organics Development Manager, Sydney

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 251682-1   | 251682-2   | 251682-3   | 251682-4   | 251682-5   |
| Your Reference                                     | UNITS | BR03_1A    | BR03_1B    | BR03_1C    | BR02_1A    | BR02_1B    |
| Date Sampled                                       |       | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 |
| Date analysed                                      | -     | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.033      | 0.031      | 0.031      | 0.0038     | 0.0036     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.0072     | 0.0074     | 0.0086     | 0.0008     | 0.0007     |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.001      | 0.001      | 0.001      | <0.0002    | <0.0002    |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 102        | 102        | 98         | 96         | 98         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 96         | 96         | 95         | 94         | 94         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 78         | 84         | 81         | 84         | 80         |
| Extracted ISTD 13 C4 PFOS                          | %     | 78         | 83         | 76         | 80         | 73         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 82         | 84         | 81         | 94         | 88         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 138        | 142        | 138        | 150        | 154        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | #          | #          | #          | #          | 190        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.040      | 0.038      | 0.040      | 0.0046     | 0.0043     |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0085     | 0.0085     | 0.0097     | 0.0008     | 0.0007     |
| Total Positive PFAS                                | μg/L  | 0.042      | 0.039      | 0.041      | 0.0046     | 0.0043     |

| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 251682-6   | 251682-7   | 251682-8   | 251682-9   | 251682-10  |
| Your Reference                                     | UNITS | BR02_1C    | MBC02_1A   | MBC02_1B   | MBC02_1C   | MBC01_1A   |
| Date Sampled                                       |       | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 |
| Date analysed                                      | -     | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.0034     | 0.0036     | 0.0037     | 0.0036     | 0.0037     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.0006     | 0.0045     | 0.0045     | 0.0042     | 0.0038     |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.0002    | 0.0040     | 0.0040     | 0.0038     | 0.0032     |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 101        | 103        | 94         | 96         | 101        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 95         | 94         | 93         | 93         | 93         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 85         | 86         | 84         | 85         | 83         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 69         | 81         | 83         | 81         | 76         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 89         | 91         | 93         | 92         | 95         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 138        | 161        | 167        | 167        | 160        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 186        | #          | #          | #          | #          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0040     | 0.0082     | 0.0082     | 0.0078     | 0.0075     |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0006     | 0.0085     | 0.0085     | 0.0080     | 0.0070     |
| Total Positive PFAS                                | μg/L  | 0.0040     | 0.012      | 0.012      | 0.012      | 0.011      |

| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 251682-11  | 251682-12  | 251682-13  | 251682-14  | 251682-15  |
| Your Reference                                     | UNITS | MBC01_1B   | MBC01_1C   | BR03_2A    | BR03_2B    | BR03_2C    |
| Date Sampled                                       |       | 11/09/2020 | 11/09/2020 | 17/09/2020 | 17/09/2020 | 17/09/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 |
| Date analysed                                      | -     | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.0037     | 0.0040     | 0.061      | 0.061      | 0.060      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.0040     | 0.0032     | 0.014      | 0.016      | 0.016      |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0032     | 0.0035     | 0.0022     | 0.002      | 0.0020     |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 104        | 98         | 99         | 104        | 99         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 93         | 98         | 92         | 92         | 97         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 85         | 82         | 78         | 76         | 80         |
| Extracted ISTD 13 C4 PFOS                          | %     | 71         | 81         | 71         | 62         | 63         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 94         | 94         | 80         | 83         | 77         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 158        | 159        | 143        | 152        | 140        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | #          | #          | #          | #          | #          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0078     | 0.0072     | 0.074      | 0.077      | 0.076      |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0072     | 0.0067     | 0.016      | 0.018      | 0.018      |
| Total Positive PFAS                                | μg/L  | 0.011      | 0.011      | 0.076      | 0.079      | 0.078      |

| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 251682-16  | 251682-17  | 251682-18  | 251682-19  | 251682-20  |
| Your Reference                                     | UNITS | BR02_2A    | BR02_2B    | BR02_2C    | MBC02_2A   | MBC02_2B   |
| Date Sampled                                       |       | 17/09/2020 | 17/09/2020 | 17/09/2020 | 17/09/2020 | 17/09/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 |
| Date analysed                                      | -     | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 | 28/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.0032     | 0.0027     | 0.0026     | 0.0038     | 0.0035     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.0007     | 0.0006     | 0.0007     | 0.0071     | 0.0066     |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.0002    | <0.0002    | <0.0002    | 0.0050     | 0.0049     |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 98         | 94         | 100        | 98         | 95         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 96         | 95         | 94         | 95         | 94         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 83         | 66         | 82         | 83         | 112        |
| Extracted ISTD 13 C4 PFOS                          | %     | 76         | 57         | 75         | 78         | 97         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 92         | 79         | 95         | 90         | 97         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 137        | 109        | 146        | 167        | 148        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | 172        | 123        | 181        | #          | #          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0039     | 0.0033     | 0.0033     | 0.011      | 0.010      |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0007     | 0.0006     | 0.0007     | 0.012      | 0.012      |
| Total Positive PFAS                                | μg/L  | 0.0039     | 0.0033     | 0.0033     | 0.016      | 0.015      |

| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 251682-21  | 251682-22  | 251682-23  | 251682-24  | 251682-25  |
| Your Reference                                     | UNITS | MBC02_2C   | MBC01_2A   | MBC01_2B   | MBC01_2C   | QC31       |
| Date Sampled                                       |       | 17/09/2020 | 17/09/2020 | 17/09/2020 | 17/09/2020 | 17/09/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 | 25/09/2020 |
| Date analysed                                      | -     | 28/09/2020 | 28/09/2020 | 28/09/2020 | 28/09/2020 | 28/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.0032     | 0.0046     | 0.0046     | 0.0044     | 0.032      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.0042     | 0.0041     | 0.0045     | 0.0040     | 0.0083     |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0043     | 0.0043     | 0.0042     | 0.0044     | 0.001      |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 99         | 103        | 99         | 97         | 97         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 94         | 93         | 92         | 92         | 93         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 116        | 113        | 111        | 112        | 102        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 96         | 93         | 88         | 91         | 88         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 102        | 105        | 104        | 101        | 86         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 155        | 156        | 153        | 149        | 124        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | #          | 176        | 186        | 160        | 157        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0075     | 0.0087     | 0.0091     | 0.0084     | 0.040      |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0086     | 0.0084     | 0.0087     | 0.0084     | 0.0094     |
| Total Positive PFAS                                | μg/L  | 0.012      | 0.013      | 0.013      | 0.013      | 0.042      |

| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 251682-26  | 251682-27  | 251682-28  | 251682-29  | 251682-30  |
| Your Reference                                     | UNITS | QC32       | QC35       | QC36       | FB10       | RB10       |
| Date Sampled                                       |       | 17/09/2020 | 17/09/2020 | 17/09/2020 | 11/09/2020 | 11/09/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 25/09/2020 | 25/09/2020 | 25/09/2020 | 24/09/2020 | 24/09/2020 |
| Date analysed                                      | -     | 28/09/2020 | 28/09/2020 | 28/09/2020 | 28/09/2020 | 28/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.0038     | 0.0046     | 0.060      | <0.0002    | <0.0002    |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.0047     | 0.0044     | 0.013      | <0.0002    | <0.0002    |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0043     | 0.0041     | 0.002      | <0.0002    | <0.0002    |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 99         | 93         | 91         | 106        | 97         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 91         | 91         | 92         | 108        | 102        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 108        | 109        | 102        | 99         | 102        |
| Extracted ISTD 13 C4 PFOS                          | %     | 90         | 92         | 87         | 53         | 89         |
| Extracted ISTD 13 C4 PFOA                          | %     | 102        | 102        | 93         | 113        | 119        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 153        | 155        | 134        | 121        | 148        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 161        | 170        | 169        | 73         | #          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0085     | 0.0090     | 0.072      | <0.0002    | <0.0002    |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0090     | 0.0085     | 0.015      | <0.0002    | <0.0002    |
| Total Positive PFAS                                | μg/L  | 0.013      | 0.013      | 0.074      | <0.0002    | <0.0002    |

| PFAS in Water TRACE Short                          |       |            |            |
|----------------------------------------------------|-------|------------|------------|
| Our Reference                                      |       | 251682-31  | 251682-32  |
| Your Reference                                     | UNITS | FB11       | RB11       |
| Date Sampled                                       |       | 17/09/2020 | 17/09/2020 |
| Type of sample                                     |       | Water      | Water      |
| Date prepared                                      | -     | 24/09/2020 | 24/09/2020 |
| Date analysed                                      | -     | 28/09/2020 | 28/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.0002    | <0.0002    |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.0002    | <0.0002    |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.0002    | <0.0002    |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 98         | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 102        | 102        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 94         | 94         |
| Extracted ISTD 13 C4 PFOS                          | %     | 59         | 76         |
| Extracted ISTD 13 C4 PFOA                          | %     | 117        | 120        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 129        | 129        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | 71         | 94         |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.0002    | <0.0002    |
| Total Positive PFOS & PFOA                         | μg/L  | <0.0002    | <0.0002    |
| Total Positive PFAS                                | μg/L  | <0.0002    | <0.0002    |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY CONT                                       | TROL: PFAS | in Water | TRACE Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|----------|-------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL      | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | 251682-2   |
| Date prepared                                      | -          |          |             | 24/09/2020 | 1 | 24/09/2020 | 24/09/2020 |     | 24/09/2020 | 24/09/2020 |
| Date analysed                                      | -          |          |             | 25/09/2020 | 1 | 25/09/2020 | 25/09/2020 |     | 25/09/2020 | 25/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | 0.033      | 0.033      | 0   | 109        | 108        |
| Perfluorooctanesulfonic acid PFOS                  | µg/L       | 0.0002   | Org-029     | <0.0002    | 1 | 0.0072     | 0.0067     | 7   | 110        | 115        |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | 0.001      | 0.001      | 0   | 104        | 108        |
| 6:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 100        | 119        |
| 8:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 96         | 118        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |          | Org-029     | 102        | 1 | 102        | 100        | 2   | 107        | 105        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |          | Org-029     | 99         | 1 | 96         | 94         | 2   | 98         | 94         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |          | Org-029     | 80         | 1 | 78         | 82         | 5   | 82         | 78         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |          | Org-029     | 65         | 1 | 78         | 84         | 7   | 72         | 73         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |          | Org-029     | 118        | 1 | 82         | 77         | 6   | 115        | 73         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |          | Org-029     | 105        | 1 | 138        | 141        | 2   | 95         | 136        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |          | Org-029     | 93         | 1 | #          | #          |     | 114        | #          |

| QUALITY CONT                                      | ROL: PFAS | in Water | TRACE Short |       |    | Du         | plicate    |     | Spike Re   | covery %   |
|---------------------------------------------------|-----------|----------|-------------|-------|----|------------|------------|-----|------------|------------|
| Test Description                                  | Units     | PQL      | Method      | Blank | #  | Base       | Dup.       | RPD | LCS-W2     | 251682-22  |
| Date prepared                                     | -         |          |             | [NT]  | 11 | 24/09/2020 | 24/09/2020 |     | 24/09/2020 | 24/09/2020 |
| Date analysed                                     | -         |          |             | [NT]  | 11 | 25/09/2020 | 25/09/2020 |     | 28/09/2020 | 28/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS              | μg/L      | 0.0002   | Org-029     | [NT]  | 11 | 0.0037     | 0.0039     | 5   | 104        | 102        |
| Perfluorooctanesulfonic acid PFOS                 | μg/L      | 0.0002   | Org-029     | [NT]  | 11 | 0.0040     | 0.0038     | 5   | 104        | 100        |
| Perfluorooctanoic acid PFOA                       | μg/L      | 0.0002   | Org-029     | [NT]  | 11 | 0.0032     | 0.0034     | 6   | 102        | 107        |
| 6:2 FTS                                           | μg/L      | 0.0004   | Org-029     | [NT]  | 11 | <0.0004    | <0.0004    | 0   | 104        | 115        |
| 8:2 FTS                                           | μg/L      | 0.0004   | Org-029     | [NT]  | 11 | <0.0004    | <0.0004    | 0   | 92         | 110        |
| Surrogate 13 C <sub>8</sub> PFOS                  | %         |          | Org-029     | [NT]  | 11 | 104        | 96         | 8   | 102        | 94         |
| Surrogate 13 C <sub>2</sub> PFOA                  | %         |          | Org-029     | [NT]  | 11 | 93         | 96         | 3   | 95         | 95         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %         |          | Org-029     | [NT]  | 11 | 85         | 82         | 4   | 109        | 115        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %         |          | Org-029     | [NT]  | 11 | 71         | 74         | 4   | 89         | 99         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %         |          | Org-029     | [NT]  | 11 | 94         | 91         | 3   | 133        | 100        |

| QUALITY CONTROL: PFAS in Water TRACE Short         |       |     |         |       |    | Du   | Spike Recovery % |     |        |           |
|----------------------------------------------------|-------|-----|---------|-------|----|------|------------------|-----|--------|-----------|
| Test Description                                   | Units | PQL | Method  | Blank | #  | Base | Dup.             | RPD | LCS-W2 | 251682-22 |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |     | Org-029 | [NT]  | 11 | 158  | 158              | 0   | 88     | 148       |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |     | Org-029 | [NT]  | 11 | #    | #                |     | 105    | 175       |

| QUALITY CON                                        | TROL: PFAS | S in Water | TRACE Short |       |    | Du         | plicate    |     | Spike Recovery % |      |
|----------------------------------------------------|------------|------------|-------------|-------|----|------------|------------|-----|------------------|------|
| Test Description                                   | Units      | PQL        | Method      | Blank | #  | Base       | Dup.       | RPD | [NT]             | [NT] |
| Date prepared                                      | -          |            |             | [NT]  | 21 | 24/09/2020 | 24/09/2020 |     |                  | [NT] |
| Date analysed                                      | -          |            |             | [NT]  | 21 | 28/09/2020 | 28/09/2020 |     |                  | [NT] |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.0002     | Org-029     | [NT]  | 21 | 0.0032     | 0.0033     | 3   |                  | [NT] |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.0002     | Org-029     | [NT]  | 21 | 0.0042     | 0.0041     | 2   |                  | [NT] |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.0002     | Org-029     | [NT]  | 21 | 0.0043     | 0.0041     | 5   |                  | [NT] |
| 6:2 FTS                                            | μg/L       | 0.0004     | Org-029     | [NT]  | 21 | <0.0004    | <0.0004    | 0   |                  | [NT] |
| 8:2 FTS                                            | μg/L       | 0.0004     | Org-029     | [NT]  | 21 | <0.0004    | <0.0004    | 0   |                  | [NT] |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |            | Org-029     | [NT]  | 21 | 99         | 94         | 5   |                  | [NT] |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |            | Org-029     | [NT]  | 21 | 94         | 96         | 2   |                  | [NT] |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |            | Org-029     | [NT]  | 21 | 116        | 114        | 2   |                  | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |            | Org-029     | [NT]  | 21 | 96         | 99         | 3   |                  | [NT] |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %          |            | Org-029     | [NT]  | 21 | 102        | 100        | 2   |                  | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |            | Org-029     | [NT]  | 21 | 155        | 153        | 1   |                  | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |            | Org-029     | [NT]  | 21 | #          | #          |     |                  | [NT] |

Envirolab Reference: 251682

Revision No: R00

| QUALITY CON                                        | TROL: PFA | S in Water | TRACE Short |       |    | Du         | plicate    |     | Spike Recovery % |      |  |
|----------------------------------------------------|-----------|------------|-------------|-------|----|------------|------------|-----|------------------|------|--|
| Test Description                                   | Units     | PQL        | Method      | Blank | #  | Base       | Dup.       | RPD | [NT]             | [NT] |  |
| Date prepared                                      | -         |            |             | [NT]  | 24 | 24/09/2020 | 24/09/2020 |     |                  | [NT] |  |
| Date analysed                                      | -         |            |             | [NT]  | 24 | 28/09/2020 | 28/09/2020 |     |                  | [NT] |  |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L      | 0.0002     | Org-029     | [NT]  | 24 | 0.0044     | 0.0046     | 4   |                  | [NT] |  |
| Perfluorooctanesulfonic acid PFOS                  | μg/L      | 0.0002     | Org-029     | [NT]  | 24 | 0.0040     | 0.0041     | 2   |                  | [NT] |  |
| Perfluorooctanoic acid PFOA                        | μg/L      | 0.0002     | Org-029     | [NT]  | 24 | 0.0044     | 0.0042     | 5   |                  | [NT] |  |
| 6:2 FTS                                            | μg/L      | 0.0004     | Org-029     | [NT]  | 24 | <0.0004    | <0.0004    | 0   |                  | [NT] |  |
| 3:2 FTS                                            | μg/L      | 0.0004     | Org-029     | [NT]  | 24 | <0.0004    | <0.0004    | 0   |                  | [NT] |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %         |            | Org-029     | [NT]  | 24 | 97         | 92         | 5   |                  | [NT] |  |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %         |            | Org-029     | [NT]  | 24 | 92         | 91         | 1   |                  | [NT] |  |
| Extracted ISTD 18 O <sub>2</sub> PFHxS             | %         |            | Org-029     | [NT]  | 24 | 112        | 108        | 4   |                  | [NT] |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %         |            | Org-029     | [NT]  | 24 | 91         | 96         | 5   |                  | [NT] |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %         |            | Org-029     | [NT]  | 24 | 101        | 101        | 0   |                  | [NT] |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %         |            | Org-029     | [NT]  | 24 | 149        | 151        | 1   |                  | [NT] |  |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %         |            | Org-029     | [NT]  | 24 | 160        | 182        | 13  |                  | [NT] |  |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 251682

Revision No: R00

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Page | 14 of 15

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 251682 Page | 15 of 15

Revision No: R00

## Ming To

From:

Aileen Hie

Sent:

Friday, 9 October 2020 5:39 PM

To:

Ming To

Subject:

FW: Envirolab Invoice No SY574974 for Registration 251682 12516828

Importance:

High

Follow Up Flag:

Follow up

Flag Status:

Flagged

Ref: 251682-A TA7: 1 day Due: 12/10/2020 MT.

From: Alex Stenta <astenta@envirolab.com.au>

Sent: Friday, 9 October 2020 5:05 PM

To: Customer Service < Customer Service@envirolab.com.au>

Cc: Adelaide <adelaide@envirolab.com.au>; Alexander Maclean <AMaclean@envirolab.com.au>

Subject: FW: Envirolab Invoice No SY574974 for Registration 251682 12516828

Importance: High

Hi Guys,

Can we please report trace level PFAS extended suite for all samples in Job Number 251682?

Also, can we please have trace level PFAS extended suite for the following samples:

DC14 - 246709 - 11

DC15 - 246709 - 13

DC16 - 247753 - 1

DC17 - 247753 - 2

DC18 - 247753 - 3

DC19 - 247753 - 4



Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 251682-A**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                 |
|--------------------------------------|-----------------|
| Your Reference                       | <u>12516828</u> |
| Number of Samples                    | 32 Water        |
| Date samples received                | 21/09/2020      |
| Date completed instructions received | 09/10/2020      |

## **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                        |                                                                                       |  |  |  |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| Date results requested by             | 12/10/2020                                                                            |  |  |  |  |  |
| Date of Issue                         | 12/10/2020                                                                            |  |  |  |  |  |
| NATA Accreditation Number 2901. T     | NATA Accreditation Number 2901. This document shall not be reproduced except in full. |  |  |  |  |  |
| Accredited for compliance with ISO/II | EC 17025 - Testing. Tests not covered by NATA are denoted with *                      |  |  |  |  |  |

Results Approved By

Alexander Mitchell Maclean, Senior Chemist

**Authorised By** 

Nancy Zhang, Laboratory Manager

Envirolab Reference: 251682-A Revision No: R00



| PFAS in Waters Trace Extended               |       |            |            |            |            |            |
|---------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                               |       | 251682-A-1 | 251682-A-2 | 251682-A-3 | 251682-A-4 | 251682-A-5 |
| Your Reference                              | UNITS | BR03_1A    | BR03_1B    | BR03_1C    | BR02_1A    | BR02_1B    |
| Date Sampled                                |       | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 |
| Type of sample                              |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                               | -     | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 |
| Date analysed                               | -     | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 |
| Perfluorobutanesulfonic acid                | μg/L  | 0.003      | 0.003      | 0.002      | 0.001      | 0.001      |
| Perfluoropentanesulfonic acid               | μg/L  | 0.003      | 0.003      | 0.003      | <0.001     | <0.001     |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.033      | 0.031      | 0.031      | 0.0038     | 0.0036     |
| Perfluoroheptanesulfonic acid               | μg/L  | 0.001      | 0.001      | 0.001      | <0.001     | <0.001     |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.0072     | 0.0074     | 0.0086     | 0.0008     | 0.0007     |
| Perfluorodecanesulfonic acid                | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |
| Perfluorobutanoic acid                      | μg/L  | 0.01       | 0.01       | 0.01       | 0.006      | 0.006      |
| Perfluoropentanoic acid                     | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |
| Perfluorohexanoic acid                      | μg/L  | 0.0048     | 0.0049     | 0.0054     | <0.0004    | <0.0004    |
| Perfluoroheptanoic acid                     | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Perfluorooctanoic acid PFOA                 | μg/L  | 0.001      | 0.001      | 0.001      | <0.0002    | <0.0002    |
| Perfluorononanoic acid                      | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |
| Perfluorodecanoic acid                      | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |
| Perfluoroundecanoic acid                    | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |
| Perfluorododecanoic acid                    | μg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005     |
| Perfluorotridecanoic acid                   | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorotetradecanoic acid                 | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| 4:2 FTS                                     | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |
| 6:2 FTS                                     | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                     | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 10:2 FTS                                    | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |
| Perfluorooctane sulfonamide                 | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| N-Methyl perfluorooctane sulfonamide        | μg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005     |
| N-Ethyl perfluorooctanesulfon amide         | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005     |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 102        | 102        | 98         | 96         | 98         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 96         | 96         | 95         | 94         | 94         |
| Extracted ISTD 13 C3 PFBS                   | %     | 75         | 79         | 77         | 79         | 74         |
| Extracted ISTD 18 O2 PFHxS                  | %     | 78         | 84         | 81         | 84         | 80         |
| Extracted ISTD 13 C4 PFOS                   | %     | 78         | 83         | 76         | 80         | 73         |
| Extracted ISTD 13 C <sub>4</sub> PFBA       | %     | #          | #          | #          | 20         | #          |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended                      |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 251682-A-1 | 251682-A-2 | 251682-A-3 | 251682-A-4 | 251682-A-5 |
| Your Reference                                     | UNITS | BR03_1A    | BR03_1B    | BR03_1C    | BR02_1A    | BR02_1B    |
| Date Sampled                                       |       | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Extracted ISTD 13 C3 PFPeA                         | %     | 25         | 25         | 23         | 26         | 24         |
| Extracted ISTD 13 C2 PFHxA                         | %     | 36         | 36         | 34         | 40         | 37         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %     | 61         | 61         | 59         | 73         | 68         |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 82         | 84         | 81         | 94         | 88         |
| Extracted ISTD 13 C <sub>5</sub> PFNA              | %     | 90         | 93         | 85         | 98         | 91         |
| Extracted ISTD 13 C2 PFDA                          | %     | 128        | 136        | 120        | 127        | 117        |
| Extracted ISTD 13 C2 PFUnDA                        | %     | 107        | 124        | 102        | 97         | 94         |
| Extracted ISTD 13 C2 PFDoDA                        | %     | 81         | 89         | 77         | 75         | 72         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %     | 45         | 49         | 64         | 82         | 82         |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS            | %     | 86         | 88         | 96         | 98         | 89         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 138        | 142        | 138        | 150        | 154        |
| Extracted ISTD 13 C2 8:2FTS                        | %     | #          | #          | #          | #          | 190        |
| Extracted ISTD 13 C8 FOSA                          | %     | 51         | 54         | 44         | 48         | 47         |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 23         | 31         | 26         | 22         | 27         |
| Extracted ISTD d₅ N EtFOSA                         | %     | 26         | 34         | 27         | 23         | 30         |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 53         | 62         | 48         | 49         | 54         |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 49         | 54         | 51         | 48         | 51         |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 87         | 93         | 82         | 69         | 74         |
| Extracted ISTD d₅ N EtFOSAA                        | %     | 73         | 79         | 65         | 61         | 59         |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.040      | 0.038      | 0.040      | 0.0046     | 0.0043     |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0085     | 0.0085     | 0.0097     | 0.0008     | 0.0007     |
| Total Positive PFAS                                | μg/L  | 0.065      | 0.063      | 0.065      | 0.011      | 0.011      |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended               |       |            |            |            |            |             |
|---------------------------------------------|-------|------------|------------|------------|------------|-------------|
| Our Reference                               |       | 251682-A-6 | 251682-A-7 | 251682-A-8 | 251682-A-9 | 251682-A-10 |
| Your Reference                              | UNITS | BR02_1C    | MBC02_1A   | MBC02_1B   | MBC02_1C   | MBC01_1A    |
| Date Sampled                                |       | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020  |
| Type of sample                              |       | Water      | Water      | Water      | Water      | Water       |
| Date prepared                               | -     | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020  |
| Date analysed                               | -     | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020 | 25/09/2020  |
| Perfluorobutanesulfonic acid                | μg/L  | 0.001      | 0.002      | 0.002      | 0.002      | 0.002       |
| Perfluoropentanesulfonic acid               | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001      |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.0034     | 0.0036     | 0.0037     | 0.0036     | 0.0037      |
| Perfluoroheptanesulfonic acid               | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001      |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.0006     | 0.0045     | 0.0045     | 0.0042     | 0.0038      |
| Perfluorodecanesulfonic acid                | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002      |
| Perfluorobutanoic acid                      | μg/L  | 0.006      | 0.006      | 0.006      | 0.006      | 0.007       |
| Perfluoropentanoic acid                     | μg/L  | <0.002     | 0.002      | 0.003      | 0.003      | 0.003       |
| Perfluorohexanoic acid                      | μg/L  | <0.0004    | 0.0060     | 0.0063     | 0.0065     | 0.0053      |
| Perfluoroheptanoic acid                     | μg/L  | <0.0004    | 0.0009     | 0.0009     | 0.001      | 0.0008      |
| Perfluorooctanoic acid PFOA                 | μg/L  | <0.0002    | 0.0040     | 0.0040     | 0.0038     | 0.0032      |
| Perfluorononanoic acid                      | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001      |
| Perfluorodecanoic acid                      | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002      |
| Perfluoroundecanoic acid                    | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002      |
| Perfluorododecanoic acid                    | μg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005      |
| Perfluorotridecanoic acid                   | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01       |
| Perfluorotetradecanoic acid                 | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05       |
| 4:2 FTS                                     | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001      |
| 6:2 FTS                                     | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004     |
| 8:2 FTS                                     | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004     |
| 10:2 FTS                                    | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002      |
| Perfluorooctane sulfonamide                 | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01       |
| N-Methyl perfluorooctane sulfonamide        | μg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005      |
| N-Ethyl perfluorooctanesulfon amide         | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01       |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005      |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05       |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002      |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 101        | 103        | 94         | 96         | 101         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 95         | 94         | 93         | 93         | 93          |
| Extracted ISTD 13 C3 PFBS                   | %     | 77         | 88         | 86         | 84         | 82          |
| Extracted ISTD 18 O2 PFHxS                  | %     | 85         | 86         | 84         | 85         | 83          |
| Extracted ISTD 13 C4 PFOS                   | %     | 69         | 81         | 83         | 81         | 76          |
| Extracted ISTD 13 C <sub>4</sub> PFBA       | %     | 20         | 28         | 29         | 28         | 28          |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended                      |       |            |            |            |            |             |
|----------------------------------------------------|-------|------------|------------|------------|------------|-------------|
| Our Reference                                      |       | 251682-A-6 | 251682-A-7 | 251682-A-8 | 251682-A-9 | 251682-A-10 |
| Your Reference                                     | UNITS | BR02_1C    | MBC02_1A   | MBC02_1B   | MBC02_1C   | MBC01_1A    |
| Date Sampled                                       |       | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020 | 11/09/2020  |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water       |
| Extracted ISTD 13 C3 PFPeA                         | %     | 26         | 31         | 31         | 31         | 31          |
| Extracted ISTD 13 C2 PFHxA                         | %     | 39         | 47         | 48         | 48         | 47          |
| Extracted ISTD 13 C4 PFHpA                         | %     | 69         | 77         | 77         | 79         | 79          |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 89         | 91         | 93         | 92         | 95          |
| Extracted ISTD 13 C <sub>5</sub> PFNA              | %     | 93         | 102        | 96         | 101        | 98          |
| Extracted ISTD 13 C <sub>2</sub> PFDA              | %     | 113        | 129        | 132        | 124        | 127         |
| Extracted ISTD 13 C2 PFUnDA                        | %     | 92         | 112        | 104        | 93         | 97          |
| Extracted ISTD 13 C2 PFDoDA                        | %     | 70         | 87         | 88         | 72         | 80          |
| Extracted ISTD 13 C <sub>2</sub> PFTeDA            | %     | 73         | 100        | 70         | 69         | 112         |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS            | %     | 98         | 127        | 136        | 137        | 126         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 138        | 161        | 167        | 167        | 160         |
| Extracted ISTD 13 C2 8:2FTS                        | %     | 186        | #          | #          | #          | #           |
| Extracted ISTD 13 C8 FOSA                          | %     | 46         | 54         | 55         | 48         | 55          |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 23         | 31         | 34         | 29         | 37          |
| Extracted ISTD d₅ N EtFOSA                         | %     | 27         | 32         | 37         | 32         | 40          |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 48         | 60         | 62         | 57         | 62          |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 47         | 58         | 60         | 49         | 61          |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 67         | 85         | 83         | 74         | 74          |
| Extracted ISTD ds N EtFOSAA                        | %     | 59         | 74         | 75         | 62         | 67          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0040     | 0.0082     | 0.0082     | 0.0078     | 0.0075      |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0006     | 0.0085     | 0.0085     | 0.0080     | 0.0070      |
| Total Positive PFAS                                | μg/L  | 0.011      | 0.029      | 0.030      | 0.030      | 0.028       |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended               |       |             |             |             |             |             |
|---------------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference                               |       | 251682-A-11 | 251682-A-12 | 251682-A-13 | 251682-A-14 | 251682-A-15 |
| Your Reference                              | UNITS | MBC01_1B    | MBC01_1C    | BR03_2A     | BR03_2B     | BR03_2C     |
| Date Sampled                                |       | 11/09/2020  | 11/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  |
| Type of sample                              |       | Water       | Water       | Water       | Water       | Water       |
| Date prepared                               | -     | 24/09/2020  | 24/09/2020  | 24/09/2020  | 24/09/2020  | 24/09/2020  |
| Date analysed                               | -     | 25/09/2020  | 25/09/2020  | 25/09/2020  | 25/09/2020  | 25/09/2020  |
| Perfluorobutanesulfonic acid                | μg/L  | 0.002       | 0.002       | 0.0047      | 0.0047      | 0.0044      |
| Perfluoropentanesulfonic acid               | μg/L  | <0.001      | <0.001      | 0.005       | 0.005       | 0.005       |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.0037      | 0.0040      | 0.061       | 0.061       | 0.060       |
| Perfluoroheptanesulfonic acid               | μg/L  | <0.001      | <0.001      | 0.002       | 0.003       | 0.002       |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.0040      | 0.0032      | 0.014       | 0.016       | 0.016       |
| Perfluorodecanesulfonic acid                | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorobutanoic acid                      | μg/L  | 0.007       | 0.007       | 0.01        | 0.01        | 0.01        |
| Perfluoropentanoic acid                     | μg/L  | 0.003       | 0.003       | <0.002      | <0.002      | <0.002      |
| Perfluorohexanoic acid                      | μg/L  | 0.0048      | 0.0048      | 0.0089      | 0.0092      | 0.0091      |
| Perfluoroheptanoic acid                     | μg/L  | 0.001       | 0.001       | 0.0005      | 0.0006      | 0.0005      |
| Perfluorooctanoic acid PFOA                 | μg/L  | 0.0032      | 0.0035      | 0.0022      | 0.002       | 0.0020      |
| Perfluorononanoic acid                      | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| Perfluorodecanoic acid                      | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluoroundecanoic acid                    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorododecanoic acid                    | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| Perfluorotridecanoic acid                   | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| Perfluorotetradecanoic acid                 | μg/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| 4:2 FTS                                     | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| 6:2 FTS                                     | μg/L  | <0.0004     | <0.0004     | <0.0004     | <0.0004     | <0.0004     |
| 8:2 FTS                                     | μg/L  | <0.0004     | <0.0004     | <0.0004     | <0.0004     | <0.0004     |
| 10:2 FTS                                    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorooctane sulfonamide                 | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| N-Methyl perfluorooctane sulfonamide        | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| N-Ethyl perfluorooctanesulfon amide         | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 104         | 98          | 99          | 104         | 99          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 93          | 98          | 92          | 92          | 97          |
| Extracted ISTD 13 C3 PFBS                   | %     | 86          | 83          | 75          | 76          | 80          |
| Extracted ISTD 18 O2 PFHxS                  | %     | 85          | 82          | 78          | 76          | 80          |
| Extracted ISTD 13 C4 PFOS                   | %     | 71          | 81          | 71          | 62          | 63          |
| Extracted ISTD 13 C <sub>4</sub> PFBA       | %     | 27          | 27          | #           | #           | #           |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended                      |       |             |             |             |             |             |
|----------------------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference                                      |       | 251682-A-11 | 251682-A-12 | 251682-A-13 | 251682-A-14 | 251682-A-15 |
| Your Reference                                     | UNITS | MBC01_1B    | MBC01_1C    | BR03_2A     | BR03_2B     | BR03_2C     |
| Date Sampled                                       |       | 11/09/2020  | 11/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  |
| Type of sample                                     |       | Water       | Water       | Water       | Water       | Water       |
| Extracted ISTD 13 C3 PFPeA                         | %     | 32          | 30          | 24          | 25          | 24          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFHxA  | %     | 48          | 46          | 34          | 34          | 33          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %     | 78          | 76          | 60          | 61          | 60          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 94          | 94          | 80          | 83          | 77          |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %     | 98          | 103         | 82          | 84          | 80          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDA   | %     | 122         | 134         | 117         | 109         | 102         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %     | 94          | 110         | 96          | 91          | 80          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDoDA | %     | 70          | 81          | 78          | 72          | 62          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %     | 61          | 109         | 56          | 48          | 57          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 4:2FTS | %     | 126         | 123         | 97          | 92          | 94          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 158         | 159         | 143         | 152         | 140         |
| Extracted ISTD 13 C2 8:2FTS                        | %     | #           | #           | #           | #           | 196         |
| Extracted ISTD 13 C8 FOSA                          | %     | 53          | 58          | 50          | 47          | 42          |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 28          | 28          | 23          | 26          | 21          |
| Extracted ISTD d₅ N EtFOSA                         | %     | 28          | 27          | 23          | 27          | 20          |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 54          | 63          | 57          | 55          | 45          |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 51          | 59          | 54          | 55          | 43          |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 63          | 81          | 85          | 76          | 68          |
| Extracted ISTD d₅ N EtFOSAA                        | %     | 55          | 71          | 70          | 70          | 50          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0078      | 0.0072      | 0.074       | 0.077       | 0.076       |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0072      | 0.0067      | 0.016       | 0.018       | 0.018       |
| Total Positive PFAS                                | μg/L  | 0.028       | 0.028       | 0.11        | 0.11        | 0.11        |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended               |       |             |             |             |             |             |
|---------------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference                               |       | 251682-A-16 | 251682-A-17 | 251682-A-18 | 251682-A-19 | 251682-A-20 |
| Your Reference                              | UNITS | BR02_2A     | BR02_2B     | BR02_2C     | MBC02_2A    | MBC02_2B    |
| Date Sampled                                |       | 17/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  |
| Type of sample                              |       | Water       | Water       | Water       | Water       | Water       |
| Date prepared                               | -     | 24/09/2020  | 24/09/2020  | 24/09/2020  | 24/09/2020  | 24/09/2020  |
| Date analysed                               | -     | 25/09/2020  | 25/09/2020  | 25/09/2020  | 25/09/2020  | 28/09/2020  |
| Perfluorobutanesulfonic acid                | μg/L  | 0.0009      | 0.0008      | 0.0007      | 0.002       | 0.002       |
| Perfluoropentanesulfonic acid               | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.0032      | 0.0027      | 0.0026      | 0.0038      | 0.0035      |
| Perfluoroheptanesulfonic acid               | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.0007      | 0.0006      | 0.0007      | 0.0071      | 0.0066      |
| Perfluorodecanesulfonic acid                | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorobutanoic acid                      | μg/L  | 0.005       | 0.005       | 0.006       | 0.007       | 0.007       |
| Perfluoropentanoic acid                     | μg/L  | <0.002      | <0.002      | <0.002      | 0.003       | 0.003       |
| Perfluorohexanoic acid                      | μg/L  | <0.0004     | <0.0004     | <0.0004     | 0.0066      | 0.0056      |
| Perfluoroheptanoic acid                     | μg/L  | <0.0004     | <0.0004     | <0.0004     | 0.001       | 0.001       |
| Perfluorooctanoic acid PFOA                 | μg/L  | <0.0002     | <0.0002     | <0.0002     | 0.0050      | 0.0049      |
| Perfluorononanoic acid                      | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| Perfluorodecanoic acid                      | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluoroundecanoic acid                    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorododecanoic acid                    | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| Perfluorotridecanoic acid                   | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| Perfluorotetradecanoic acid                 | μg/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| 4:2 FTS                                     | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| 6:2 FTS                                     | μg/L  | <0.0004     | <0.0004     | <0.0004     | <0.0004     | <0.0004     |
| 8:2 FTS                                     | μg/L  | <0.0004     | <0.0004     | <0.0004     | <0.0004     | <0.0004     |
| 10:2 FTS                                    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorooctane sulfonamide                 | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| N-Methyl perfluorooctane sulfonamide        | μg/L  | <0.005      | <0.02       | <0.005      | <0.005      | <0.005      |
| N-Ethyl perfluorooctanesulfon amide         | μg/L  | <0.01       | <0.05       | <0.01       | <0.01       | <0.01       |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 98          | 94          | 100         | 98          | 95          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 96          | 95          | 94          | 95          | 94          |
| Extracted ISTD 13 C3 PFBS                   | %     | 77          | 63          | 76          | 83          | 89          |
| Extracted ISTD 18 O2 PFHxS                  | %     | 83          | 66          | 82          | 83          | 112         |
| Extracted ISTD 13 C4 PFOS                   | %     | 76          | 57          | 75          | 78          | 97          |
| Extracted ISTD 13 C <sub>4</sub> PFBA       | %     | 22          | 20          | 23          | 31          | 45          |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended                      |       |             |             |             |             |             |
|----------------------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference                                      |       | 251682-A-16 | 251682-A-17 | 251682-A-18 | 251682-A-19 | 251682-A-20 |
| Your Reference                                     | UNITS | BR02_2A     | BR02_2B     | BR02_2C     | MBC02_2A    | MBC02_2B    |
| Date Sampled                                       |       | 17/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  |
| Type of sample                                     |       | Water       | Water       | Water       | Water       | Water       |
| Extracted ISTD 13 C3 PFPeA                         | %     | 29          | 26          | 31          | 33          | 47          |
| Extracted ISTD 13 C2 PFHxA                         | %     | 43          | 39          | 44          | 47          | 59          |
| Extracted ISTD 13 C4 PFHpA                         | %     | 73          | 65          | 78          | 76          | 85          |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 92          | 79          | 95          | 90          | 97          |
| Extracted ISTD 13 C <sub>5</sub> PFNA              | %     | 96          | 78          | 97          | 97          | 97          |
| Extracted ISTD 13 C2 PFDA                          | %     | 124         | 83          | 122         | 120         | 97          |
| Extracted ISTD 13 C2 PFUnDA                        | %     | 94          | 57          | 87          | 99          | 77          |
| Extracted ISTD 13 C2 PFDoDA                        | %     | 69          | 42          | 53          | 76          | 53          |
| Extracted ISTD 13 C2 PFTeDA                        | %     | 73          | 43          | 63          | 61          | 34          |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS            | %     | 93          | 83          | 99          | 122         | 126         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 137         | 109         | 146         | 167         | 148         |
| Extracted ISTD 13 C2 8:2FTS                        | %     | 172         | 123         | 181         | #           | #           |
| Extracted ISTD 13 C8 FOSA                          | %     | 45          | 33          | 47          | 48          | 53          |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 20          | #           | 21          | 22          | 23          |
| Extracted ISTD ds N EtFOSA                         | %     | 23          | #           | 23          | 24          | 22          |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 51          | 29          | 48          | 51          | 39          |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 44          | 28          | 45          | 48          | 35          |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 74          | 47          | 73          | 78          | 55          |
| Extracted ISTD ds N EtFOSAA                        | %     | 52          | 35          | 54          | 63          | 49          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0039      | 0.0033      | 0.0033      | 0.011       | 0.010       |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0007      | 0.0006      | 0.0007      | 0.012       | 0.012       |
| Total Positive PFAS                                | μg/L  | 0.0099      | 0.0090      | 0.010       | 0.035       | 0.033       |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended               |       |             |             |             |             |             |
|---------------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference                               |       | 251682-A-21 | 251682-A-22 | 251682-A-23 | 251682-A-24 | 251682-A-25 |
| Your Reference                              | UNITS | MBC02_2C    | MBC01_2A    | MBC01_2B    | MBC01_2C    | QC31        |
| Date Sampled                                |       | 17/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  |
| Type of sample                              |       | Water       | Water       | Water       | Water       | Water       |
| Date prepared                               | -     | 24/09/2020  | 24/09/2020  | 24/09/2020  | 24/09/2020  | 24/09/2020  |
| Date analysed                               | -     | 28/09/2020  | 28/09/2020  | 28/09/2020  | 28/09/2020  | 28/09/2020  |
| Perfluorobutanesulfonic acid                | μg/L  | 0.002       | 0.003       | 0.003       | 0.003       | 0.003       |
| Perfluoropentanesulfonic acid               | μg/L  | <0.001      | 0.001       | 0.001       | 0.001       | 0.002       |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.0032      | 0.0046      | 0.0046      | 0.0044      | 0.032       |
| Perfluoroheptanesulfonic acid               | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | 0.001       |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.0042      | 0.0041      | 0.0045      | 0.0040      | 0.0083      |
| Perfluorodecanesulfonic acid                | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorobutanoic acid                      | μg/L  | 0.007       | 0.008       | 0.008       | 0.008       | 0.01        |
| Perfluoropentanoic acid                     | μg/L  | 0.003       | 0.003       | 0.002       | 0.003       | <0.002      |
| Perfluorohexanoic acid                      | μg/L  | 0.0057      | 0.0048      | 0.0047      | 0.0050      | 0.0045      |
| Perfluoroheptanoic acid                     | μg/L  | 0.001       | 0.001       | 0.001       | 0.001       | 0.0004      |
| Perfluorooctanoic acid PFOA                 | μg/L  | 0.0043      | 0.0043      | 0.0042      | 0.0044      | 0.001       |
| Perfluorononanoic acid                      | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| Perfluorodecanoic acid                      | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluoroundecanoic acid                    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorododecanoic acid                    | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| Perfluorotridecanoic acid                   | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| Perfluorotetradecanoic acid                 | μg/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| 4:2 FTS                                     | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| 6:2 FTS                                     | μg/L  | <0.0004     | <0.0004     | <0.0004     | <0.0004     | <0.0004     |
| 8:2 FTS                                     | μg/L  | <0.0004     | <0.0004     | <0.0004     | <0.0004     | <0.0004     |
| 10:2 FTS                                    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorooctane sulfonamide                 | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| N-Methyl perfluorooctane sulfonamide        | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.02       |
| N-Ethyl perfluorooctanesulfon amide         | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.05       |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 99          | 103         | 99          | 97          | 97          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 94          | 93          | 92          | 92          | 93          |
| Extracted ISTD 13 C3 PFBS                   | %     | 84          | 83          | 86          | 87          | 84          |
| Extracted ISTD 18 O2 PFHxS                  | %     | 116         | 113         | 111         | 112         | 102         |
| Extracted ISTD 13 C4 PFOS                   | %     | 96          | 93          | 88          | 91          | 88          |
| Extracted ISTD 13 C <sub>4</sub> PFBA       | %     | 48          | 46          | 46          | 45          | 26          |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended                      |       |             |             |             |             |             |
|----------------------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference                                      |       | 251682-A-21 | 251682-A-22 | 251682-A-23 | 251682-A-24 | 251682-A-25 |
| Your Reference                                     | UNITS | MBC02_2C    | MBC01_2A    | MBC01_2B    | MBC01_2C    | QC31        |
| Date Sampled                                       |       | 17/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  | 17/09/2020  |
| Type of sample                                     |       | Water       | Water       | Water       | Water       | Water       |
| Extracted ISTD 13 C3 PFPeA                         | %     | 47          | 50          | 50          | 48          | 33          |
| Extracted ISTD 13 C2 PFHxA                         | %     | 55          | 63          | 62          | 61          | 46          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %     | 90          | 91          | 90          | 89          | 70          |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 102         | 105         | 104         | 101         | 86          |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %     | 100         | 100         | 96          | 97          | 84          |
| Extracted ISTD 13 C2 PFDA                          | %     | 99          | 97          | 95          | 96          | 88          |
| Extracted ISTD 13 C2 PFUnDA                        | %     | 84          | 75          | 73          | 68          | 71          |
| Extracted ISTD 13 C2 PFDoDA                        | %     | 63          | 53          | 54          | 47          | 50          |
| Extracted ISTD 13 C2 PFTeDA                        | %     | 32          | 31          | 37          | 31          | 22          |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS            | %     | 109         | 139         | 135         | 136         | 120         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 155         | 156         | 153         | 149         | 124         |
| Extracted ISTD 13 C2 8:2FTS                        | %     | #           | 176         | 186         | 160         | 157         |
| Extracted ISTD 13 C8 FOSA                          | %     | 55          | 55          | 51          | 48          | 42          |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 35          | 25          | 27          | 27          | #           |
| Extracted ISTD d <sub>5</sub> N EtFOSA             | %     | 34          | 26          | 25          | 26          | #           |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 50          | 44          | 46          | 41          | 37          |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 44          | 38          | 39          | 36          | 30          |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 70          | 60          | 61          | 56          | 59          |
| Extracted ISTD d₅ N EtFOSAA                        | %     | 60          | 53          | 52          | 50          | 51          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0075      | 0.0087      | 0.0091      | 0.0084      | 0.040       |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0086      | 0.0084      | 0.0087      | 0.0084      | 0.0094      |
| Total Positive PFAS                                | μg/L  | 0.030       | 0.034       | 0.033       | 0.034       | 0.065       |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended               |       |             |             |             |             |             |
|---------------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference                               |       | 251682-A-26 | 251682-A-27 | 251682-A-28 | 251682-A-29 | 251682-A-30 |
| Your Reference                              | UNITS | QC32        | QC35        | QC36        | FB10        | RB10        |
| Date Sampled                                |       | 17/09/2020  | 17/09/2020  | 17/09/2020  | 11/09/2020  | 11/09/2020  |
| Type of sample                              |       | Water       | Water       | Water       | Water       | Water       |
| Date prepared                               | -     | 24/09/2020  | 24/09/2020  | 24/09/2020  | 24/09/2020  | 24/09/2020  |
| Date analysed                               | -     | 28/09/2020  | 28/09/2020  | 28/09/2020  | 28/09/2020  | 28/09/2020  |
| Perfluorobutanesulfonic acid                | μg/L  | 0.002       | 0.002       | 0.0046      | <0.0004     | <0.0004     |
| Perfluoropentanesulfonic acid               | μg/L  | <0.001      | <0.001      | 0.005       | <0.001      | <0.001      |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.0038      | 0.0046      | 0.060       | <0.0002     | <0.0002     |
| Perfluoroheptanesulfonic acid               | μg/L  | <0.001      | <0.001      | 0.002       | <0.001      | <0.001      |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.0047      | 0.0044      | 0.013       | <0.0002     | <0.0002     |
| Perfluorodecanesulfonic acid                | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorobutanoic acid                      | μg/L  | 0.006       | 0.008       | 0.01        | <0.002      | <0.002      |
| Perfluoropentanoic acid                     | μg/L  | 0.003       | 0.003       | <0.002      | <0.002      | <0.002      |
| Perfluorohexanoic acid                      | μg/L  | 0.0060      | 0.0048      | 0.0078      | <0.0004     | <0.0004     |
| Perfluoroheptanoic acid                     | μg/L  | 0.001       | 0.001       | 0.0006      | <0.0004     | <0.0004     |
| Perfluorooctanoic acid PFOA                 | μg/L  | 0.0043      | 0.0041      | 0.002       | <0.0002     | <0.0002     |
| Perfluorononanoic acid                      | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| Perfluorodecanoic acid                      | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluoroundecanoic acid                    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorododecanoic acid                    | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| Perfluorotridecanoic acid                   | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| Perfluorotetradecanoic acid                 | μg/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| 4:2 FTS                                     | μg/L  | <0.001      | <0.001      | <0.001      | <0.001      | <0.001      |
| 6:2 FTS                                     | μg/L  | <0.0004     | <0.0004     | <0.0004     | <0.0004     | <0.0004     |
| 8:2 FTS                                     | μg/L  | <0.0004     | <0.0004     | <0.0004     | <0.0004     | <0.0004     |
| 10:2 FTS                                    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Perfluorooctane sulfonamide                 | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| N-Methyl perfluorooctane sulfonamide        | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| N-Ethyl perfluorooctanesulfon amide         | μg/L  | <0.01       | <0.01       | <0.01       | <0.01       | <0.01       |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L  | <0.005      | <0.005      | <0.005      | <0.005      | <0.005      |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L  | <0.05       | <0.05       | <0.05       | <0.05       | <0.05       |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.002      | <0.002      | <0.002      | <0.002      | <0.002      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 99          | 93          | 91          | 106         | 97          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 91          | 91          | 92          | 108         | 102         |
| Extracted ISTD 13 C3 PFBS                   | %     | 91          | 91          | 90          | 102         | 107         |
| Extracted ISTD 18 O2 PFHxS                  | %     | 108         | 109         | 102         | 99          | 102         |
| Extracted ISTD 13 C4 PFOS                   | %     | 90          | 92          | 87          | 53          | 89          |
| Extracted ISTD 13 C <sub>4</sub> PFBA       | %     | 45          | 44          | 27          | 89          | 86          |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended                      |       |             |             |             |             |             |
|----------------------------------------------------|-------|-------------|-------------|-------------|-------------|-------------|
| Our Reference                                      |       | 251682-A-26 | 251682-A-27 | 251682-A-28 | 251682-A-29 | 251682-A-30 |
| Your Reference                                     | UNITS | QC32        | QC35        | QC36        | FB10        | RB10        |
| Date Sampled                                       |       | 17/09/2020  | 17/09/2020  | 17/09/2020  | 11/09/2020  | 11/09/2020  |
| Type of sample                                     |       | Water       | Water       | Water       | Water       | Water       |
| Extracted ISTD 13 C3 PFPeA                         | %     | 46          | 51          | 38          | 108         | 109         |
| Extracted ISTD 13 C2 PFHxA                         | %     | 61          | 64          | 51          | 74          | 79          |
| Extracted ISTD 13 C4 PFHpA                         | %     | 92          | 92          | 77          | 91          | 97          |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 102         | 102         | 93          | 113         | 119         |
| Extracted ISTD 13 C <sub>5</sub> PFNA              | %     | 94          | 98          | 87          | 81          | 118         |
| Extracted ISTD 13 C2 PFDA                          | %     | 92          | 98          | 89          | 74          | 122         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %     | 71          | 74          | 76          | 60          | 54          |
| Extracted ISTD 13 C2 PFDoDA                        | %     | 52          | 54          | 57          | 46          | 23          |
| Extracted ISTD 13 C <sub>2</sub> PFTeDA            | %     | 31          | 25          | #           | 33          | 46          |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS            | %     | 156         | 147         | 143         | 97          | 118         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 153         | 155         | 134         | 121         | 148         |
| Extracted ISTD 13 C2 8:2FTS                        | %     | 161         | 170         | 169         | 73          | #           |
| Extracted ISTD 13 C8 FOSA                          | %     | 54          | 54          | 52          | 65          | 85          |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 29          | 29          | 25          | 43          | 28          |
| Extracted ISTD d <sub>5</sub> N EtFOSA             | %     | 29          | 30          | 26          | 37          | 31          |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 48          | 48          | 47          | 60          | 30          |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 39          | 40          | 40          | 67          | 61          |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 55          | 62          | 69          | 43          | 61          |
| Extracted ISTD ds N EtFOSAA                        | %     | 49          | 59          | 64          | 52          | 39          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.0085      | 0.0090      | 0.072       | <0.0002     | <0.0002     |
| Total Positive PFOS & PFOA                         | μg/L  | 0.0090      | 0.0085      | 0.015       | <0.0002     | <0.0002     |
| Total Positive PFAS                                | μg/L  | 0.031       | 0.032       | 0.11        | <0.0002     | <0.0002     |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended                     |       |             |             |
|---------------------------------------------------|-------|-------------|-------------|
| Our Reference                                     |       | 251682-A-31 | 251682-A-32 |
| Your Reference                                    | UNITS | FB11        | RB11        |
| Date Sampled                                      |       | 17/09/2020  | 17/09/2020  |
| Type of sample                                    |       | Water       | Water       |
| Date prepared                                     | -     | 24/09/2020  | 24/09/2020  |
| Date analysed                                     | -     | 28/09/2020  | 28/09/2020  |
| Perfluorobutanesulfonic acid                      | μg/L  | <0.0004     | <0.0004     |
| Perfluoropentanesulfonic acid                     | μg/L  | <0.001      | <0.001      |
| Perfluorohexanesulfonic acid - PFHxS              | μg/L  | <0.0002     | <0.0002     |
| Perfluoroheptanesulfonic acid                     | μg/L  | <0.001      | <0.001      |
| Perfluorooctanesulfonic acid PFOS                 | μg/L  | <0.0002     | <0.0002     |
| Perfluorodecanesulfonic acid                      | μg/L  | <0.002      | <0.002      |
| Perfluorobutanoic acid                            | μg/L  | <0.002      | <0.002      |
| Perfluoropentanoic acid                           | μg/L  | <0.002      | <0.002      |
| Perfluorohexanoic acid                            | μg/L  | <0.0004     | <0.0004     |
| Perfluoroheptanoic acid                           | μg/L  | <0.0004     | <0.0004     |
| Perfluorooctanoic acid PFOA                       | μg/L  | <0.0002     | <0.0002     |
| Perfluorononanoic acid                            | μg/L  | <0.001      | <0.001      |
| Perfluorodecanoic acid                            | μg/L  | <0.002      | <0.002      |
| Perfluoroundecanoic acid                          | μg/L  | <0.002      | <0.002      |
| Perfluorododecanoic acid                          | μg/L  | <0.005      | <0.005      |
| Perfluorotridecanoic acid                         | μg/L  | <0.01       | <0.01       |
| Perfluorotetradecanoic acid                       | μg/L  | <0.05       | <0.05       |
| 4:2 FTS                                           | μg/L  | <0.001      | <0.001      |
| 6:2 FTS                                           | μg/L  | <0.0004     | <0.0004     |
| 8:2 FTS                                           | μg/L  | <0.0004     | <0.0004     |
| 10:2 FTS                                          | μg/L  | <0.002      | <0.002      |
| Perfluorooctane sulfonamide                       | μg/L  | <0.01       | <0.01       |
| N-Methyl perfluorooctane sulfonamide              | µg/L  | <0.005      | <0.005      |
| N-Ethyl perfluorooctanesulfon amide               | µg/L  | <0.01       | <0.01       |
| N-Me perfluorooctanesulfonamid oethanol           | μg/L  | <0.005      | <0.005      |
| N-Et perfluorooctanesulfonamid oethanol           | µg/L  | <0.05       | <0.05       |
| MePerfluorooctanesulf- amid oacetic acid          | μg/L  | <0.002      | <0.002      |
| EtPerfluorooctanesulf- amid oacetic acid          | μg/L  | <0.002      | <0.002      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %     | 98          | 100         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA       | %     | 102         | 102         |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFBS  | %     | 95          | 98          |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %     | 94          | 94          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %     | 59          | 76          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFBA  | %     | 97          | 97          |

Envirolab Reference: 251682-A

| PFAS in Waters Trace Extended                      |       |             |             |
|----------------------------------------------------|-------|-------------|-------------|
| Our Reference                                      |       | 251682-A-31 | 251682-A-32 |
| Your Reference                                     | UNITS | FB11        | RB11        |
| Date Sampled                                       |       | 17/09/2020  | 17/09/2020  |
| Type of sample                                     |       | Water       | Water       |
| Extracted ISTD 13 C3 PFPeA                         | %     | 102         | 105         |
| Extracted ISTD 13 C2 PFHxA                         | %     | 79          | 84          |
| Extracted ISTD 13 C4 PFHpA                         | %     | 97          | 98          |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 117         | 120         |
| Extracted ISTD 13 C <sub>5</sub> PFNA              | %     | 85          | 88          |
| Extracted ISTD 13 C2 PFDA                          | %     | 71          | 92          |
| Extracted ISTD 13 C2 PFUnDA                        | %     | 60          | 78          |
| Extracted ISTD 13 C2 PFDoDA                        | %     | 40          | 47          |
| Extracted ISTD 13 C2 PFTeDA                        | %     | 29          | 52          |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS            | %     | 106         | 106         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 129         | 129         |
| Extracted ISTD 13 C2 8:2FTS                        | %     | 71          | 94          |
| Extracted ISTD 13 C8 FOSA                          | %     | 60          | 61          |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 38          | 40          |
| Extracted ISTD d₅ N EtFOSA                         | %     | 33          | 35          |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 51          | 59          |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 55          | 55          |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 47          | 44          |
| Extracted ISTD d₅ N EtFOSAA                        | %     | 48          | 52          |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.0002     | <0.0002     |
| Total Positive PFOS & PFOA                         | μg/L  | <0.0002     | <0.0002     |
| Total Positive PFAS                                | μg/L  | <0.0002     | <0.0002     |

Envirolab Reference: 251682-A

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 251682-A

| QUALITY CONTR                               | OL: PFAS i | n Waters <sup>·</sup> | Trace Extended |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|---------------------------------------------|------------|-----------------------|----------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                            | Units      | PQL                   | Method         | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | 251682-A-2 |
| Date prepared                               | -          |                       |                | 24/09/2020 | 1 | 24/09/2020 | 24/09/2020 |     | 24/09/2020 | 24/09/2020 |
| Date analysed                               | -          |                       |                | 25/09/2020 | 1 | 25/09/2020 | 25/09/2020 |     | 25/09/2020 | 25/09/2020 |
| Perfluorobutanesulfonic acid                | μg/L       | 0.0004                | Org-029        | <0.0004    | 1 | 0.003      | 0.003      | 0   | 106        | 109        |
| Perfluoropentanesulfonic acid               | μg/L       | 0.001                 | Org-029        | <0.001     | 1 | 0.003      | 0.003      | 0   | 104        | 132        |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L       | 0.0002                | Org-029        | <0.0002    | 1 | 0.033      | 0.033      | 0   | 109        | 108        |
| Perfluoroheptanesulfonic acid               | μg/L       | 0.001                 | Org-029        | <0.001     | 1 | 0.001      | 0.001      | 0   | 110        | 111        |
| Perfluorooctanesulfonic acid PFOS           | μg/L       | 0.0002                | Org-029        | <0.0002    | 1 | 0.0072     | 0.0067     | 7   | 110        | 115        |
| Perfluorodecanesulfonic acid                | μg/L       | 0.002                 | Org-029        | <0.002     | 1 | <0.002     | <0.002     | 0   | 79         | 58         |
| Perfluorobutanoic acid                      | μg/L       | 0.002                 | Org-029        | <0.002     | 1 | 0.01       | 0.01       | 0   | 103        | 111        |
| Perfluoropentanoic acid                     | μg/L       | 0.002                 | Org-029        | <0.002     | 1 | <0.002     | <0.002     | 0   | 105        | 97         |
| Perfluorohexanoic acid                      | μg/L       | 0.0004                | Org-029        | <0.0004    | 1 | 0.0048     | 0.0048     | 0   | 106        | 114        |
| Perfluoroheptanoic acid                     | μg/L       | 0.0004                | Org-029        | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 109        | 107        |
| Perfluorooctanoic acid PFOA                 | μg/L       | 0.0002                | Org-029        | <0.0002    | 1 | 0.001      | 0.001      | 0   | 104        | 108        |
| Perfluorononanoic acid                      | μg/L       | 0.001                 | Org-029        | <0.001     | 1 | <0.001     | <0.001     | 0   | 105        | 120        |
| Perfluorodecanoic acid                      | μg/L       | 0.002                 | Org-029        | <0.002     | 1 | <0.002     | <0.002     | 0   | 103        | 87         |
| Perfluoroundecanoic acid                    | μg/L       | 0.002                 | Org-029        | <0.002     | 1 | <0.002     | <0.002     | 0   | 103        | 91         |
| Perfluorododecanoic acid                    | μg/L       | 0.005                 | Org-029        | <0.005     | 1 | <0.005     | <0.005     | 0   | 104        | 110        |
| Perfluorotridecanoic acid                   | μg/L       | 0.01                  | Org-029        | <0.01      | 1 | <0.01      | <0.01      | 0   | 131        | 135        |
| Perfluorotetradecanoic acid                 | μg/L       | 0.05                  | Org-029        | <0.05      | 1 | <0.05      | <0.05      | 0   | 109        | 116        |
| 4:2 FTS                                     | μg/L       | 0.001                 | Org-029        | <0.001     | 1 | <0.001     | <0.001     | 0   | 104        | 110        |
| 6:2 FTS                                     | μg/L       | 0.0004                | Org-029        | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 100        | 119        |
| 8:2 FTS                                     | μg/L       | 0.0004                | Org-029        | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 96         | 118        |
| 10:2 FTS                                    | μg/L       | 0.002                 | Org-029        | <0.002     | 1 | <0.002     | <0.002     | 0   | 117        | 85         |
| Perfluorooctane sulfonamide                 | μg/L       | 0.01                  | Org-029        | <0.01      | 1 | <0.01      | <0.01      | 0   | 108        | 106        |
| N-Methyl perfluorooctane sulfonamide        | μg/L       | 0.005                 | Org-029        | <0.005     | 1 | <0.005     | <0.005     | 0   | 83         | 106        |
| N-Ethyl perfluorooctanesulfon amide         | μg/L       | 0.01                  | Org-029        | <0.01      | 1 | <0.01      | <0.01      | 0   | 85         | 113        |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L       | 0.005                 | Org-029        | <0.005     | 1 | <0.005     | <0.005     | 0   | 105        | 112        |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L       | 0.05                  | Org-029        | <0.05      | 1 | <0.05      | <0.05      | 0   | 107        | 122        |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.002                 | Org-029        | <0.002     | 1 | <0.002     | <0.002     | 0   | 90         | 84         |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.002                 | Org-029        | <0.002     | 1 | <0.002     | <0.002     | 0   | 95         | 109        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %          |                       | Org-029        | 102        | 1 | 102        | 100        | 2   | 107        | 105        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %          |                       | Org-029        | 99         | 1 | 96         | 94         | 2   | 98         | 94         |

Envirolab Reference: 251682-A

| QUALITY CONTR                                      | ROL: PFAS ir | ı Waters | Trace Extended |       |   | Du   | plicate |     | Spike Re | ecovery %  |
|----------------------------------------------------|--------------|----------|----------------|-------|---|------|---------|-----|----------|------------|
| Test Description                                   | Units        | PQL      | Method         | Blank | # | Base | Dup.    | RPD | LCS-W1   | 251682-A-2 |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFBS   | %            |          | Org-029        | 82    | 1 | 75   | 75      | 0   | 84       | 73         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %            |          | Org-029        | 80    | 1 | 78   | 82      | 5   | 82       | 78         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %            |          | Org-029        | 65    | 1 | 78   | 84      | 7   | 72       | 73         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFBA   | %            |          | Org-029        | 90    | 1 | #    | #       |     | 87       | #          |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFPeA  | %            |          | Org-029        | 89    | 1 | 25   | 22      | 13  | 83       | 22         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFHxA  | %            |          | Org-029        | 85    | 1 | 36   | 32      | 12  | 83       | 31         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %            |          | Org-029        | 95    | 1 | 61   | 58      | 5   | 90       | 56         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %            |          | Org-029        | 118   | 1 | 82   | 77      | 6   | 115      | 73         |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %            |          | Org-029        | 88    | 1 | 90   | 90      | 0   | 87       | 79         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDA   | %            |          | Org-029        | 86    | 1 | 128  | 135     | 5   | 93       | 114        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %            |          | Org-029        | 68    | 1 | 107  | 128     | 18  | 76       | 95         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDoDA | %            |          | Org-029        | 81    | 1 | 81   | 79      | 2   | 88       | 71         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %            |          | Org-029        | 79    | 1 | 45   | 59      | 27  | 79       | 57         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 4:2FTS | %            |          | Org-029        | 96    | 1 | 86   | 100     | 15  | 90       | 89         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %            |          | Org-029        | 105   | 1 | 138  | 141     | 2   | 95       | 136        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %            |          | Org-029        | 93    | 1 | #    | #       |     | 114      | #          |
| Extracted ISTD <sup>13</sup> C <sub>8</sub> FOSA   | %            |          | Org-029        | 58    | 1 | 51   | 47      | 8   | 60       | 44         |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %            |          | Org-029        | 32    | 1 | 23   | #       |     | 33       | 20         |
| Extracted ISTD d <sub>5</sub> N EtFOSA             | %            |          | Org-029        | 33    | 1 | 26   | 20      | 26  | 35       | 20         |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %            |          | Org-029        | 66    | 1 | 53   | 44      | 19  | 69       | 46         |

Envirolab Reference: 251682-A

| QUALITY CONTR                           | QUALITY CONTROL: PFAS in Waters Trace Extended |     |         |       |   |      |      | Duplicate Spik |        |            |  |  |
|-----------------------------------------|------------------------------------------------|-----|---------|-------|---|------|------|----------------|--------|------------|--|--|
| Test Description                        | Units                                          | PQL | Method  | Blank | # | Base | Dup. | RPD            | LCS-W1 | 251682-A-2 |  |  |
| Extracted ISTD d <sub>9</sub> N EtFOSE  | %                                              |     | Org-029 | 70    | 1 | 49   | 43   | 13             | 74     | 42         |  |  |
| Extracted ISTD d <sub>3</sub> N MeFOSAA | %                                              |     | Org-029 | 59    | 1 | 87   | 97   | 11             | 69     | 83         |  |  |
| Extracted ISTD d <sub>5</sub> N EtFOSAA | %                                              |     | Org-029 | 64    | 1 | 73   | 78   | 7              | 70     | 61         |  |  |

Envirolab Reference: 251682-A

| QUALITY CONTR                               | OL: PFAS i | n Waters | Trace Extended |       |    | Du         | plicate    |     | Spike Re   | covery %        |
|---------------------------------------------|------------|----------|----------------|-------|----|------------|------------|-----|------------|-----------------|
| Test Description                            | Units      | PQL      | Method         | Blank | #  | Base       | Dup.       | RPD | LCS-W2     | 251682-A-<br>22 |
| Date prepared                               | -          |          |                |       | 11 | 24/09/2020 | 24/09/2020 |     | 24/09/2020 | 24/09/2020      |
| Date analysed                               | -          |          |                |       | 11 | 25/09/2020 | 25/09/2020 |     | 28/09/2020 | 28/09/2020      |
| Perfluorobutanesulfonic acid                | μg/L       | 0.0004   | Org-029        |       | 11 | 0.002      | 0.002      | 0   | 102        | 113             |
| Perfluoropentanesulfonic acid               | μg/L       | 0.001    | Org-029        |       | 11 | <0.001     | <0.001     | 0   | 104        | 125             |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L       | 0.0002   | Org-029        |       | 11 | 0.0037     | 0.0039     | 5   | 104        | 104             |
| Perfluoroheptanesulfonic acid               | μg/L       | 0.001    | Org-029        |       | 11 | <0.001     | <0.001     | 0   | 111        | 107             |
| Perfluorooctanesulfonic acid PFOS           | μg/L       | 0.0002   | Org-029        |       | 11 | 0.0040     | 0.0038     | 5   | 104        | 101             |
| Perfluorodecanesulfonic acid                | μg/L       | 0.002    | Org-029        |       | 11 | <0.002     | <0.002     | 0   | 92         | 71              |
| Perfluorobutanoic acid                      | μg/L       | 0.002    | Org-029        |       | 11 | 0.007      | 0.007      | 0   | 99         | 101             |
| Perfluoropentanoic acid                     | μg/L       | 0.002    | Org-029        |       | 11 | 0.003      | 0.003      | 0   | 106        | 120             |
| Perfluorohexanoic acid                      | μg/L       | 0.0004   | Org-029        |       | 11 | 0.0048     | 0.0048     | 0   | 96         | 100             |
| Perfluoroheptanoic acid                     | μg/L       | 0.0004   | Org-029        |       | 11 | 0.001      | 0.0009     | 11  | 102        | 108             |
| Perfluorooctanoic acid PFOA                 | μg/L       | 0.0002   | Org-029        |       | 11 | 0.0032     | 0.0034     | 6   | 102        | 107             |
| Perfluorononanoic acid                      | μg/L       | 0.001    | Org-029        |       | 11 | <0.001     | <0.001     | 0   | 95         | 106             |
| Perfluorodecanoic acid                      | μg/L       | 0.002    | Org-029        |       | 11 | <0.002     | <0.002     | 0   | 98         | 93              |
| Perfluoroundecanoic acid                    | μg/L       | 0.002    | Org-029        |       | 11 | <0.002     | <0.002     | 0   | 106        | 93              |
| Perfluorododecanoic acid                    | μg/L       | 0.005    | Org-029        |       | 11 | <0.005     | <0.005     | 0   | 101        | 109             |
| Perfluorotridecanoic acid                   | μg/L       | 0.01     | Org-029        |       | 11 | <0.01      | <0.01      | 0   | 103        | 136             |
| Perfluorotetradecanoic acid                 | μg/L       | 0.05     | Org-029        |       | 11 | <0.05      | <0.05      | 0   | 101        | 114             |
| 4:2 FTS                                     | μg/L       | 0.001    | Org-029        |       | 11 | <0.001     | <0.001     | 0   | 102        | 118             |
| 6:2 FTS                                     | μg/L       | 0.0004   | Org-029        |       | 11 | <0.0004    | <0.0004    | 0   | 104        | 115             |
| 8:2 FTS                                     | μg/L       | 0.0004   | Org-029        |       | 11 | <0.0004    | <0.0004    | 0   | 92         | 110             |
| 10:2 FTS                                    | μg/L       | 0.002    | Org-029        |       | 11 | <0.002     | <0.002     | 0   | 99         | 76              |
| Perfluorooctane sulfonamide                 | μg/L       | 0.01     | Org-029        |       | 11 | <0.01      | <0.01      | 0   | 109        | 108             |
| N-Methyl perfluorooctane sulfonamide        | μg/L       | 0.005    | Org-029        |       | 11 | <0.005     | <0.005     | 0   | 124        | 123             |
| N-Ethyl perfluorooctanesulfon amide         | μg/L       | 0.01     | Org-029        |       | 11 | <0.01      | <0.01      | 0   | 117        | 128             |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L       | 0.005    | Org-029        |       | 11 | <0.005     | <0.005     | 0   | 108        | 120             |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L       | 0.05     | Org-029        |       | 11 | <0.05      | <0.05      | 0   | 105        | 121             |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.002    | Org-029        |       | 11 | <0.002     | <0.002     | 0   | 101        | 100             |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.002    | Org-029        |       | 11 | <0.002     | <0.002     | 0   | 104        | 106             |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %          |          | Org-029        |       | 11 | 104        | 96         | 8   | 102        | 94              |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %          |          | Org-029        |       | 11 | 93         | 96         | 3   | 95         | 95              |

Envirolab Reference: 251682-A

| QUALITY CONTR                                      | ROL: PFAS ir | Waters | Trace Extended |       |    | Du   | plicate |     | Spike Re | covery %        |
|----------------------------------------------------|--------------|--------|----------------|-------|----|------|---------|-----|----------|-----------------|
| Test Description                                   | Units        | PQL    | Method         | Blank | #  | Base | Dup.    | RPD | LCS-W2   | 251682-A-<br>22 |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFBS   | %            |        | Org-029        | [NT]  | 11 | 86   | 84      | 2   | 95       | 87              |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %            |        | Org-029        | [NT]  | 11 | 85   | 82      | 4   | 109      | 115             |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %            |        | Org-029        | [NT]  | 11 | 71   | 74      | 4   | 89       | 99              |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFBA   | %            |        | Org-029        | [NT]  | 11 | 27   | 26      | 4   | 104      | 49              |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFPeA  | %            |        | Org-029        | [NT]  | 11 | 32   | 31      | 3   | 110      | 51              |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFHxA  | %            |        | Org-029        | [NT]  | 11 | 48   | 47      | 2   | 99       | 62              |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %            |        | Org-029        | [NT]  | 11 | 78   | 79      | 1   | 113      | 89              |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %            |        | Org-029        | [NT]  | 11 | 94   | 91      | 3   | 133      | 100             |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %            |        | Org-029        | [NT]  | 11 | 98   | 96      | 2   | 103      | 98              |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDA   | %            |        | Org-029        | [NT]  | 11 | 122  | 120     | 2   | 92       | 98              |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %            |        | Org-029        | [NT]  | 11 | 94   | 89      | 5   | 82       | 76              |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDoDA | %            |        | Org-029        | [NT]  | 11 | 70   | 67      | 4   | 81       | 54              |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %            |        | Org-029        | [NT]  | 11 | 61   | 77      | 23  | 62       | 31              |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 4:2FTS | %            |        | Org-029        | [NT]  | 11 | 126  | 123     | 2   | 93       | 132             |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %            |        | Org-029        | [NT]  | 11 | 158  | 158     | 0   | 88       | 148             |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %            |        | Org-029        | [NT]  | 11 | #    | #       |     | 105      | 175             |
| Extracted ISTD <sup>13</sup> C <sub>8</sub> FOSA   | %            |        | Org-029        | [NT]  | 11 | 53   | 51      | 4   | 72       | 54              |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %            |        | Org-029        | [NT]  | 11 | 28   | 29      | 4   | 42       | 33              |
| Extracted ISTD d <sub>5</sub> N EtFOSA             | %            |        | Org-029        | [NT]  | 11 | 28   | 33      | 16  | 41       | 33              |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %            |        | Org-029        | [NT]  | 11 | 54   | 54      | 0   | 68       | 48              |

Envirolab Reference: 251682-A

| QUALITY CONTR                           | OL: PFAS ir | Trace Extended | Duplicate |       |    |      |      | Spike Recovery % |        |                 |
|-----------------------------------------|-------------|----------------|-----------|-------|----|------|------|------------------|--------|-----------------|
| Test Description                        | Units       | PQL            | Method    | Blank | #  | Base | Dup. | RPD              | LCS-W2 | 251682-A-<br>22 |
| Extracted ISTD d <sub>9</sub> N EtFOSE  | %           |                | Org-029   | [NT]  | 11 | 51   | 50   | 2                | 65     | 42              |
| Extracted ISTD d <sub>3</sub> N MeFOSAA | %           |                | Org-029   | [NT]  | 11 | 63   | 75   | 17               | 64     | 62              |
| Extracted ISTD d <sub>5</sub> N EtFOSAA | %           |                | Org-029   | [NT]  | 11 | 55   | 59   | 7                | 66     | 56              |

Envirolab Reference: 251682-A

| QUALITY CONTR                               | OL: PFAS i | n Waters <sup>-</sup> | Trace Extended |       |    | Du         | plicate    |     | Spike Re | covery % |
|---------------------------------------------|------------|-----------------------|----------------|-------|----|------------|------------|-----|----------|----------|
| Test Description                            | Units      | PQL                   | Method         | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date prepared                               | -          |                       |                | [NT]  | 21 | 24/09/2020 | 24/09/2020 |     |          | [NT]     |
| Date analysed                               | -          |                       |                | [NT]  | 21 | 28/09/2020 | 28/09/2020 |     |          | [NT]     |
| Perfluorobutanesulfonic acid                | μg/L       | 0.0004                | Org-029        | [NT]  | 21 | 0.002      | 0.002      | 0   |          | [NT]     |
| Perfluoropentanesulfonic acid               | μg/L       | 0.001                 | Org-029        | [NT]  | 21 | <0.001     | <0.001     | 0   |          | [NT]     |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L       | 0.0002                | Org-029        | [NT]  | 21 | 0.0032     | 0.0033     | 3   |          | [NT]     |
| Perfluoroheptanesulfonic acid               | μg/L       | 0.001                 | Org-029        | [NT]  | 21 | <0.001     | <0.001     | 0   |          | [NT]     |
| Perfluorooctanesulfonic acid PFOS           | μg/L       | 0.0002                | Org-029        | [NT]  | 21 | 0.0042     | 0.0041     | 2   |          | [NT]     |
| Perfluorodecanesulfonic acid                | μg/L       | 0.002                 | Org-029        | [NT]  | 21 | <0.002     | <0.002     | 0   |          | [NT]     |
| Perfluorobutanoic acid                      | μg/L       | 0.002                 | Org-029        | [NT]  | 21 | 0.007      | 0.007      | 0   |          | [NT]     |
| Perfluoropentanoic acid                     | μg/L       | 0.002                 | Org-029        | [NT]  | 21 | 0.003      | 0.003      | 0   |          | [NT]     |
| Perfluorohexanoic acid                      | μg/L       | 0.0004                | Org-029        | [NT]  | 21 | 0.0057     | 0.0058     | 2   |          | [NT]     |
| Perfluoroheptanoic acid                     | μg/L       | 0.0004                | Org-029        | [NT]  | 21 | 0.001      | 0.001      | 0   |          | [NT]     |
| Perfluorooctanoic acid PFOA                 | μg/L       | 0.0002                | Org-029        | [NT]  | 21 | 0.0043     | 0.0041     | 5   |          | [NT]     |
| Perfluorononanoic acid                      | μg/L       | 0.001                 | Org-029        | [NT]  | 21 | <0.001     | <0.001     | 0   |          | [NT]     |
| Perfluorodecanoic acid                      | μg/L       | 0.002                 | Org-029        | [NT]  | 21 | <0.002     | <0.002     | 0   |          | [NT]     |
| Perfluoroundecanoic acid                    | μg/L       | 0.002                 | Org-029        | [NT]  | 21 | <0.002     | <0.002     | 0   |          | [NT]     |
| Perfluorododecanoic acid                    | μg/L       | 0.005                 | Org-029        | [NT]  | 21 | <0.005     | <0.005     | 0   |          | [NT]     |
| Perfluorotridecanoic acid                   | μg/L       | 0.01                  | Org-029        | [NT]  | 21 | <0.01      | <0.01      | 0   |          | [NT]     |
| Perfluorotetradecanoic acid                 | μg/L       | 0.05                  | Org-029        | [NT]  | 21 | <0.05      | <0.05      | 0   |          | [NT]     |
| 1:2 FTS                                     | μg/L       | 0.001                 | Org-029        | [NT]  | 21 | <0.001     | <0.001     | 0   |          | [NT]     |
| 3:2 FTS                                     | μg/L       | 0.0004                | Org-029        | [NT]  | 21 | <0.0004    | <0.0004    | 0   |          | [NT]     |
| 3:2 FTS                                     | μg/L       | 0.0004                | Org-029        | [NT]  | 21 | <0.0004    | <0.0004    | 0   |          | [NT]     |
| 0:2 FTS                                     | μg/L       | 0.002                 | Org-029        | [NT]  | 21 | <0.002     | <0.002     | 0   |          | [NT]     |
| Perfluorooctane sulfonamide                 | μg/L       | 0.01                  | Org-029        | [NT]  | 21 | <0.01      | <0.01      | 0   |          | [NT]     |
| N-Methyl perfluorooctane sulfonamide        | μg/L       | 0.005                 | Org-029        | [NT]  | 21 | <0.005     | <0.005     | 0   |          | [NT]     |
| I-Ethyl perfluorooctanesulfon amide         | μg/L       | 0.01                  | Org-029        | [NT]  | 21 | <0.01      | <0.01      | 0   |          | [NT]     |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L       | 0.005                 | Org-029        | [NT]  | 21 | <0.005     | <0.005     | 0   |          | [NT]     |
| I-Et perfluorooctanesulfonamid oethanol     | μg/L       | 0.05                  | Org-029        | [NT]  | 21 | <0.05      | <0.05      | 0   |          | [NT]     |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.002                 | Org-029        | [NT]  | 21 | <0.002     | <0.002     | 0   |          | [NT]     |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.002                 | Org-029        | [NT]  | 21 | <0.002     | <0.002     | 0   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %          |                       | Org-029        | [NT]  | 21 | 99         | 94         | 5   |          | [NT]     |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %          |                       | Org-029        | [NT]  | 21 | 94         | 96         | 2   |          | [NT]     |

Envirolab Reference: 251682-A

| QUALITY CONT                                       | ROL: PFAS ir | n Waters | Trace Extended |       |    | Dι   | ıplicate | Spike Recovery % |      |      |  |  |  |
|----------------------------------------------------|--------------|----------|----------------|-------|----|------|----------|------------------|------|------|--|--|--|
| Test Description                                   | Units        | PQL      | Method         | Blank | #  | Base | Dup.     | RPD              | [NT] | [NT] |  |  |  |
| Extracted ISTD 13 C <sub>3</sub> PFBS              | %            |          | Org-029        | [NT]  | 21 | 84   | 90       | 7                |      | [NT] |  |  |  |
| Extracted ISTD 18 O <sub>2</sub> PFHxS             | %            |          | Org-029        | [NT]  | 21 | 116  | 114      | 2                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %            |          | Org-029        | [NT]  | 21 | 96   | 99       | 3                |      | [NT] |  |  |  |
| Extracted ISTD 13 C <sub>4</sub> PFBA              | %            |          | Org-029        | [NT]  | 21 | 48   | 47       | 2                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFPeA  | %            |          | Org-029        | [NT]  | 21 | 47   | 47       | 0                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFHxA  | %            |          | Org-029        | [NT]  | 21 | 55   | 61       | 10               |      | [NT] |  |  |  |
| Extracted ISTD 13 C <sub>4</sub> PFHpA             | %            |          | Org-029        | [NT]  | 21 | 90   | 90       | 0                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %            |          | Org-029        | [NT]  | 21 | 102  | 100      | 2                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %            |          | Org-029        | [NT]  | 21 | 100  | 96       | 4                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDA   | %            |          | Org-029        | [NT]  | 21 | 99   | 94       | 5                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %            |          | Org-029        | [NT]  | 21 | 84   | 77       | 9                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDoDA | %            |          | Org-029        | [NT]  | 21 | 63   | 58       | 8                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %            |          | Org-029        | [NT]  | 21 | 32   | 33       | 3                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 4:2FTS | %            |          | Org-029        | [NT]  | 21 | 109  | 142      | 26               |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %            |          | Org-029        | [NT]  | 21 | 155  | 153      | 1                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %            |          | Org-029        | [NT]  | 21 | #    | 191      |                  |      | [NT] |  |  |  |
| Extracted ISTD 13 C <sub>8</sub> FOSA              | %            |          | Org-029        | [NT]  | 21 | 55   | 54       | 2                |      | [NT] |  |  |  |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %            |          | Org-029        | [NT]  | 21 | 35   | 35       | 0                |      | [NT] |  |  |  |
| Extracted ISTD d₅ N EtFOSA                         | %            |          | Org-029        | [NT]  | 21 | 34   | 36       | 6                |      | [NT] |  |  |  |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %            |          | Org-029        | [NT]  | 21 | 50   | 50       | 0                |      | [NT] |  |  |  |

Envirolab Reference: 251682-A

| QUALITY CONTR                           | OL: PFAS ir | Waters | Trace Extended |       |    | Du   | Spike Recovery % |     |      |      |
|-----------------------------------------|-------------|--------|----------------|-------|----|------|------------------|-----|------|------|
| Test Description                        | Units       | PQL    | Method         | Blank | #  | Base | Dup.             | RPD | [NT] | [NT] |
| Extracted ISTD d <sub>9</sub> N EtFOSE  | %           |        | Org-029        | [NT]  | 21 | 44   | 45               | 2   | [NT] | [NT] |
| Extracted ISTD d <sub>3</sub> N MeFOSAA | %           |        | Org-029        | [NT]  | 21 | 70   | 64               | 9   | [NT] | [NT] |
| Extracted ISTD d <sub>5</sub> N EtFOSAA | %           |        | Org-029        | [NT]  | 21 | 60   | 60               | 0   | [NT] | [NT] |

Envirolab Reference: 251682-A

| QUALITY CONTR                               | OL: PFAS ir | n Waters <sup>·</sup> | Trace Extended |       |    | Du         | plicate    |     | Spike Re | covery % |
|---------------------------------------------|-------------|-----------------------|----------------|-------|----|------------|------------|-----|----------|----------|
| Test Description                            | Units       | PQL                   | Method         | Blank | #  | Base       | Dup.       | RPD | [NT]     | [NT]     |
| Date prepared                               | -           |                       |                |       | 24 | 24/09/2020 | 24/09/2020 |     | [NT]     |          |
| Date analysed                               | -           |                       |                |       | 24 | 28/09/2020 | 28/09/2020 |     | [NT]     |          |
| Perfluorobutanesulfonic acid                | μg/L        | 0.0004                | Org-029        |       | 24 | 0.003      | 0.003      | 0   | [NT]     |          |
| Perfluoropentanesulfonic acid               | μg/L        | 0.001                 | Org-029        |       | 24 | 0.001      | 0.001      | 0   | [NT]     |          |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L        | 0.0002                | Org-029        |       | 24 | 0.0044     | 0.0046     | 4   | [NT]     |          |
| Perfluoroheptanesulfonic acid               | μg/L        | 0.001                 | Org-029        |       | 24 | <0.001     | <0.001     | 0   | [NT]     |          |
| Perfluorooctanesulfonic acid PFOS           | μg/L        | 0.0002                | Org-029        |       | 24 | 0.0040     | 0.0041     | 2   | [NT]     |          |
| Perfluorodecanesulfonic acid                | μg/L        | 0.002                 | Org-029        |       | 24 | <0.002     | <0.002     | 0   | [NT]     |          |
| Perfluorobutanoic acid                      | μg/L        | 0.002                 | Org-029        |       | 24 | 0.008      | 0.008      | 0   | [NT]     |          |
| Perfluoropentanoic acid                     | μg/L        | 0.002                 | Org-029        |       | 24 | 0.003      | 0.003      | 0   | [NT]     |          |
| Perfluorohexanoic acid                      | μg/L        | 0.0004                | Org-029        |       | 24 | 0.0050     | 0.0049     | 2   | [NT]     |          |
| Perfluoroheptanoic acid                     | μg/L        | 0.0004                | Org-029        |       | 24 | 0.001      | 0.001      | 0   | [NT]     |          |
| Perfluorooctanoic acid PFOA                 | μg/L        | 0.0002                | Org-029        |       | 24 | 0.0044     | 0.0042     | 5   | [NT]     |          |
| Perfluorononanoic acid                      | μg/L        | 0.001                 | Org-029        |       | 24 | <0.001     | <0.001     | 0   | [NT]     |          |
| Perfluorodecanoic acid                      | μg/L        | 0.002                 | Org-029        |       | 24 | <0.002     | <0.002     | 0   | [NT]     |          |
| Perfluoroundecanoic acid                    | μg/L        | 0.002                 | Org-029        |       | 24 | <0.002     | <0.002     | 0   | [NT]     |          |
| Perfluorododecanoic acid                    | μg/L        | 0.005                 | Org-029        |       | 24 | <0.005     | <0.005     | 0   | [NT]     |          |
| Perfluorotridecanoic acid                   | μg/L        | 0.01                  | Org-029        |       | 24 | <0.01      | <0.01      | 0   | [NT]     |          |
| Perfluorotetradecanoic acid                 | μg/L        | 0.05                  | Org-029        |       | 24 | <0.05      | <0.05      | 0   | [NT]     |          |
| 4:2 FTS                                     | μg/L        | 0.001                 | Org-029        |       | 24 | <0.001     | <0.001     | 0   | [NT]     |          |
| 6:2 FTS                                     | μg/L        | 0.0004                | Org-029        |       | 24 | <0.0004    | <0.0004    | 0   | [NT]     |          |
| 8:2 FTS                                     | μg/L        | 0.0004                | Org-029        |       | 24 | <0.0004    | <0.0004    | 0   | [NT]     |          |
| 10:2 FTS                                    | μg/L        | 0.002                 | Org-029        |       | 24 | <0.002     | <0.002     | 0   | [NT]     |          |
| Perfluorooctane sulfonamide                 | μg/L        | 0.01                  | Org-029        |       | 24 | <0.01      | <0.01      | 0   | [NT]     |          |
| N-Methyl perfluorooctane sulfonamide        | μg/L        | 0.005                 | Org-029        |       | 24 | <0.005     | <0.005     | 0   | [NT]     |          |
| N-Ethyl perfluorooctanesulfon amide         | μg/L        | 0.01                  | Org-029        |       | 24 | <0.01      | <0.01      | 0   | [NT]     |          |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L        | 0.005                 | Org-029        |       | 24 | <0.005     | <0.005     | 0   | [NT]     |          |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L        | 0.05                  | Org-029        |       | 24 | <0.05      | <0.05      | 0   | [NT]     |          |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L        | 0.002                 | Org-029        |       | 24 | <0.002     | <0.002     | 0   | [NT]     |          |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L        | 0.002                 | Org-029        |       | 24 | <0.002     | <0.002     | 0   | [NT]     |          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %           |                       | Org-029        |       | 24 | 97         | 92         | 5   | [NT]     |          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %           |                       | Org-029        |       | 24 | 92         | 91         | 1   | [NT]     |          |

Envirolab Reference: 251682-A

| QUALITY CONTI                                      | ROL: PFAS ir | n Waters | Trace Extended |       |    | Dι   | plicate | Spike Recovery % |      |      |  |  |  |
|----------------------------------------------------|--------------|----------|----------------|-------|----|------|---------|------------------|------|------|--|--|--|
| Test Description                                   | Units        | PQL      | Method         | Blank | #  | Base | Dup.    | RPD              | [NT] | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFBS   | %            |          | Org-029        | [NT]  | 24 | 87   | 83      | 5                |      | [NT] |  |  |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %            |          | Org-029        | [NT]  | 24 | 112  | 108     | 4                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %            |          | Org-029        | [NT]  | 24 | 91   | 96      | 5                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFBA   | %            |          | Org-029        | [NT]  | 24 | 45   | 43      | 5                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFPeA  | %            |          | Org-029        | [NT]  | 24 | 48   | 49      | 2                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFHxA  | %            |          | Org-029        | [NT]  | 24 | 61   | 59      | 3                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %            |          | Org-029        | [NT]  | 24 | 89   | 87      | 2                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %            |          | Org-029        | [NT]  | 24 | 101  | 101     | 0                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %            |          | Org-029        | [NT]  | 24 | 97   | 94      | 3                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDA   | %            |          | Org-029        | [NT]  | 24 | 96   | 97      | 1                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %            |          | Org-029        | [NT]  | 24 | 68   | 75      | 10               |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDoDA | %            |          | Org-029        | [NT]  | 24 | 47   | 52      | 10               |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %            |          | Org-029        | [NT]  | 24 | 31   | 32      | 3                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 4:2FTS | %            |          | Org-029        | [NT]  | 24 | 136  | 149     | 9                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %            |          | Org-029        | [NT]  | 24 | 149  | 151     | 1                |      | [NT] |  |  |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %            |          | Org-029        | [NT]  | 24 | 160  | 182     | 13               |      | [NT] |  |  |  |
| Extracted ISTD 13 C <sub>8</sub> FOSA              | %            |          | Org-029        | [NT]  | 24 | 48   | 51      | 6                |      | [NT] |  |  |  |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %            |          | Org-029        | [NT]  | 24 | 27   | 31      | 14               |      | [NT] |  |  |  |
| Extracted ISTD d₅ N EtFOSA                         | %            |          | Org-029        | [NT]  | 24 | 26   | 28      | 7                |      | [NT] |  |  |  |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %            |          | Org-029        | [NT]  | 24 | 41   | 46      | 11               |      | [NT] |  |  |  |

Envirolab Reference: 251682-A

| QUALITY CONTR                           | OL: PFAS ir | Waters | Trace Extended |       |    | Du   | Spike Recovery % |     |      |      |
|-----------------------------------------|-------------|--------|----------------|-------|----|------|------------------|-----|------|------|
| Test Description                        | Units       | PQL    | Method         | Blank | #  | Base | Dup.             | RPD | [NT] | [NT] |
| Extracted ISTD d <sub>9</sub> N EtFOSE  | %           |        | Org-029        | [NT]  | 24 | 36   | 39               | 8   |      |      |
| Extracted ISTD d <sub>3</sub> N MeFOSAA | %           |        | Org-029        | [NT]  | 24 | 56   | 59               | 5   |      |      |
| Extracted ISTD d₅ N EtFOSAA             | %           |        | Org-029        | [NT]  | 24 | 50   | 52               | 4   | [NT] | [NT] |

Envirolab Reference: 251682-A

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 251682-A

| <b>Quality C</b>          | ontro  | ol Definitions                                                                                                                                                                                                                   |
|---------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E                         | Blank  | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Dupl                      | licate | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix \$                 | Spike  | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Labor<br>Control Sar | •      | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate \$              | Spike  | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 251682-A Page | 30 of 31

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 251682-A Page | 31 of 31

| CONTROL OO | ENV <u>ี้เ</u> หือเคย |
|------------|-----------------------|
| ENVIROLAB  | © <u>m</u> el         |

# **CHAIN OF CUSTODY FORM - Client**

|                                                 | <del></del>                                                            |              |                 |                      |                              | 1            | :            |                                                       |                       |          |            |              |                     |                    | 12 A                                                                          | ehlay 9            | h Chat            | ewood              | iervices<br>, NSW 2<br>ey@env | 2067<br>rirolab.com.au                                                                                        |
|-------------------------------------------------|------------------------------------------------------------------------|--------------|-----------------|----------------------|------------------------------|--------------|--------------|-------------------------------------------------------|-----------------------|----------|------------|--------------|---------------------|--------------------|-------------------------------------------------------------------------------|--------------------|-------------------|--------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------|
| [Copyright and Confide                          | intla¶                                                                 |              |                 |                      |                              |              |              |                                                       |                       |          |            |              |                     |                    |                                                                               |                    | MPL L             |                    |                               |                                                                                                               |
| Client: GHD Pty Ltd                             |                                                                        |              |                 |                      | Client                       | Projec       | t Name       | /Numbe                                                | er/Site e             | tc (le : | eport ti   | tle):        | -                   |                    | 16-1                                                                          | 8 Havd             | en Crt,           | Myaree             | , WA 6                        | 154<br>m au                                                                                                   |
| Contact Person: Sea                             | an Sparrow                                                             |              |                 |                      |                              |              | -            |                                                       | 12516                 | •        |            |              |                     |                    |                                                                               |                    | •                 | _                  | •                             |                                                                                                               |
| Project Mgr: Dilara                             | /aliff                                                                 |              |                 |                      | PO No                        | .: 1251      | 6828         |                                                       |                       |          |            |              | •                   |                    | Melbourne Lab - Envirolab Services 25 Research Drive, Croydon South, VIC 3136 |                    |                   |                    |                               |                                                                                                               |
| Sampler: Sean Spar                              | row                                                                    |              |                 |                      | Envirolab Quote No. :'       |              |              |                                                       |                       |          |            | <b>①</b> 03  | 9763 2              | 2500 ] ∑           | ⊴ melb                                                                        | ourne@             | genvirolab.com.au |                    |                               |                                                                                                               |
| Address:                                        |                                                                        |              |                 |                      | Date 7                       | esults i     | require      | d:                                                    | •                     | _        | stanc      | lard         | ,                   |                    | Adel                                                                          | aide O             | ffice - E         | nvirola            | ab Serv<br>SA 500             | ices                                                                                                          |
|                                                 | Level 4, 211 Victoria Squa                                             | are, Adelaid | e 5000          |                      | Note: I                      |              | ab in ac     |                                                       | ne day I<br>if urgent |          |            |              | 1-                  |                    | Ø 08                                                                          | 3 7087 (           | 5BOO   ∑          | Z adela            | ide@ei<br>ab Serv             | nvirolab.com.au                                                                                               |
| Phone:                                          |                                                                        | Mob:         | 0498 260 620    | 3                    | Additi                       | onal re      | port fo      | rmat: e                                               | esdat / e             | quis /   |            |              |                     |                    | 20a,                                                                          | 10-20 I            | Depot S           | t, Bany<br>₹ brisb | yo, QLD<br>ane@e              | 0 4014<br>nvirolab.com.au                                                                                     |
| m1112114                                        | GHDLabReports@ghd.com<br>sean.sparrow@ghd.com<br>dilara.valiff@ghd.com | n<br>*       |                 | ·                    | Lab Comments:                |              |              |                                                       |                       |          |            |              | <u>Darv</u><br>Unit | vin Offi<br>20/119 | ce - En<br>Reicha                                                             | virolab<br>Irdt Ro | Servic<br>ad, Wii |                    |                               |                                                                                                               |
|                                                 | Sample inform                                                          | nation       |                 |                      | 2                            |              | <b>j</b> . 1 | i<br>Lagranda                                         |                       |          | Tests R    |              | Tests Required      |                    | 4 3                                                                           | ag San             | , d. s.           |                    | 3.35                          | Comments                                                                                                      |
| Envirolab Sample<br>ID                          | Client Sample ID or<br>information                                     | Depth        | Date<br>sampled | Type of sample       | PFAS Ultra Trace<br>in Water | PFAS in Soil | Hold         |                                                       |                       | · · ·    | *          | ,            |                     |                    |                                                                               | ,                  |                   | ,                  |                               | Provide as much<br>information about the<br>sample as you can                                                 |
| 1.                                              | 6627-5944_B                                                            |              | 17/09/2020      | water                | ×                            | ,            |              |                                                       |                       |          |            | `            |                     |                    |                                                                               | Rel                | Mai               | VELLA              | led                           | by El Sud                                                                                                     |
| 2                                               | Garden1                                                                |              | 17/09/2020      | <u>soil</u>          |                              | X:           |              |                                                       |                       |          |            |              |                     |                    |                                                                               |                    | U                 | . D., =            | 1                             | c-Mulema                                                                                                      |
| 3                                               | Garden2                                                                |              | 17/09/2020      | soil                 |                              | Х            |              |                                                       | <del></del>           |          |            |              |                     |                    | <del>-</del>                                                                  |                    |                   |                    |                               | 129/0 80                                                                                                      |
| Ŋ                                               | Garden3                                                                |              | 17/09/2020      | <u>soit</u>          |                              | x            |              |                                                       |                       |          | nmen       | tal D        | ivisio              | on                 | -                                                                             |                    |                   |                    |                               | (M                                                                                                            |
| Ś                                               | Garden4                                                                |              | 17/09/2020      | soil                 |                              | -X           |              |                                                       | Sy                    | dney     | /<br>Order | Refe         | ence                |                    |                                                                               |                    |                   |                    |                               |                                                                                                               |
| ρ.                                              | Garden5                                                                |              | 17/09/2020      | soil                 |                              |              | Х            |                                                       |                       | ES       | <b>320</b> | 33           | 43                  | 8                  | _                                                                             |                    |                   |                    |                               | المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ا |
| <b>Ť</b>                                        | GardenB                                                                |              | 17/09/2020      | soil                 |                              |              | х            |                                                       |                       | <u> </u> | <i></i>    |              | - 1 -               | •                  | Γ                                                                             |                    |                   |                    |                               |                                                                                                               |
| 8                                               | Garden7                                                                |              | 17/09/2020      | <u>soil</u>          |                              |              | х            |                                                       |                       |          |            |              | (L. 18)             | Ш                  |                                                                               |                    |                   |                    |                               |                                                                                                               |
| 9                                               | Garden8                                                                | _            | 17/09/2020      | <u>soil</u>          |                              |              | Х            |                                                       |                       |          | Wilh       | 3 <b>.</b> X | (1)                 |                    |                                                                               |                    |                   |                    |                               |                                                                                                               |
| 9                                               | QC33                                                                   |              | 17/09/2020      | <u>soil</u>          |                              | х            |              |                                                       |                       |          | LW.U       |              | (VIII)              |                    |                                                                               |                    |                   |                    |                               |                                                                                                               |
|                                                 | QC33A                                                                  |              | 17/09/2020      | <u>soil</u>          |                              | х            |              |                                                       |                       |          | V.V.       |              | <b>52</b>           |                    |                                                                               |                    |                   |                    |                               | Please forward to ALS                                                                                         |
| ] ( 3                                           | QC34                                                                   |              | 17/09/2020      | water                | ×                            |              | L.,          | <u> </u>                                              | Tolo                  | nhone    | : +61-2    | .8784 8      | 555                 |                    | L                                                                             |                    |                   |                    |                               | ,                                                                                                             |
|                                                 | QC34A                                                                  | <u></u>      | 17/09/2020      | <u>water</u>         | х                            | L            |              |                                                       | 1616                  | spitone  | . +012     | 0,040        | 500                 |                    |                                                                               | <u> </u>           | <u> </u>          |                    | <u>.</u>                      | Please forward to ALS                                                                                         |
|                                                 | Please tick the box if observed                                        | settled sed  | lment presen    | t in water samples i | s to be                      | includ       |              | he extra                                              | içuon a               | navor a  | naiysis    | :            |                     | = -                |                                                                               |                    |                   |                    |                               |                                                                                                               |
| Relinquished by (Company): SUS Received by (Com |                                                                        |              |                 |                      | any):                        |              | <u>EÑ</u>    | <u> </u>                                              | <b>y</b>              |          |            |              | 51                  | 40)                | <u> </u>                                                                      | . Li               | b Use             | Only               |                               |                                                                                                               |
| Print Name: Print Name:                         |                                                                        |              |                 |                      |                              | 1            | <u> </u>     |                                                       | 1/on                  |          | Job nu     | mber:        | <u> 26</u>          | <del>-/ (</del>    | <del>)</del>                                                                  |                    |                   |                    |                               | ck / None                                                                                                     |
| Date & Time:                                    | 6920 @ 930a                                                            |              | <del></del>     | Date & Time:         | <u> </u>                     | 101-         | ؠڔڕ          | \<br><del>                                     </del> | 1005                  | <u> </u> |            | rature       |                     | 18.5               | Security seal: Intact / Broken / None                                         |                    |                   |                    |                               |                                                                                                               |
| Signature:                                      |                                                                        |              |                 | Signature:           |                              | - 1          | <u> </u>     | <u>/〜</u>                                             |                       |          | TAT R      | eq - SA      | ME da               | y / 1 /            | 2/3                                                                           | 141                | STD               |                    | _                             |                                                                                                               |

Rec-8089/10 27/9/20

National phone number 1300 424 344



## **CERTIFICATE OF ANALYSIS**

Work Order : ES2033438

: GHD PTY LTD

Contact : DILARA VALIFF

Address : LEVEL 15. 133 CASTLEREAGH STREET

SYDNEY NSW, AUSTRALIA 2000

Telephone : +61 08 8111 6600

Project : 12516828 Order number : 12516828

C-O-C number : ---Sampler : ---Site :

Client

Quote number : EN/005

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 7

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 22-Sep-2020 18:20

Date Analysis Commenced : 23-Sep-2020

Issue Date : 30-Sep-2020 10:28



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Franco Lentini Sydney Organics, Smithfield, NSW

 Page
 : 2 of 7

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

 Page
 : 3 of 7

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Analytical Results

| Sub-Matrix: SOIL (Matrix: SOIL)               |            | Clie          | ent sample ID  | QC33A             | <br> | <br> |
|-----------------------------------------------|------------|---------------|----------------|-------------------|------|------|
|                                               | C          | lient samplii | ng date / time | 17-Sep-2020 00:00 | <br> | <br> |
| Compound                                      | CAS Number | LOR           | Unit           | ES2033438-001     | <br> | <br> |
| ,                                             |            |               |                | Result            | <br> | <br> |
| EA055: Moisture Content (Dried @ 105          | -110°C)    |               |                |                   |      |      |
| Moisture Content                              |            | 0.1           | %              | 16.0              | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids         |            |               |                |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)          | 375-73-5   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluoropentane sulfonic acid (PFPeS)        | 2706-91-4  | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluoroheptane sulfonic acid (PFHpS)        | 375-92-8   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1  | 0.0002        | mg/kg          | 0.0005            | <br> | <br> |
| Perfluorodecane sulfonic acid (PFDS)          | 335-77-3   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Ac          | ids        |               |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                 | 375-22-4   | 0.001         | mg/kg          | <0.001            | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)               | 2706-90-3  | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)                | 307-24-4   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)               | 375-85-9   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                 | 335-67-1   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorononanoic acid (PFNA)                 | 375-95-1   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorodecanoic acid (PFDA)                 | 335-76-2   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluoroundecanoic acid (PFUnDA)             | 2058-94-8  | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorododecanoic acid (PFDoDA)             | 307-55-1   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorotridecanoic acid (PFTrDA)            | 72629-94-8 | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| Perfluorotetradecanoic acid (PFTeDA)          | 376-06-7   | 0.0005        | mg/kg          | <0.0005           | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamides           |            |               |                |                   |      |      |
| Perfluorooctane sulfonamide (FOSA)            | 754-91-6   | 0.0002        | mg/kg          | <0.0002           | <br> | <br> |
| N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.0005        | mg/kg          | <0.0005           | <br> | <br> |

 Page
 : 4 of 7

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                              |                        | Clie         | ent sample ID  | QC33A             | <br>            |             |  |
|-----------------------------------------------------------------|------------------------|--------------|----------------|-------------------|-----------------|-------------|--|
|                                                                 | Ci                     | ient samplii | ng date / time | 17-Sep-2020 00:00 | <br>            |             |  |
| Compound                                                        | CAS Number             | LOR          | Unit           | ES2033438-001     | <br>            |             |  |
|                                                                 |                        |              |                | Result            | <br>            |             |  |
| EP231C: Perfluoroalkyl Sulfonamides                             | - Continued            |              |                |                   |                 |             |  |
| N-Ethyl perfluorooctane                                         | 4151-50-2              | 0.0005       | mg/kg          | <0.0005           | <br>            |             |  |
| sulfonamide (EtFOSA)                                            |                        |              |                |                   |                 |             |  |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.0005       | mg/kg          | <0.0005           | <br>            |             |  |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.0005       | mg/kg          | <0.0005           | <br><del></del> | <del></del> |  |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.0002       | mg/kg          | <0.0002           | <br>            |             |  |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.0002       | mg/kg          | <0.0002           | <br>            |             |  |
| EP231D: (n:2) Fluorotelomer Sulfonio                            | c Acids                |              |                |                   |                 |             |  |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.0005       | mg/kg          | <0.0005           | <br>            |             |  |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.0005       | mg/kg          | <0.0005           | <br>            |             |  |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                       | 39108-34-4             | 0.0005       | mg/kg          | <0.0005           | <br>            |             |  |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.0005       | mg/kg          | <0.0005           | <br>            |             |  |
| EP231P: PFAS Sums                                               |                        |              |                |                   |                 |             |  |
| Sum of PFAS                                                     |                        | 0.0002       | mg/kg          | 0.0005            | <br>            |             |  |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.0002       | mg/kg          | 0.0005            | <br>            |             |  |
| Sum of PFAS (WA DER List)                                       |                        | 0.0002       | mg/kg          | 0.0005            | <br>            |             |  |
| EP231S: PFAS Surrogate                                          |                        |              |                |                   |                 |             |  |
| 13C4-PFOS                                                       |                        | 0.0002       | %              | 93.5              | <br>            |             |  |
| 13C8-PFOA                                                       |                        | 0.0002       | %              | 102               | <br>            |             |  |

 Page
 : 5 of 7

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER (Matrix: WATER)             |            | Clie         | ent sample ID  | QC34A             | <br> | <br> |
|-----------------------------------------------|------------|--------------|----------------|-------------------|------|------|
|                                               | CI         | ient samplii | ng date / time | 17-Sep-2020 00:00 | <br> | <br> |
| Compound                                      | CAS Number | LOR          | Unit           | ES2033438-002     | <br> | <br> |
| ·                                             |            |              |                | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids         |            |              |                |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)          | 375-73-5   | 0.002        | μg/L           | 0.005             | <br> | <br> |
| Perfluoropentane sulfonic acid (PFPeS)        | 2706-91-4  | 0.002        | µg/L           | 0.006             | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4   | 0.002        | μg/L           | 0.038             | <br> | <br> |
| Perfluoroheptane sulfonic acid (PFHpS)        | 375-92-8   | 0.002        | μg/L           | 0.003             | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1  | 0.002        | μg/L           | 0.046             | <br> | <br> |
| Perfluorodecane sulfonic acid (PFDS)          | 335-77-3   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Acid        | ls         |              |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                 | 375-22-4   | 0.01         | μg/L           | <0.01             | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)               | 2706-90-3  | 0.002        | μg/L           | 0.005             | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)                | 307-24-4   | 0.002        | μg/L           | 0.022             | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)               | 375-85-9   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                 | 335-67-1   | 0.002        | μg/L           | 0.004             | <br> | <br> |
| Perfluorononanoic acid (PFNA)                 | 375-95-1   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorodecanoic acid (PFDA)                 | 335-76-2   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluoroundecanoic acid (PFUnDA)             | 2058-94-8  | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorododecanoic acid (PFDoDA)             | 307-55-1   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorotridecanoic acid (PFTrDA)            | 72629-94-8 | 0.002        | μg/L           | <0.002            | <br> | <br> |
| Perfluorotetradecanoic acid (PFTeDA)          | 376-06-7   | 0.005        | μg/L           | <0.005            | <br> | <br> |
| Perfluorohexadecanoic acid (PFHxDA)           | 67905-19-5 | 0.005        | μg/L           | <0.005            | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamides           |            |              |                |                   |      |      |
| Perfluorooctane sulfonamide (FOSA)            | 754-91-6   | 0.002        | μg/L           | <0.002            | <br> | <br> |
| N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.005        | μg/L           | <0.005            | <br> | <br> |

 Page
 : 6 of 7

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER (Matrix: WATER)                               |                        | Clie         | ent sample ID  | QC34A             | <br> | <br> |
|-----------------------------------------------------------------|------------------------|--------------|----------------|-------------------|------|------|
|                                                                 | CI                     | ient samplii | ng date / time | 17-Sep-2020 00:00 | <br> | <br> |
| Compound                                                        | CAS Number             | LOR          | Unit           | ES2033438-002     | <br> | <br> |
|                                                                 |                        |              |                | Result            | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamides                             | s - Continued          |              |                |                   |      |      |
| N-Ethyl perfluorooctane sulfonamide (EtFOSA)                    | 4151-50-2              | 0.005        | μg/L           | <0.005            | <br> | <br> |
| N-Methyl perfluorooctane<br>sulfonamidoethanol (MeFOSE)         | 24448-09-7             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.005        | μg/L           | <0.005            | <br> | <br> |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.002        | μg/L           | <0.002            | <br> | <br> |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.002        | μg/L           | <0.002            | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonio                            | c Acids                |              |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.005        | μg/L           | <0.005            | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.005        | μg/L           | <0.005            | <br> | <br> |
| EP231P: PFAS Sums                                               |                        |              |                |                   |      |      |
| Sum of PFAS                                                     |                        | 0.002        | μg/L           | 0.129             | <br> | <br> |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.002        | μg/L           | 0.084             | <br> | <br> |
| Sum of PFAS (WA DER List)                                       |                        | 0.002        | μg/L           | 0.120             | <br> | <br> |
| EP231S: PFAS Surrogate                                          |                        |              |                |                   |      |      |
| 13C4-PFOS                                                       |                        | 0.002        | %              | 94.8              | <br> | <br> |
| 13C8-PFOA                                                       |                        | 0.002        | %              | 114               | <br> | <br> |

 Page
 : 7 of 7

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Surrogate Control Limits**

| Sub-Matrix: SOIL       |            | Recovery | Limits (%) |
|------------------------|------------|----------|------------|
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |
| Sub-Matrix: WATER      |            | Recovery | Limits (%) |
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |



#### **QUALITY CONTROL REPORT**

: 1 of 9

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

Work Order : **ES2033438** 

**S2033438** Page

Client : GHD PTY LTD Laboratory : Environmental Division Sydney
Contact : DILARA VALIFF Contact : Angus Harding

Address : LEVEL 15, 133 CASTLEREAGH STREET Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2000

Telephone : +61 08 8111 6600 Telephone : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 22-Sep-2020

 Order number
 : 12516828
 Date Analysis Commenced
 : 23-Sep-2020

C-O-C number : ---- | Issue Date : 30-Sep-2020

Site :

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Matrix Spike (MS) Report; Recovery and Acceptance Limits

: EN/005

: 2

: 2

#### **Signatories**

Sampler

Quote number

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Edwandy Fadjar Organic Coordinator Sydney Inorganics, Smithfield, NSW Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW

 Page
 : 2 of 9

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                         |                                                |            | Laboratory Duplicate (DUP) Report |       |                 |                  |         |                     |
|----------------------|-------------------------|------------------------------------------------|------------|-----------------------------------|-------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                               | CAS Number | LOR                               | Unit  | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EA055: Moisture Co   | ntent (Dried @ 105-110  | °C) (QC Lot: 3273499)                          |            |                                   |       |                 |                  |         |                     |
| ES2032555-045        | Anonymous               | EA055: Moisture Content                        |            | 0.1                               | %     | 3.8             | 3.4              | 9.72    | 0% - 20%            |
| ES2033438-001        | QC33A                   | EA055: Moisture Content                        |            | 0.1                               | %     | 16.0            | 14.9             | 7.35    | 0% - 20%            |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC | Lot: 3276145)                                  |            |                                   |       |                 |                  |         |                     |
| EP2010127-001        | Anonymous               | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.0002                            | mg/kg | 0.0018          | 0.0016           | 10.5    | No Limit            |
|                      |                         | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |
| EP231B: Perfluoroa   | alkyl Carboxylic Acids  | (QC Lot: 3276145)                              |            |                                   |       |                 |                  |         |                     |
| EP2010127-001        | Anonymous               | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.0002                            | mg/kg | 0.0023          | 0.0020           | 18.1    | 0% - 50%            |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.0002                            | mg/kg | 0.0046          | 0.0040           | 14.3    | 0% - 20%            |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.0002                            | mg/kg | 0.0028          | 0.0028           | 0.00    | 0% - 50%            |
|                      |                         | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.0002                            | mg/kg | 0.0216          | 0.0209           | 3.13    | 0% - 20%            |
|                      |                         | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.0002                            | mg/kg | 0.0026          | 0.0025           | 5.58    | 0% - 50%            |
|                      |                         | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.0002                            | mg/kg | 0.0230          | 0.0213           | 7.70    | 0% - 20%            |
|                      |                         | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.0002                            | mg/kg | 0.0022          | 0.0023           | 5.91    | 0% - 50%            |
|                      |                         | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.0002                            | mg/kg | 0.0074          | 0.0074           | 0.00    | 0% - 20%            |
|                      |                         | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.0002                            | mg/kg | 0.0010          | 0.0011           | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7   | 0.0005                            | mg/kg | 0.0018          | 0.0017           | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4   | 0.001                             | mg/kg | <0.001          | <0.001           | 0.00    | No Limit            |
| EP231C: Perfluoroa   | lkyl Sulfonamides (QC   | Lot: 3276145)                                  |            |                                   |       |                 |                  |         |                     |
| EP2010127-001        | Anonymous               | EP231X: Perfluorooctane sulfonamide (FOSA)     | 754-91-6   | 0.0002                            | mg/kg | <0.0002         | <0.0002          | 0.00    | No Limit            |

 Page
 : 3 of 9

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



| ub-Matrix: SOIL      |                         |                                                                   |             |        |       | Laboratory I    | Duplicate (DUP) Report |         |                      |
|----------------------|-------------------------|-------------------------------------------------------------------|-------------|--------|-------|-----------------|------------------------|---------|----------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                                  | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%   |
| EP231C: Perfluoroal  | kyl Sulfonamides (QC    | Lot: 3276145) - continued                                         |             |        |       |                 |                        |         |                      |
| EP2010127-001        | Anonymous               | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.0002 | mg/kg | <0.0002         | <0.0002                | 0.00    | No Limit             |
|                      |                         | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.0002 | mg/kg | 0.0002          | 0.0002                 | 0.00    | No Limit             |
|                      |                         | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit             |
|                      |                         | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit             |
|                      |                         | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit             |
|                      |                         | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit             |
| P231D: (n:2) Fluor   | otelomer Sulfonic Acids | s (QC Lot: 3276145)                                               |             |        |       |                 |                        |         |                      |
| EP2010127-001        | Anonymous               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.0005 | mg/kg | <0.0005         | <0.0005                | 0.00    | No Limit             |
|                      |                         | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.0005 | mg/kg | 0.0046          | 0.0044                 | 4.99    | No Limit             |
|                      |                         | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.0005 | mg/kg | 0.0115          | 0.0115                 | 0.00    | 0% - 20%             |
|                      |                         | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0 | 0.0005 | mg/kg | 0.0060          | 0.0064                 | 6.41    | 0% - 50%             |
| ub-Matrix: WATER     |                         |                                                                   |             |        |       | Laboratory I    | Duplicate (DUP) Report |         |                      |
| Laboratory sample ID | Client sample ID        | Method: Compound                                                  | CAS Number  | LOR    | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (    |
|                      | kyl Sulfonic Acids (QC  |                                                                   |             |        |       | - Congression   |                        | 1 (/-)  | , recording animal ( |
| S2033438-002         | QC34A                   | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                   | 375-73-5    | 0.002  | μg/L  | 0.005           | 0.005                  | 0.00    | No Limit             |
| -02000 100 002       | 400                     | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                 | 2706-91-4   | 0.002  | μg/L  | 0.006           | 0.006                  | 0.00    | No Limit             |
|                      |                         | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                  | 355-46-4    | 0.002  | μg/L  | 0.038           | 0.037                  | 3.48    | 0% - 50%             |
|                      |                         | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)                 | 375-92-8    | 0.002  | μg/L  | 0.003           | 0.003                  | 0.00    | No Limit             |
|                      |                         | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                   | 1763-23-1   | 0.002  | μg/L  | 0.046           | 0.043                  | 5.61    | 0% - 20%             |
|                      |                         | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                   | 335-77-3    | 0.002  | μg/L  | <0.002          | <0.002                 | 0.00    | No Limit             |
| P231B: Perfluoroa    | lkyl Carboxylic Acids(  | QC Lot: 3276767)                                                  |             |        |       |                 |                        |         |                      |
| ES2033438-002        | QC34A                   | EP231X-LL: Perfluoropentanoic acid (PFPeA)                        | 2706-90-3   | 0.002  | μg/L  | 0.005           | 0.005                  | 0.00    | No Limit             |
|                      |                         | EP231X-LL: Perfluorohexanoic acid (PFHxA)                         | 307-24-4    | 0.002  | μg/L  | 0.022           | 0.022                  | 0.00    | 0% - 50%             |
|                      |                         |                                                                   | 375-85-9    | 0.002  | µg/L  | <0.002          | <0.002                 | 0.00    | No Limit             |
|                      |                         | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                        | 373-03-31   | 0.002  | μy/∟  | ₹0.002          | ₹0.002                 | 0.00    | INO LITTIL           |

 Page
 : 4 of 9

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER    |                         |                                                                      |             |       |      | Laboratory L    | Ouplicate (DUP) Report |         |                     |
|----------------------|-------------------------|----------------------------------------------------------------------|-------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                                                     | CAS Number  | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231B: Perfluoroa   | ılkyl Carboxylic Acids( | QC Lot: 3276767) - continued                                         |             |       |      |                 |                        |         |                     |
| ES2033438-002        | QC34A                   | EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8   | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8  | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorohexadecanoic acid (PFHxDA)                       | 67905-19-5  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.01  | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EP231C: Perfluoroal  | lkyl Sulfonamides (QC I | Lot: 3276767)                                                        |             |       |      |                 |                        |         |                     |
| ES2033438-002        | QC34A                   | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acids | s (QC Lot: 3276767)                                                  |             |       |      |                 |                        |         |                     |
| ES2033438-002        | QC34A                   | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                         | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |

 Page
 : 5 of 9

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                                  |             |        |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|-------------------------------------------------------------------|-------------|--------|-------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                   |             |        |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                                  | CAS Number  | LOR    | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 327614              | 5)          |        |       |                   |               |                              |           |            |
| EP231X: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 91.2                         | 72.0      | 128        |
| EP231X: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 105                          | 73.0      | 123        |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 106                          | 67.0      | 130        |
| EP231X: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 108                          | 70.0      | 132        |
| EP231X: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 116                          | 68.0      | 136        |
| EP231X: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 106                          | 59.0      | 134        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3276              | 6145)       |        |       |                   |               |                              |           |            |
| EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.001  | mg/kg | <0.001            | 0.00625 mg/kg | 84.4                         | 71.0      | 135        |
| EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 116                          | 69.0      | 132        |
| EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 125                          | 70.0      | 132        |
| EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 110                          | 71.0      | 131        |
| EP231X: Perfluorooctanoic acid (PFOA)                             | 335-67-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 112                          | 69.0      | 133        |
| EP231X: Perfluorononanoic acid (PFNA)                             | 375-95-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 106                          | 72.0      | 129        |
| EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 113                          | 69.0      | 133        |
| EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 120                          | 64.0      | 136        |
| EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 124                          | 69.0      | 135        |
| EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8  | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 120                          | 66.0      | 139        |
| EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 78.0                         | 69.0      | 133        |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3276145               | 5)          |        |       |                   |               |                              |           |            |
| EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 106                          | 67.0      | 137        |
| EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 106                          | 71.6      | 129        |
| EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 94.4                         | 69.8      | 131        |
| EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 106                          | 68.7      | 130        |
| EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.0005 | mg/kg | <0.0005           | 0.00312 mg/kg | 115                          | 65.1      | 134        |
| EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 106                          | 63.0      | 144        |
| EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.0002 | mg/kg | <0.0002           | 0.00125 mg/kg | 99.6                         | 61.0      | 139        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3              | 276145)     |        |       |                   |               |                              |           |            |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 107                          | 62.0      | 145        |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 119                          | 64.0      | 140        |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 109                          | 65.0      | 137        |

 Page
 : 6 of 9

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: <b>SOIL</b>                                              |                     |        |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|----------------------------------------------------------------------|---------------------|--------|-------|-------------------|---------------|------------------------------|-----------|------------|
|                                                                      |                     |        |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                                     | CAS Number          | LOR    | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3                 | 3276145) - continue | 1      |       |                   |               |                              |           |            |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                  | 120226-60-0         | 0.0005 | mg/kg | <0.0005           | 0.00125 mg/kg | 101                          | 69.2      | 143        |
| Sub-Matrix: WATER                                                    |                     |        |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|                                                                      |                     |        |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                                     | CAS Number          | LOR    | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 327676                 | 67)                 |        |       |                   |               |                              |           |            |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 87.2                         | 72.0      | 130        |
| EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 106                          | 71.0      | 127        |
| EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 96.0                         | 68.0      | 131        |
| EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 97.6                         | 69.0      | 134        |
| EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 95.2                         | 65.0      | 140        |
| EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 94.0                         | 53.0      | 142        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 327                  | (6767)              |        |       |                   |               |                              |           |            |
| EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4            | 0.01   | μg/L  | <0.01             | 0.125 μg/L    | 80.4                         | 73.0      | 129        |
| EP231X-LL: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 99.6                         | 72.0      | 129        |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)                            | 307-24-4            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 108                          | 72.0      | 129        |
| EP231X-LL: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 100                          | 72.0      | 130        |
| EP231X-LL: Perfluorooctanoic acid (PFOA)                             | 335-67-1            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 98.0                         | 71.0      | 133        |
| EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 97.2                         | 69.0      | 130        |
| EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 96.8                         | 71.0      | 129        |
| EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 111                          | 69.0      | 133        |
| EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 103                          | 72.0      | 134        |
| EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8          | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 108                          | 65.0      | 144        |
| EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7            | 0.005  | μg/L  | <0.005            | 0.0625 μg/L   | 88.5                         | 71.0      | 132        |
| EP231X-LL: Perfluorohexadecanoic acid (PFHxDA)                       | 67905-19-5          | 0.005  | μg/L  | <0.005            | 0.025 μg/L    | 119                          | 65.6      | 133        |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 327676                   | 7)                  |        |       |                   |               |                              |           |            |
| EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6            | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 100                          | 67.0      | 137        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8          | 0.005  | μg/L  | <0.005            | 0.0625 μg/L   | 94.1                         | 68.0      | 141        |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2           | 0.005  | μg/L  | <0.005            | 0.0625 μg/L   | 94.1                         | 61.1      | 139        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7          | 0.005  | μg/L  | <0.005            | 0.0625 µg/L   | 98.4                         | 72.3      | 128        |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2           | 0.005  | μg/L  | <0.005            | 0.0625 μg/L   | 113                          | 63.2      | 134        |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 96.8                         | 65.0      | 136        |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6           | 0.002  | μg/L  | <0.002            | 0.025 μg/L    | 106                          | 61.0      | 135        |

 Page
 : 7 of 9

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER                                      |                     |       |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|--------------------------------------------------------|---------------------|-------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                                        |                     |       |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                       | CAS Number          | LOR   | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:     | 3276767) - continue | ed    |      |                   |               |                              |           |            |
| EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4         | 0.005 | μg/L | <0.005            | 0.025 μg/L    | 90.8                         | 63.0      | 143        |
| EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2          | 0.005 | μg/L | <0.005            | 0.025 μg/L    | 101                          | 64.0      | 140        |
| EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4          | 0.005 | μg/L | <0.005            | 0.025 μg/L    | 93.2                         | 67.0      | 138        |
| EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0         | 0.005 | μg/L | <0.005            | 0.025 μg/L    | 83.2                         | 75.2      | 137        |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: SOIL     |                                        |                                                      |            | Ma            | atrix Spike (MS) Report |            |           |
|---------------------|----------------------------------------|------------------------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                     |                                        |                                                      |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| aboratory sample ID | Client sample ID                       | Method: Compound                                     | CAS Number | Concentration | MS                      | Low        | High      |
| P231A: Perfluoro    | alkyl Sulfonic Acids (QCLot: 3276145)  |                                                      |            |               |                         |            |           |
| EP2010127-001       | Anonymous                              | EP231X: Perfluorobutane sulfonic acid (PFBS)         | 375-73-5   | 0.00125 mg/kg | 94.0                    | 72.0       | 128       |
|                     |                                        | EP231X: Perfluoropentane sulfonic acid (PFPeS)       | 2706-91-4  | 0.00125 mg/kg | 117                     | 73.0       | 123       |
|                     |                                        | EP231X: Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4   | 0.00125 mg/kg | 113                     | 67.0       | 130       |
|                     |                                        | EP231X: Perfluoroheptane sulfonic acid (PFHpS)       | 375-92-8   | 0.00125 mg/kg | 121                     | 70.0       | 132       |
|                     |                                        | EP231X: Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1  | 0.00125 mg/kg | 86.0                    | 68.0       | 136       |
|                     |                                        | EP231X: Perfluorodecane sulfonic acid (PFDS)         | 335-77-3   | 0.00125 mg/kg | 103                     | 59.0       | 134       |
| P231B: Perfluor     | palkyl Carboxylic Acids (QCLot: 327614 | J5)                                                  |            |               |                         |            |           |
| EP2010127-001       | Anonymous                              | EP231X: Perfluorobutanoic acid (PFBA)                | 375-22-4   | 0.00625 mg/kg | 96.9                    | 71.0       | 135       |
|                     |                                        | EP231X: Perfluoropentanoic acid (PFPeA)              | 2706-90-3  | 0.00125 mg/kg | 93.6                    | 69.0       | 132       |
|                     |                                        | EP231X: Perfluorohexanoic acid (PFHxA)               | 307-24-4   | 0.00125 mg/kg | 130                     | 70.0       | 132       |
|                     |                                        | EP231X: Perfluoroheptanoic acid (PFHpA)              | 375-85-9   | 0.00125 mg/kg | 123                     | 71.0       | 131       |
|                     |                                        | EP231X: Perfluorooctanoic acid (PFOA)                | 335-67-1   | 0.00125 mg/kg | # Not                   | 69.0       | 133       |
|                     |                                        |                                                      |            |               | Determined              |            |           |
|                     |                                        | EP231X: Perfluorononanoic acid (PFNA)                | 375-95-1   | 0.00125 mg/kg | 103                     | 72.0       | 129       |
|                     |                                        | EP231X: Perfluorodecanoic acid (PFDA)                | 335-76-2   | 0.00125 mg/kg | # Not                   | 69.0       | 133       |
|                     |                                        |                                                      |            |               | Determined              |            |           |
|                     |                                        | EP231X: Perfluoroundecanoic acid (PFUnDA)            | 2058-94-8  | 0.00125 mg/kg | 105                     | 64.0       | 136       |
|                     |                                        | EP231X: Perfluorododecanoic acid (PFDoDA)            | 307-55-1   | 0.00125 mg/kg | # Not                   | 69.0       | 135       |
|                     |                                        |                                                      |            |               | Determined              |            |           |
|                     |                                        | EP231X: Perfluorotridecanoic acid (PFTrDA)           | 72629-94-8 | 0.00125 mg/kg | 122                     | 66.0       | 139       |
|                     |                                        | EP231X: Perfluorotetradecanoic acid (PFTeDA)         | 376-06-7   | 0.00312 mg/kg | 88.8                    | 69.0       | 133       |
| P231C: Perfluoro    | alkyl Sulfonamides (QCLot: 3276145)    |                                                      |            |               |                         |            |           |
| P2010127-001        | Anonymous                              | EP231X: Perfluorooctane sulfonamide (FOSA)           | 754-91-6   | 0.00125 mg/kg | 118                     | 67.0       | 137       |
|                     |                                        | EP231X: N-Methyl perfluorooctane sulfonamide         | 31506-32-8 | 0.00312 mg/kg | 93.1                    | 71.6       | 129       |
|                     |                                        | (MeFOSA)                                             |            |               |                         |            |           |
|                     |                                        | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) | 4151-50-2  | 0.00312 mg/kg | 112                     | 69.8       | 131       |

 Page
 : 8 of 9

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: SOIL    |                                               |                                                                   |             | Ma            | atrix Spike (MS) Report |            |            |
|---------------------|-----------------------------------------------|-------------------------------------------------------------------|-------------|---------------|-------------------------|------------|------------|
|                     |                                               |                                                                   |             | Spike         | SpikeRecovery(%)        | Recovery L | imits (%)  |
| aboratory sample ID | Client sample ID                              | Method: Compound                                                  | CAS Number  | Concentration | MS                      | Low        | High       |
| EP231C: Perfluoro   | alkyl Sulfonamides (QCLot: 3276145) - continu | ied                                                               |             |               |                         |            |            |
| EP2010127-001       | Anonymous                                     | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.00312 mg/kg | 104                     | 68.7       | 130        |
|                     |                                               | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.00312 mg/kg | 105                     | 65.1       | 134        |
|                     |                                               | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.00125 mg/kg | 99.2                    | 63.0       | 144        |
|                     |                                               | EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.00125 mg/kg | 113                     | 61.0       | 139        |
| EP231D: (n:2) Fluc  | protelomer Sulfonic Acids (QCLot: 3276145)    |                                                                   |             |               |                         |            |            |
| EP2010127-001       | Anonymous                                     | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.00125 mg/kg | 119                     | 62.0       | 145        |
|                     | -                                             | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.00125 mg/kg | 123                     | 64.0       | 140        |
|                     |                                               | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.00125 mg/kg | # Not<br>Determined     | 65.0       | 137        |
|                     |                                               | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0 | 0.00125 mg/kg | # Not<br>Determined     | 69.2       | 143        |
| ub-Matrix: WATER    |                                               |                                                                   |             | Ma            | atrix Spike (MS) Report |            |            |
| ub-Matrix. WATER    |                                               |                                                                   |             | Spike         | SpikeRecovery(%)        | Recovery L | Limits (%) |
| aboratory sample ID | Client sample ID                              | Method: Compound                                                  | CAS Number  | Concentration | MS                      | Low        | High       |
| EP231A: Perfluoro   | alkyl Sulfonic Acids (QCLot: 3276767)         | metriod. Compound                                                 |             |               |                         |            |            |
| ES2033439-002       | Anonymous                                     | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                   | 375-73-5    | 0.025 μg/L    | 104                     | 72.0       | 130        |
| 202000 100 002      | , alonymode                                   | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                 | 2706-91-4   | 0.025 µg/L    | 110                     | 71.0       | 127        |
|                     |                                               | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                  | 355-46-4    | 0.025 μg/L    | 98.0                    | 68.0       | 131        |
|                     |                                               | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)                 | 375-92-8    | 0.025 μg/L    | 96.8                    | 69.0       | 134        |
|                     |                                               | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                   | 1763-23-1   | 0.025 µg/L    | 92.0                    | 65.0       | 140        |
|                     |                                               | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                   | 335-77-3    | 0.025 µg/L    | 90.8                    | 53.0       | 142        |
| P231R: Parfluoro    | palkyl Carboxylic Acids (QCLot: 3276767)      | El 251X-EL. I el muolouecarie suriorne aciu (1 1 20)              | 333         | 0.020 рд.2    | 00.0                    | 00.0       |            |
| ES2033439-002       | Anonymous                                     | EP231X-LL: Perfluorobutanoic acid (PFBA)                          | 375-22-4    | 0.125 μg/L    | 78.5                    | 73.0       | 129        |
| _02000100 002       | , alonymode                                   | EP231X-LL: Perfluoropentanoic acid (PFPeA)                        | 2706-90-3   | 0.025 μg/L    | 109                     | 72.0       | 129        |
|                     |                                               | EP231X-LL: Perfluorohexanoic acid (PFHxA)                         | 307-24-4    | 0.025 μg/L    | 102                     | 72.0       | 129        |
|                     |                                               | EP231X-LL: Perfluoroheptanoic acid (PFHpA)                        | 375-85-9    | 0.025 µg/L    | 94.4                    | 72.0       | 130        |
|                     |                                               | EP231X-LL: Perfluorooctanoic acid (PFOA)                          | 335-67-1    | 0.025 μg/L    | 100                     | 71.0       | 133        |
|                     |                                               | EP231X-LL: Perfluorononanoic acid (PFNA)                          | 375-95-1    | 0.025 μg/L    | 95.6                    | 69.0       | 130        |
|                     |                                               | EP231X-LL: Perfluorodecanoic acid (PFDA)                          | 335-76-2    | 0.025 μg/L    | 105                     | 71.0       | 129        |
|                     |                                               | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                      | 2058-94-8   | 0.025 μg/L    | 126                     | 69.0       | 133        |
|                     |                                               | EP231X-LL: Perfluorododecanoic acid (PFDoDA)                      | 307-55-1    | 0.025 μg/L    | 117                     | 72.0       | 134        |
|                     |                                               | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                     | 72629-94-8  | 0.025 μg/L    | 127                     | 65.0       | 144        |
|                     |                                               |                                                                   | 376-06-7    | 0.0625 μg/L   | 75.4                    | 71.0       | 132        |
|                     |                                               | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                   |             |               | 704                     | 7 1.0      |            |

 Page
 : 9 of 9

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Recovery Limits (%) Laboratory sample ID Client sample ID CAS Number Concentration MS Low High Method: Compound EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3276767) ES2033439-002 Anonymous EP231X-LL: Perfluorooctane sulfonamide (FOSA) 754-91-6 0.025 µg/L 91.2 67.0 137 31506-32-8 0.0625 µg/L 97.6 68.0 141 EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA) 4151-50-2 0.0625 µg/L 81.9 61.1 139 EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA) 24448-09-7 128 EP231X-LL: N-Methyl perfluorooctane 0.0625 µg/L 0.08 72.3 sulfonamidoethanol (MeFOSE) 1691-99-2 0.0625 µg/L 104 63.2 134 EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) 2355-31-9 0.025 µg/L 89.2 65.0 136 EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) 2991-50-6 0.025 µg/L 86.4 61.0 135 EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA) EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3276767) ES2033439-002 Anonymous EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 757124-72-4 0.025 µg/L 99.2 63.0 143 EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 27619-97-2 0.025 µg/L 96.0 64.0 140 67.0 138 EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) 39108-34-4 0.025 µg/L 96.4

EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)

120226-60-0

0.025 µg/L

99.2

75.2

137



# QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **ES2033438** Page : 1 of 5

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : DILARA VALIFF
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 22-Sep-2020

 Site
 : sue Date
 : 30-Sep-2020

Sampler : --- No. of samples received : 2
Order number : 12516828 No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 ES2033438 Work Order GHD PTY LTD Client Project · 12516828



**Outliers: Quality Control Samples** 

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                        | Laboratory Sample ID | Client Sample ID | Analyte                | CAS Number  | Data       | Limits | Comment                          |
|--------------------------------------------|----------------------|------------------|------------------------|-------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries               |                      |                  |                        |             |            |        |                                  |
| EP231B: Perfluoroalkyl Carboxylic Acids    | EP2010127001         | Anonymous        | Perfluorooctanoic acid | 335-67-1    | Not        |        | MS recovery not determined,      |
|                                            |                      |                  | (PFOA)                 |             | Determined |        | background level greater than or |
|                                            |                      |                  |                        |             |            |        | equal to 4x spike level.         |
| EP231B: Perfluoroalkyl Carboxylic Acids    | EP2010127001         | Anonymous        | Perfluorodecanoic acid | 335-76-2    | Not        |        | MS recovery not determined,      |
|                                            |                      |                  | (PFDA)                 |             | Determined |        | background level greater than or |
|                                            |                      |                  |                        |             |            |        | equal to 4x spike level.         |
| EP231B: Perfluoroalkyl Carboxylic Acids    | EP2010127001         | Anonymous        | Perfluorododecanoic    | 307-55-1    | Not        |        | MS recovery not determined,      |
|                                            |                      |                  | acid (PFDoDA)          |             | Determined |        | background level greater than or |
|                                            |                      |                  |                        |             |            |        | equal to 4x spike level.         |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids | EP2010127001         | Anonymous        | 8:2 Fluorotelomer      | 39108-34-4  | Not        |        | MS recovery not determined,      |
|                                            |                      |                  | sulfonic acid (8:2     |             | Determined |        | background level greater than or |
|                                            |                      |                  | FTS)                   |             |            |        | equal to 4x spike level.         |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids | EP2010127001         | Anonymous        | 10:2 Fluorotelomer     | 120226-60-0 | Not        |        | MS recovery not determined,      |
|                                            |                      |                  | sulfonic acid (10:2    |             | Determined |        | background level greater than or |
|                                            |                      |                  | FTS)                   |             |            |        | equal to 4x spike level.         |

#### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: SOIL                                |             |                          |                    | Evaluation | : x = Holding time | breach ; ✓ = Withi | n holding time |
|---------------------------------------------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|----------------|
| Method                                      | Sample Date | Extraction / Preparation |                    |            |                    |                    |                |
| Container / Client Sample ID(s)             |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EA055: Moisture Content (Dried @ 105-110°C) |             |                          |                    |            |                    |                    |                |
| HDPE Soil Jar (EA055)<br>QC33A              | 17-Sep-2020 |                          |                    |            | 23-Sep-2020        | 01-Oct-2020        | ✓              |
| EP231A: Perfluoroalkyl Sulfonic Acids       |             |                          |                    |            |                    |                    |                |
| HDPE Soil Jar (EP231X) QC33A                | 17-Sep-2020 | 25-Sep-2020              | 16-Mar-2021        | ✓          | 25-Sep-2020        | 04-Nov-2020        | ✓              |
| EP231B: Perfluoroalkyl Carboxylic Acids     |             |                          |                    |            |                    |                    |                |
| HDPE Soil Jar (EP231X) QC33A                | 17-Sep-2020 | 25-Sep-2020              | 16-Mar-2021        | ✓          | 25-Sep-2020        | 04-Nov-2020        | ✓              |
| EP231C: Perfluoroalkyl Sulfonamides         |             |                          |                    |            |                    |                    |                |
| HDPE Soil Jar (EP231X) QC33A                | 17-Sep-2020 | 25-Sep-2020              | 16-Mar-2021        | ✓          | 25-Sep-2020        | 04-Nov-2020        | ✓              |

 Page
 : 3 of 5

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Matrix: SOIL                               |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|--------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                     | Sample Date | Ex             | traction / Preparation |            | Analysis           |                    |                |
| Container / Client Sample ID(s)            |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                        |            |                    |                    |                |
| HDPE Soil Jar (EP231X)<br>QC33A            | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021            | 1          | 25-Sep-2020        | 04-Nov-2020        | ✓              |
| EP231P: PFAS Sums                          |             |                |                        |            |                    |                    |                |
| HDPE Soil Jar (EP231X)<br>QC33A            | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021            | 1          | 25-Sep-2020        | 04-Nov-2020        | ✓              |
| Matrix: WATER                              |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
| Method                                     | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)            |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP231A: Perfluoroalkyl Sulfonic Acids      |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL) QC34A           | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021            | ✓          | 28-Sep-2020        | 16-Mar-2021        | <b>√</b>       |
| EP231B: Perfluoroalkyl Carboxylic Acids    |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL) QC34A           | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021            | ✓          | 28-Sep-2020        | 16-Mar-2021        | <b>√</b>       |
| EP231C: Perfluoroalkyl Sulfonamides        |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL) QC34A           | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021            | ✓          | 28-Sep-2020        | 16-Mar-2021        | <b>✓</b>       |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL) QC34A           | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021            | ✓          | 28-Sep-2020        | 16-Mar-2021        | <b>✓</b>       |
| EP231P: PFAS Sums                          |             |                |                        |            |                    |                    |                |
| HDPE (no PTFE) (EP231X-LL) QC34A           | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021            | ✓          | 28-Sep-2020        | 16-Mar-2021        | ✓              |

 Page
 : 4 of 5

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                         |                            |    |         | Evaluation | n: × = Quality Co | ntrol frequency i | not within specification ; ✓ = Quality Control frequency within specification |
|------------------------------------------------------|----------------------------|----|---------|------------|-------------------|-------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                          | uality Control Sample Type |    | ount    | Rate (%)   |                   |                   | Quality Control Specification                                                 |
| Analytical Methods                                   | Method                     | ОC | Reaular | Actual     | Expected          | Evaluation        |                                                                               |
| Laboratory Duplicates (DUP)                          |                            |    |         |            |                   |                   |                                                                               |
| Moisture Content                                     | EA055                      | 2  | 20      | 10.00      | 10.00             | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X                     | 1  | 9       | 11.11      | 10.00             | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |                            |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X                     | 1  | 9       | 11.11      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |                            |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X                     | 1  | 9       | 11.11      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |                            |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X                     | 1  | 9       | 11.11      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix: WATER                                        |                            |    |         | Evaluation | n: × = Quality Co | ntrol frequency i | not within specification ; ✓ = Quality Control frequency within specification |
| Quality Control Sample Type                          |                            | С  | ount    |            | Rate (%)          |                   | Quality Control Specification                                                 |
| Analytical Methods                                   | Method                     | QC | Regular | Actual     | Expected          | Evaluation        |                                                                               |
| Laboratory Duplicates (DUP)                          |                            |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL                  | 1  | 6       | 16.67      | 10.00             | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Laboratory Control Samples (LCS)                     |                            |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL                  | 1  | 6       | 16.67      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Method Blanks (MB)                                   |                            |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL                  | 1  | 6       | 16.67      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Matrix Spikes (MS)                                   |                            |    |         |            |                   |                   |                                                                               |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS  | EP231X-LL                  | 1  | 6       | 16.67      | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |

 Page
 : 5 of 5

 Work Order
 : ES2033438

 Client
 : GHD PTY LTD

 Project
 : 12516828



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                        | EA055     | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X    | SOIL   | In-house: Analysis of soils by solvent extraction followed by LC-Electrospray-MS-MS, Negative Mode using MRM using internal standard quantitation. Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                     |
| Per- and Polyfluoroalkyl Substances<br>(PFAS by LCMSMS  | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is concentrated, combined with an equal volume of reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sample Extraction for PFAS in solid matrices            | ORG73     | SOIL   | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to a portion of soil which is then extracted with MTBE and an ion pairing reagent. A portion of extract is exchanged into the analytical solvent mixture, combined with an equal volume reagent water and filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                                                                                          |
| Solid Phase Extraction (SPE) for PFAS in water          | ORG72     | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                  |



# **CHAIN OF CUSTODY FORM - Client**

National phone number 1300 424 344 Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 ① 02 9910 6200 | ⊠ sydney@envirolab.com.au [Copyright and Confidential] Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 ② 08 9317 2505 | ☑ lab@mpl.com.au Client: GHD Pty Ltd Client Project Name/Number/Site etc (ie report title): **Contact Person: Sean Sparrow** 12516828 Melbourne Lab - Envirolab Services Project Mgr: Dilara Valiff PO No.: 12516828 25 Research Drive, Croydon South, VIC 3136 ① 03 9763 2500 | ☑ melbourne@envirolab.com.au Sampler: Sean Sparrow Envirolab Quote No. : Date results required: standard Address: Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067 Level 4, 211 Victoria Square, Adelaide 5000 Or choose: standard / same day / 1 day / 2 day / 3 day ① 08 7087 6800 | M adelaide@envirolab.com.au Note: Inform lab in advance if urgent turnaround is required surcharges apply Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Additional report format: esdat / equis / Phone: Mob: 0498 260 626 GHDLabReports@ghd.com Lab Comments: Email: **Darwin Office - Envirolab Services** sean.sparrow@ghd.com Unit 20/119 Reichardt Road, Winnellie, NT 0820 dilara.valiff@ghd.com ① 08 8967 1201 | 🖾 darwin@envirolab.com.au Sample Information 18 Tests Required Comments Soil Provide as much Client Sample ID or **Envirolab Sample** Date PFAS in ( Hold Depth Type of sample information about the ΙD information sampled .E sample as you can 6627-5944 B 17/09/2020 water Х Garden1 17/09/2020 soil Х Garden2 17/09/2020 <u>soil</u> х Garden3 17/09/2020 soil Х Garden4 17/09/2020 soil -χ̈ 17/09/2020 Garden5 b soil Garden6 17/09/2020 <u>soil</u> 8 Garden7 17/09/2020 <u>soil</u> Х Ω 17/09/2020 Garden8 soil Ø) I QC33 17/09/2020 soil Х QC33A 17/09/2020 <u>soil</u> Х Please forward to ALS QC34 17/09/2020 water х QC34A 17/09/2020 7 water Please forward to ALS Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis Lab Use Only Relinquished by (Company): Received by (Company): -W/1/0M **Print Name:** Print Name: lce pack / None Job number: Cooling: Id 16/9/2010 9300 Date & Time: Date & Time: Temperature: Security seal: Intact / Broken / None Signature: TAT Reg - SAME day / 1 / 2 / 3 / 4 / STD Signature:

Form 302\_V006

**ENVIROLAB GROUP** 



Envirolab Services Pty Ltd ABN 37 112 535 645 aley St Chatswood NSW 2067

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 251708**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Sean Sparrow                     |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                 |
|--------------------------------------|-----------------|
| Your Reference                       | <u>12516828</u> |
| Number of Samples                    | 2 Water, 9 Soil |
| Date samples received                | 21/09/2020      |
| Date completed instructions received | 21/09/2020      |

### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                                       |            |  |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Date results requested by                                                                            | 28/09/2020 |  |  |  |  |
| Date of Issue                                                                                        | 28/09/2020 |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |  |  |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |  |  |  |

# Results Approved By

Alexander Mitchell Maclean, Senior Chemist Phalak Inthakesone, Organics Development Manager, Sydney **Authorised By** 

Nancy Zhang, Laboratory Manager

Envirolab Reference: 251708 Revision No: R00



| PFAS in Water TRACE Short                          |       |             |            |
|----------------------------------------------------|-------|-------------|------------|
| Our Reference                                      |       | 251708-1    | 251708-11  |
| Your Reference                                     | UNITS | 6627-5944_B | QC34       |
| Date Sampled                                       |       | 17/09/2020  | 17/09/2020 |
| Type of sample                                     |       | Water       | Water      |
| Date prepared                                      | -     | 23/09/2020  | 23/09/2020 |
| Date analysed                                      | -     | 24/09/2020  | 24/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.033       | 0.035      |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.040       | 0.040      |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0040      | 0.0042     |
| 6:2 FTS                                            | μg/L  | 0.001       | 0.001      |
| 8:2 FTS                                            | μg/L  | <0.0004     | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 99          | 97         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 100         | 104        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 83          | 81         |
| Extracted ISTD 13 C4 PFOS                          | %     | 67          | 66         |
| Extracted ISTD 13 C4 PFOA                          | %     | 87          | 87         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 110         | 103        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 168         | 168        |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.074       | 0.074      |
| Total Positive PFOS & PFOA                         | μg/L  | 0.044       | 0.044      |
| Total Positive PFAS                                | μg/L  | 0.079       | 0.079      |

Envirolab Reference: 251708

Revision No: R00

| PFAS in Soils Short                                |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 251708-2   | 251708-3   | 251708-4   | 251708-5   | 251708-10  |
| Your Reference                                     | UNITS | Garden1    | Garden2    | Garden3    | Garden4    | QC33       |
| Date Sampled                                       |       | 17/09/2020 | 17/09/2020 | 17/09/2020 | 17/09/2020 | 17/09/2020 |
| Type of sample                                     |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared                                      | -     | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 |
| Date analysed                                      | -     | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 | 24/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 0.3        | 0.4        | 0.3        | 1.4        | 0.3        |
| Perfluorooctanoic acid PFOA                        | μg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 87         | 98         | 97         | 102        | 96         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 91         | 89         | 89         | 88         | 90         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 99         | 95         | 100        | 96         | 95         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 110        | 102        | 101        | 96         | 99         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 111        | 126        | 119        | 126        | 126        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 176        | 154        | #          | #          | 171        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | #          | 166        | 184        | 194        | 173        |
| Total Positive PFHxS & PFOS                        | μg/kg | 0.3        | 0.4        | 0.3        | 1.4        | 0.3        |
| Total Positive PFOS & PFOA                         | μg/kg | 0.3        | 0.4        | 0.3        | 1.4        | 0.3        |
| Total Positive PFAS                                | μg/kg | 0.3        | 0.4        | 0.3        | 1.4        | 0.3        |

Envirolab Reference: 251708 Revision No: R00

| Moisture       |       |            |            |            |            |            |
|----------------|-------|------------|------------|------------|------------|------------|
| Our Reference  |       | 251708-2   | 251708-3   | 251708-4   | 251708-5   | 251708-10  |
| Your Reference | UNITS | Garden1    | Garden2    | Garden3    | Garden4    | QC33       |
| Date Sampled   |       | 17/09/2020 | 17/09/2020 | 17/09/2020 | 17/09/2020 | 17/09/2020 |
| Type of sample |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date prepared  | -     | 22/09/2020 | 22/09/2020 | 22/09/2020 | 22/09/2020 | 22/09/2020 |
| Date analysed  | -     | 23/09/2020 | 23/09/2020 | 23/09/2020 | 23/09/2020 | 23/09/2020 |
| Moisture       | %     | 15         | 24         | 7.5        | 15         | 13         |

Envirolab Reference: 251708 Revision No: R00

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 251708

Revision No: R00

| QUALITY CON                                        | TROL: PFAS | S in Water | TRACE Short |            |      | Du   | plicate |      | Spike Red  | overy % |
|----------------------------------------------------|------------|------------|-------------|------------|------|------|---------|------|------------|---------|
| Test Description                                   | Units      | PQL        | Method      | Blank      | #    | Base | Dup.    | RPD  | LCS-W1     | [NT]    |
| Date prepared                                      | -          |            |             | 23/09/2020 | [NT] |      | [NT]    | [NT] | 23/09/2020 |         |
| Date analysed                                      | -          |            |             | 24/09/2020 | [NT] |      | [NT]    | [NT] | 24/09/2020 |         |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.0002     | Org-029     | <0.0002    | [NT] |      | [NT]    | [NT] | 105        |         |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.0002     | Org-029     | <0.0002    | [NT] |      | [NT]    | [NT] | 101        |         |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.0002     | Org-029     | <0.0002    | [NT] |      | [NT]    | [NT] | 100        |         |
| 6:2 FTS                                            | μg/L       | 0.0004     | Org-029     | <0.0004    | [NT] |      | [NT]    | [NT] | 102        |         |
| 8:2 FTS                                            | μg/L       | 0.0004     | Org-029     | <0.0004    | [NT] |      | [NT]    | [NT] | 103        |         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |            | Org-029     | 94         | [NT] |      | [NT]    | [NT] | 98         |         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |            | Org-029     | 99         | [NT] |      | [NT]    | [NT] | 101        |         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |            | Org-029     | 85         | [NT] |      | [NT]    | [NT] | 82         |         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |            | Org-029     | 73         | [NT] |      | [NT]    | [NT] | 71         |         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |            | Org-029     | 94         | [NT] |      | [NT]    | [NT] | 97         |         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |            | Org-029     | 165        | [NT] |      | [NT]    | [NT] | 174        |         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |            | Org-029     | 107        | [NT] |      | [NT]    | [NT] | 116        |         |

Envirolab Reference: 251708

Revision No: R00

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|-----------|------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL       | Method     | Blank      | # | Base       | Dup.       | RPD | LCS-1      | 251708-3   |
| Date prepared                                      | -          |           |            | 24/09/2020 | 2 | 24/09/2020 | 24/09/2020 |     | 24/09/2020 | 24/09/2020 |
| Date analysed                                      | -          |           |            | 24/09/2020 | 2 | 24/09/2020 | 24/09/2020 |     | 24/09/2020 | 24/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | <0.1       | <0.1       | 0   | 102        | 106        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | 0.3        | 0.3        | 0   | 99         | 99         |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | <0.1       | <0.1       | 0   | 101        | 99         |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | <0.1       | 2 | <0.1       | <0.1       | 0   | 93         | 95         |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | 2 | <0.2       | <0.2       | 0   | 89         | 100        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 97         | 2 | 87         | 100        | 14  | 97         | 96         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | 94         | 2 | 91         | 99         | 8   | 95         | 90         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 96         | 2 | 99         | 104        | 5   | 96         | 98         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 97         | 2 | 110        | 99         | 11  | 95         | 101        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029    | 126        | 2 | 111        | 110        | 1   | 103        | 122        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 122        | 2 | 176        | 185        | 5   | 78         | 157        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029    | 113        | 2 | #          | #          |     | 101        | 170        |

Envirolab Reference: 251708 Revision No: R00

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 251708 Revision No: R00

| <b>Quality C</b>          | ontro  | ol Definitions                                                                                                                                                                                                                   |
|---------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E                         | Blank  | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Dupl                      | licate | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix \$                 | Spike  | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Labor<br>Control Sar | •      | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate \$              | Spike  | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 251708 Page | 9 of 10

Revision No:

R00

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

PFAS\_W\_EXT1\_LL: 6:2-FTS Extracted Internal Standard is outside of global acceptance criteria (50-150%) for MB and LCS but within analyte specific acceptance criteria.

Envirolab Reference: 251708 Page | 10 of 10 R00

Revision No:

EUNUKOTUB **ENVIROLAB GROUP** ENVÎROLAB **CHAIN OF CUSTODY FORM - Client** National phone number 1300 424 344 @mpl Sydney Lab - Envirolab Services 12 Ashley St, Chabwood, NSW 2067 ② 02 9910 6200 | ⊠ sydney@envirola Contricts and Confidential Pertii Lab.- MPL Laboratories 16-18 Hayden Crt, Myares, WA 6154 № 08 9317 2505 | lab@mpl.com.au Client: GHD Ptv l td Client Project Name/Number/Site etc (le report title): Contact Person: Sean Sparrow 12516828 Melbourne Lab - Enviroish Services
25 Research Drive, Croydon South, ViC 3195
2 03 9763 2500 | El melbourne@enviroish.com.au Project Mar: Dilara Valiff PO No.: 12516828 Level 4, 21, Victoria Square, Adelaide 5000 Sampler: Sean Sparrow Enviroteb Quote No. Address Adelaide Office - Envirolab Services
7a The Parade, Nonwood, SA 5067

0 08 7087 6800 | M adelaide@envirolab.com.au Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnsround is required - surch Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ф 07 3286 9532 | ⊠ brisbane@eavirola Phone: 0498 260 626 Additional réport formet: esdet / equis GHDLabReports@chd.com ob Cammania Darwin Office - Envirolab Services Unit 20/119 Reichardt Road, Winneille, NT 0820 Q 96 8967 1201 I ⊠ darwindbenvirolab.com.au sean.sparrow@ohd.com dilara:valff@ohd.com and are Sample information 2 Envirolab Sampl Client Sample ID or information about the Depth Type of gample Information sampled sample as you can BR03\_1A 11/09/2020 water 9R03 1B 11/09/2020 water BR03\_1C\_ 44/00/2020 \_x-BR02\_1A 11/09/2020 water BR02 18 11/09/2020 **Environmental Division** water BR02\_1C 11/09/2020 water Sydney MBC02 1A 11/09/202 wäter Work Order Reference MBC02\_1B 11/09/2020 water ES2033439 a MPC02 1C 11/09/202 water MBC01\_1A 11/09/2020 water MBC01\_1B 11/09/2020 water MBC01\_1C 11/09/2020 water 1st estry recined. 8803 2A 17/09/2020 water BR03\_28 17/09/2020 water 15 BR03 2C 17/09/2020 water Th. BR02 2A 17/09/2020 14 BR02 2B 47/00/2020 water and early received. 10 BR02\_2C 17/09/2020 water Telephone: +61-2-8784 8555 į Ol MBC02 2A 17/09/2020 water <u>12</u> MBC02\_2B 17(09/2020 weter 21/9/20 1020. MBC02 2C 17/09/2020 water MBC01\_2A 17/09/2020 water MBC01\_28 17/09/2020 water MBC01 2C 17/09/2020 water 25 QC31 11/00/2020 water х QC31A 11/09/2020 water × Extracs 26 QC32 11/09/2020 water 11/9 OC32A 11/09/2020 Please forward to ALS QC35 17/09/2020 water × 11/9 QC35A 17/09/2020 water 17/09/2020 water 17/9 QC36A 17/09/2020 <u>water</u> Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysi sceived by (Company): PU SUU Relinquished by (Company): 5'LS the Str. 18/9/20 C9.30. ob number: OTUO'C Gooling: Icel/Johnsek / None प्रापि 18.5 Security seal: Intact Broken / None TAT Reg - SAME day / 1 / 2 / 3 / 4 / STD

rentifuished by En suchen

Entreprise acra

Scora

Rec Soffio 22/9/20 1820 320



### **CERTIFICATE OF ANALYSIS**

**Work Order** : ES2033439

: GHD PTY LTD

Contact : DILARA VALIFF

Address Address : LEVEL 15, 133 CASTLEREAGH STREET

SYDNEY NSW, AUSTRALIA 2000

Telephone : +61 08 8111 6600

Project : 12516828

Order number

Sampler : SEAN SPARROW

Site

Client

C-O-C number

Quote number : EN/005

No. of samples received : 4 No. of samples analysed . 4

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Angus Harding

: 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 22-Sep-2020 18:20 **Date Analysis Commenced** 25-Sep-2020

Issue Date : 29-Sep-2020 13:07



ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** 

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Accreditation Category Position

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW 

 Page
 : 2 of 5

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

 Page
 : 3 of 5

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER<br>(Matrix: WATER)          |            | Clie         | ent sample ID  | QC31A             | QC32A             | QC35A             | QC36A             |  |
|-----------------------------------------------|------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|--|
|                                               | C          | lient sampli | ng date / time | 11-Sep-2020 00:00 | 11-Sep-2020 00:00 | 17-Sep-2020 00:00 | 17-Sep-2020 00:00 |  |
| Compound                                      | CAS Number | LOR          | Unit           | ES2033439-001     | ES2033439-002     | ES2033439-003     | ES2033439-004     |  |
|                                               |            |              |                | Result            | Result            | Result            | Result            |  |
| EP231A: Perfluoroalkyl Sulfonic Acids         |            |              |                |                   |                   |                   |                   |  |
| Perfluorobutane sulfonic acid (PFBS)          | 375-73-5   | 0.002        | μg/L           | 0.002             | <0.002            | <0.002            | 0.004             |  |
| Perfluoropentane sulfonic acid (PFPeS)        | 2706-91-4  | 0.002        | μg/L           | 0.002             | <0.002            | <0.002            | 0.005             |  |
| Perfluorohexane sulfonic acid (PFHxS)         | 355-46-4   | 0.002        | μg/L           | 0.038             | 0.004             | 0.005             | 0.073             |  |
| Perfluoroheptane sulfonic acid (PFHpS)        | 375-92-8   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | 0.003             |  |
| Perfluorooctane sulfonic acid (PFOS)          | 1763-23-1  | 0.002        | μg/L           | 0.010             | 0.005             | 0.007             | 0.016             |  |
| Perfluorodecane sulfonic acid (PFDS)          | 335-77-3   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |  |
| EP231B: Perfluoroalkyl Carboxylic Acids       | ;          |              |                |                   |                   |                   |                   |  |
| Perfluorobutanoic acid (PFBA)                 | 375-22-4   | 0.01         | μg/L           | <0.01             | <0.01             | <0.01             | <0.01             |  |
| Perfluoropentanoic acid (PFPeA)               | 2706-90-3  | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |  |
| Perfluorohexanoic acid (PFHxA)                | 307-24-4   | 0.002        | μg/L           | 0.006             | 0.009             | 0.007             | 0.011             |  |
| Perfluoroheptanoic acid (PFHpA)               | 375-85-9   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |  |
| Perfluorooctanoic acid (PFOA)                 | 335-67-1   | 0.002        | μg/L           | <0.002            | 0.004             | 0.004             | <0.002            |  |
| Perfluorononanoic acid (PFNA)                 | 375-95-1   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |  |
| Perfluorodecanoic acid (PFDA)                 | 335-76-2   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |  |
| Perfluoroundecanoic acid (PFUnDA)             | 2058-94-8  | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |  |
| Perfluorododecanoic acid (PFDoDA)             | 307-55-1   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |  |
| Perfluorotridecanoic acid (PFTrDA)            | 72629-94-8 | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |  |
| Perfluorotetradecanoic acid (PFTeDA)          | 376-06-7   | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <0.005            |  |
| Perfluorohexadecanoic acid (PFHxDA)           | 67905-19-5 | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <0.005            |  |
| EP231C: Perfluoroalkyl Sulfonamides           |            |              |                |                   |                   |                   |                   |  |
| Perfluorooctane sulfonamide (FOSA)            | 754-91-6   | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |  |
| N-Methyl perfluorooctane sulfonamide (MeFOSA) | 31506-32-8 | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <0.005            |  |

 Page
 : 4 of 5

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   R   | Sub-Matrix: WATER (Matrix: WATER)                                                                                                                  |                        | Clie         | ent sample ID  | QC31A             | QC32A             | QC35A             | QC36A             |        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|--------|--|
| Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   Result   R   |                                                                                                                                                    | CI                     | ient samplii | ng date / time | 11-Sep-2020 00:00 | 11-Sep-2020 00:00 | 17-Sep-2020 00:00 | 17-Sep-2020 00:00 |        |  |
| ### Partition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compound                                                                                                                                           | CAS Number             | LOR          | Unit           | ES2033439-001     | ES2033439-002     | ES2033439-003     | ES2033439-004     |        |  |
| Nethyl perfluorooctane   4151-502   0.005   pg/L   < 0.005   0.005   < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                    |                        |              |                | Result            | Result            | Result            | Result            |        |  |
| sulfonamide (EFOSA)         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EP231C: Perfluoroalkyl Sulfonamide                                                                                                                 | es - Continued         |              |                |                   |                   |                   |                   |        |  |
| Sulfonamidoethanol (MeFOSE)   Sulfonamidoethanol (MeFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulfonamidoethanol (EIFOSE)   Sulf   |                                                                                                                                                    | 4151-50-2              | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <0.005            |        |  |
| sulfonamidoethanol (EiFOSE)           N. Methyl perfluorooctane sulfonicacetic acid (MeFOSAA)         2991-50-6         0.002         µg/L         <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    | 24448-09-7             | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <0.005            |        |  |
| sulfonamidoacetic acid (MeFoSAA)         Left perfluorooctane 2991-50-6 (MoFoSAA)         Left perfluorooctane 2991-50-6 (MoFoSAA)         Left perfluorooctane 2991-50-6 (MoFoSAA)         Left perfluorooctane 2991-50-6 (MoFoSAA)         Colopa (EEFOSAA)           FP231D: (n:2) Fluorotelomer Sulfonic Acids           4:2 Fluorotelomer Sulfonic acid (757124-72-4)         0.005         Jug/L          Colopa (A:2) Fluorotelomer sulfonic acid (37619-97-2)         MoFoS (4:2) Fluorotelomer sulfonic acid (39108-34-4)         MoFoS (3916-97-2)         U.005         Jug/L          Colopa (A:2) Fluorotelomer sulfonic acid (39108-34-4)         0.005         Jug/L          Colopa (A:2) Fluorotelomer sulfonic acid (39108-34-4)         0.005         Jug/L         Colopa (A:2) Fluorotelomer sulfonic acid (39108-34-4)         0.005         Jug/L         Colopa (A:2) Fluorotelomer sulfonic acid (39108-34-4)         0.005         Jug/L         Colopa (A:2) Fluorotelomer sulfonic acid (39108-34-4)         0.005         Jug/L         Colopa (A:2) Fluorotelomer sulfonic acid (39108-34-4)         0.005         Jug/L         Colopa (A:2) Fluorotelomer sulfonic acid (39108-34-4) <th colspan<="" th=""><th>1 '</th><th>1691-99-2</th><th>0.005</th><th>μg/L</th><th>&lt;0.005</th><th>&lt;0.005</th><th>&lt;0.005</th><th>&lt;0.005</th><th></th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <th>1 '</th> <th>1691-99-2</th> <th>0.005</th> <th>μg/L</th> <th>&lt;0.005</th> <th>&lt;0.005</th> <th>&lt;0.005</th> <th>&lt;0.005</th> <th></th> | 1 '                    | 1691-99-2    | 0.005          | μg/L              | <0.005            | <0.005            | <0.005            | <0.005 |  |
| sulfonamidoacetic acid<br>(EEFOSAA)         Sulfoniamidoacetic acid<br>(EEFOSAA)         Sulfonic Acids           EP231D: (n:2) Fluorotelomer Sulfonic Acids           4:2 Fluorotelomer sulfonic acid         757124-72-4         0.005         yg/L         <0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sulfonamidoacetic acid                                                                                                                             | 2355-31-9              | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |        |  |
| 4:2 Fluorotelomer sulfonic acid (757124-72-4 (0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sulfonamidoacetic acid                                                                                                                             | 2991-50-6              | 0.002        | μg/L           | <0.002            | <0.002            | <0.002            | <0.002            |        |  |
| (4:2 FTS) 6:2 Fluorotelomer sulfonic acid 27619-97-2 0.005 µg/L <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 < | EP231D: (n:2) Fluorotelomer Sulfor                                                                                                                 | nic Acids              |              |                |                   |                   |                   |                   |        |  |
| (6:2 FTS) 8:2 Fluorotelomer sulfonic acid 39108-34-4 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                    | 757124-72-4            | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <0.005            |        |  |
| (8:2 FTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    | 27619-97-2             | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <0.005            |        |  |
| (10:2 FTS)  EP231P: PFAS Sums  Sum of PFAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                    | 39108-34-4             | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <0.005            |        |  |
| Sum of PFAS          0.002         µg/L         0.058         0.022         0.023         0.112            Sum of PFHxS and PFOS         355-46-4/1763-23-1         0.002         µg/L         0.048         0.009         0.012         0.089            Sum of PFAS (WA DER List)          0.002         µg/L         0.056         0.022         0.023         0.104            EP231S: PFAS Surrogate          0.002         %         88.8         90.6         94.8         95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                    | 120226-60-0            | 0.005        | μg/L           | <0.005            | <0.005            | <0.005            | <0.005            |        |  |
| Sum of PFHxS and PFOS 355-46-4/1763-23- 0.002 µg/L 0.048 0.009 0.012 0.089  Sum of PFAS (WA DER List) 0.002 µg/L 0.056 0.022 0.023 0.104  EP231S: PFAS Surrogate  13C4-PFOS 0.002 % 88.8 90.6 94.8 95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EP231P: PFAS Sums                                                                                                                                  |                        |              |                |                   |                   |                   |                   |        |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sum of PFAS                                                                                                                                        |                        | 0.002        | μg/L           | 0.058             | 0.022             | 0.023             | 0.112             |        |  |
| EP231S: PFAS Surrogate       13C4-PFOS      0.002     %     88.8     90.6     94.8     95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sum of PFHxS and PFOS                                                                                                                              | 355-46-4/1763-23-<br>1 | 0.002        | μg/L           | 0.048             | 0.009             | 0.012             | 0.089             |        |  |
| 13C4-PFOS 0.002 % 88.8 90.6 94.8 95.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sum of PFAS (WA DER List)                                                                                                                          |                        | 0.002        | μg/L           | 0.056             | 0.022             | 0.023             | 0.104             |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231S: PFAS Surrogate                                                                                                                             |                        |              |                |                   |                   |                   |                   |        |  |
| 13C8-PFOA 0.002 % 119 116 118 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13C4-PFOS                                                                                                                                          |                        | 0.002        | %              | 88.8              | 90.6              | 94.8              | 95.7              |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13C8-PFOA                                                                                                                                          |                        | 0.002        | %              | 119               | 116               | 118               | 120               |        |  |

 Page
 : 5 of 5

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Surrogate Control Limits

| Sub-Matrix: WATER      | Recovery Limits (%) |     |      |
|------------------------|---------------------|-----|------|
| Compound               | CAS Number          | Low | High |
| EP231S: PFAS Surrogate |                     |     |      |
| 13C4-PFOS              |                     | 60  | 120  |
| 13C8-PFOA              |                     | 60  | 120  |



#### **QUALITY CONTROL REPORT**

Work Order : ES2033439

200100

Client : GHD PTY LTD
Contact : DILARA VALIFF

Address : LEVEL 15. 133 CASTLEREAGH STREET Address : 277-289 Woo

SYDNEY NSW. AUSTRALIA 2000

Telephone : +61 08 8111 6600

Project : 12516828

Order number : ---C-O-C number : ----

Sampler : SEAN SPARROW

Site

Quote number : EN/005

No. of samples received : 4
No. of samples analysed : 4

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 22-Sep-2020

Date Analysis Commenced : 25-Sep-2020

Issue Date : 29-Sep-2020



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW

 Page
 : 2 of 6

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                         |                                                   | Laboratory Duplicate (DUP) Report |       |      |                 |                  |         |                     |  |  |
|----------------------|-------------------------|---------------------------------------------------|-----------------------------------|-------|------|-----------------|------------------|---------|---------------------|--|--|
| Laboratory sample ID | Client sample ID        | Method: Compound                                  | CAS Number                        | LOR   | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |  |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC | Lot: 3276767)                                     |                                   |       |      |                 |                  |         |                     |  |  |
| ES2033438-002        | Anonymous               | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5                          | 0.002 | μg/L | 0.005           | 0.005            | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4                         | 0.002 | μg/L | 0.006           | 0.006            | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4                          | 0.002 | μg/L | 0.038           | 0.037            | 3.48    | 0% - 50%            |  |  |
|                      |                         | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8                          | 0.002 | μg/L | 0.003           | 0.003            | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1                         | 0.002 | μg/L | 0.046           | 0.043            | 5.61    | 0% - 20%            |  |  |
|                      |                         | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3                          | 0.002 | μg/L | <0.002          | <0.002           | 0.00    | No Limit            |  |  |
| EP231B: Perfluoroa   | ılkyl Carboxylic Acids( |                                                   |                                   |       |      |                 |                  |         |                     |  |  |
| ES2033438-002        | Anonymous               | EP231X-LL: Perfluoropentanoic acid (PFPeA)        | 2706-90-3                         | 0.002 | μg/L | 0.005           | 0.005            | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorohexanoic acid (PFHxA)         | 307-24-4                          | 0.002 | μg/L | 0.022           | 0.022            | 0.00    | 0% - 50%            |  |  |
|                      |                         | EP231X-LL: Perfluoroheptanoic acid (PFHpA)        | 375-85-9                          | 0.002 | μg/L | <0.002          | <0.002           | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorooctanoic acid (PFOA)          | 335-67-1                          | 0.002 | μg/L | 0.004           | 0.004            | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorononanoic acid (PFNA)          | 375-95-1                          | 0.002 | μg/L | <0.002          | <0.002           | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorodecanoic acid (PFDA)          | 335-76-2                          | 0.002 | μg/L | <0.002          | <0.002           | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8                         | 0.002 | μg/L | <0.002          | <0.002           | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorododecanoic acid (PFDoDA)      | 307-55-1                          | 0.002 | μg/L | <0.002          | <0.002           | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8                        | 0.002 | μg/L | <0.002          | <0.002           | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7                          | 0.005 | μg/L | <0.005          | <0.005           | 0.00    | No Limit            |  |  |
|                      |                         | EP231X-LL: Perfluorohexadecanoic acid (PFHxDA)    | 67905-19-5                        | 0.005 | μg/L | <0.005          | <0.005           | 0.00    | No Limit            |  |  |

 Page
 : 3 of 6

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER    |                            |                                                                      |             |       |      | Laboratory L    | Ouplicate (DUP) Report |         |                     |
|----------------------|----------------------------|----------------------------------------------------------------------|-------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID           | Method: Compound                                                     | CAS Number  | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231B: Perfluoroa   | Ikyl Carboxylic Acids (QC  | Lot: 3276767) - continued                                            |             |       |      |                 |                        |         |                     |
| ES2033438-002        | Anonymous                  | EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.01  | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EP231C: Perfluoroal  | kyl Sulfonamides (QC Lot:  | 3276767)                                                             |             |       |      |                 |                        |         |                     |
| ES2033438-002        | Anonymous                  | EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                            | EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                            | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                            | EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                            | EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                            | EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                            | EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acids (C | QC Lot: 3276767)                                                     |             |       |      |                 |                        |         |                     |
| ES2033438-002        | Anonymous                  | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                            | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                            | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                            | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)               | 120226-60-0 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |

 Page
 : 4 of 6

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                                    |             |       |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |  |
|----------------------------------------------------------------------|-------------|-------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|--|
|                                                                      |             |       |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |  |
| Method: Compound                                                     | CAS Number  | LOR   | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |  |  |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 3276767                | 7)          |       |      |                   |                                       |                    |          |            |  |  |  |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 87.2               | 72.0     | 130        |  |  |  |
| EP231X-LL: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4   | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 106                | 71.0     | 127        |  |  |  |
| EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 96.0               | 68.0     | 131        |  |  |  |
| EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 97.6               | 69.0     | 134        |  |  |  |
| EP231X-LL: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1   | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 95.2               | 65.0     | 140        |  |  |  |
| EP231X-LL: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 94.0               | 53.0     | 142        |  |  |  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3276                 | 767)        |       |      |                   |                                       |                    |          |            |  |  |  |
| EP231X-LL: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.01  | μg/L | <0.01             | 0.125 μg/L                            | 80.4               | 73.0     | 129        |  |  |  |
| EP231X-LL: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3   | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 99.6               | 72.0     | 129        |  |  |  |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)                            | 307-24-4    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 108                | 72.0     | 129        |  |  |  |
| EP231X-LL: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 100                | 72.0     | 130        |  |  |  |
| EP231X-LL: Perfluorooctanoic acid (PFOA)                             | 335-67-1    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 98.0               | 71.0     | 133        |  |  |  |
| EP231X-LL: Perfluorononanoic acid (PFNA)                             | 375-95-1    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 97.2               | 69.0     | 130        |  |  |  |
| EP231X-LL: Perfluorodecanoic acid (PFDA)                             | 335-76-2    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 96.8               | 71.0     | 129        |  |  |  |
| EP231X-LL: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8   | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 111                | 69.0     | 133        |  |  |  |
| EP231X-LL: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 103                | 72.0     | 134        |  |  |  |
| EP231X-LL: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8  | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 108                | 65.0     | 144        |  |  |  |
| EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.005 | μg/L | <0.005            | 0.0625 μg/L                           | 88.5               | 71.0     | 132        |  |  |  |
| EP231X-LL: Perfluorohexadecanoic acid (PFHxDA)                       | 67905-19-5  | 0.005 | μg/L | <0.005            | 0.025 μg/L                            | 119                | 65.6     | 133        |  |  |  |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3276767                  | )           |       |      |                   |                                       |                    |          |            |  |  |  |
| EP231X-LL: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 100                | 67.0     | 137        |  |  |  |
| EP231X-LL: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.005 | μg/L | <0.005            | 0.0625 μg/L                           | 94.1               | 68.0     | 141        |  |  |  |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.005 | μg/L | <0.005            | 0.0625 μg/L                           | 94.1               | 61.1     | 139        |  |  |  |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.005 | μg/L | <0.005            | 0.0625 μg/L                           | 98.4               | 72.3     | 128        |  |  |  |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.005 | μg/L | <0.005            | 0.0625 μg/L                           | 113                | 63.2     | 134        |  |  |  |
| EP231X-LL: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 96.8               | 65.0     | 136        |  |  |  |
| EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.002 | μg/L | <0.002            | 0.025 μg/L                            | 106                | 61.0     | 135        |  |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 32                | 276767)     |       |      |                   |                                       |                    |          |            |  |  |  |
| EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.005 | μg/L | <0.005            | 0.025 μg/L                            | 90.8               | 63.0     | 143        |  |  |  |

 Page
 : 5 of 6

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER                                      |                    |       |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |          |            |  |  |  |  |
|--------------------------------------------------------|--------------------|-------|------|-------------------|---------------------------------------|--------------------|----------|------------|--|--|--|--|
|                                                        |                    |       |      | Report            | Spike                                 | Spike Recovery (%) | Recovery | Limits (%) |  |  |  |  |
| Method: Compound                                       | CAS Number         | LOR   | Unit | Result            | Concentration                         | LCS                | Low      | High       |  |  |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3   | 276767) - continue | ed    |      |                   |                                       |                    |          |            |  |  |  |  |
| EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2         | 0.005 | μg/L | <0.005            | 0.025 μg/L                            | 101                | 64.0     | 140        |  |  |  |  |
| EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4         | 0.005 | μg/L | <0.005            | 0.025 μg/L                            | 93.2               | 67.0     | 138        |  |  |  |  |
| EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0        | 0.005 | μg/L | <0.005            | 0.025 μg/L                            | 83.2               | 75.2     | 137        |  |  |  |  |

### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: WATER   |                                      | M                                                 | atrix Spike (MS) Report |               |                  |            |            |
|--------------------|--------------------------------------|---------------------------------------------------|-------------------------|---------------|------------------|------------|------------|
|                    |                                      |                                                   |                         | Spike         | SpikeRecovery(%) | Recovery I | _imits (%) |
| boratory sample ID | Client sample ID                     | Method: Compound                                  | CAS Number              | Concentration | MS               | Low        | High       |
| P231A: Perfluoro   | alkyl Sulfonic Acids (QCLot: 3276767 | 7)                                                |                         |               |                  |            |            |
| S2033439-002       | QC32A                                | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5                | 0.025 μg/L    | 104              | 72.0       | 130        |
|                    |                                      | EP231X-LL: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4               | 0.025 μg/L    | 110              | 71.0       | 127        |
|                    |                                      | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4                | 0.025 μg/L    | 98.0             | 68.0       | 131        |
|                    |                                      | EP231X-LL: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8                | 0.025 μg/L    | 96.8             | 69.0       | 134        |
|                    |                                      | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1               | 0.025 μg/L    | 92.0             | 65.0       | 140        |
|                    |                                      | EP231X-LL: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3                | 0.025 μg/L    | 90.8             | 53.0       | 142        |
| P231B: Perfluor    | palkyl Carboxylic Acids (QCLot: 3276 | 767)                                              |                         |               |                  |            |            |
| S2033439-002       | QC32A                                | EP231X-LL: Perfluorobutanoic acid (PFBA)          | 375-22-4                | 0.125 μg/L    | 78.5             | 73.0       | 129        |
|                    |                                      | EP231X-LL: Perfluoropentanoic acid (PFPeA)        | 2706-90-3               | 0.025 μg/L    | 109              | 72.0       | 129        |
|                    |                                      | EP231X-LL: Perfluorohexanoic acid (PFHxA)         | 307-24-4                | 0.025 μg/L    | 102              | 72.0       | 129        |
|                    |                                      | EP231X-LL: Perfluoroheptanoic acid (PFHpA)        | 375-85-9                | 0.025 μg/L    | 94.4             | 72.0       | 130        |
|                    |                                      | EP231X-LL: Perfluorooctanoic acid (PFOA)          | 335-67-1                | 0.025 μg/L    | 100              | 71.0       | 133        |
|                    |                                      | EP231X-LL: Perfluorononanoic acid (PFNA)          | 375-95-1                | 0.025 μg/L    | 95.6             | 69.0       | 130        |
|                    |                                      | EP231X-LL: Perfluorodecanoic acid (PFDA)          | 335-76-2                | 0.025 μg/L    | 105              | 71.0       | 129        |
|                    |                                      | EP231X-LL: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8               | 0.025 μg/L    | 126              | 69.0       | 133        |
|                    |                                      | EP231X-LL: Perfluorododecanoic acid (PFDoDA)      | 307-55-1                | 0.025 μg/L    | 117              | 72.0       | 134        |
|                    |                                      | EP231X-LL: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8              | 0.025 μg/L    | 127              | 65.0       | 144        |
|                    |                                      | EP231X-LL: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7                | 0.0625 μg/L   | 75.4             | 71.0       | 132        |
|                    |                                      | EP231X-LL: Perfluorohexadecanoic acid (PFHxDA)    | 67905-19-5              | 0.025 μg/L    | 98.4             | 65.6       | 133        |
| P231C: Perfluoro   | alkyl Sulfonamides (QCLot: 3276767)  |                                                   |                         |               |                  |            |            |
| S2033439-002       | QC32A                                | EP231X-LL: Perfluorooctane sulfonamide (FOSA)     | 754-91-6                | 0.025 μg/L    | 91.2             | 67.0       | 137        |
|                    |                                      | EP231X-LL: N-Methyl perfluorooctane sulfonamide   | 31506-32-8              | 0.0625 μg/L   | 97.6             | 68.0       | 141        |
|                    |                                      | (MeFOSA)                                          |                         |               |                  |            |            |
|                    |                                      | EP231X-LL: N-Ethyl perfluorooctane sulfonamide    | 4151-50-2               | 0.0625 µg/L   | 81.9             | 61.1       | 139        |
|                    |                                      | (EtFOSA)                                          |                         |               |                  |            |            |

 Page
 : 6 of 6

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



137

75.2

99.2

120226-60-0

0.025 µg/L

Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecovery(%) Recovery Limits (%) Laboratory sample ID Client sample ID CAS Number Concentration MS Low High Method: Compound EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3276767) - continued ES2033439-002 QC32A EP231X-LL: N-Methyl perfluorooctane 24448-09-7 0.0625 µg/L 0.08 72.3 128 sulfonamidoethanol (MeFOSE) 1691-99-2 0.0625 µg/L 104 63.2 134 EP231X-LL: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE) EP231X-LL: N-Methyl perfluorooctane 2355-31-9 0.025 µg/L 89.2 65.0 136 sulfonamidoacetic acid (MeFOSAA) 135 EP231X-LL: N-Ethyl perfluorooctane sulfonamidoacetic 2991-50-6 0.025 µg/L 86.4 61.0 acid (EtFOSAA) EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3276767) ES2033439-002 QC32A 757124-72-4 0.025 µg/L 99.2 63.0 143 EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 140 27619-97-2 0.025 µg/L 96.0 64.0 EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 39108-34-4 0.025 µg/L 96.4 67.0 138 EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)

EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)



## QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2033439** Page : 1 of 4

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : DILARA VALIFF
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 22-Sep-2020

 Site
 : Issue Date
 : 29-Sep-2020

Sampler : SEAN SPARROW No. of samples received : 4
Order number : ---- No. of samples analysed : 4

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 4

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: x = Holding time breach: √ = Within holding time

| Matrix: WATER                             |       |             |                |                         | Evaluation | : × = Holding time | breach; ✓ = Withi | n holding time |
|-------------------------------------------|-------|-------------|----------------|-------------------------|------------|--------------------|-------------------|----------------|
| Method                                    |       | Sample Date | E              | ktraction / Preparation |            |                    | Analysis          |                |
| Container / Client Sample ID(s)           |       |             | Date extracted | Due for extraction      | Evaluation | Date analysed      | Due for analysis  | Evaluation     |
| EP231A: Perfluoroalkyl Sulfonic Acids     |       |             |                |                         |            |                    |                   |                |
| HDPE (no PTFE) (EP231X-LL) QC31A,         | QC32A | 11-Sep-2020 | 25-Sep-2020    | 10-Mar-2021             | <b>√</b>   | 28-Sep-2020        | 10-Mar-2021       |                |
|                                           | QC32A | 11-3ер-2020 | 23-3ep-2020    | 10 Mai 2021             | •          | 20-36p-2020        | 10 Wai 2021       | ✓              |
| HDPE (no PTFE) (EP231X-LL) QC35A,         | QC36A | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021             | ✓          | 28-Sep-2020        | 16-Mar-2021       | ✓              |
| EP231B: Perfluoroalkyl Carboxylic Acids   |       |             |                |                         |            |                    |                   |                |
| HDPE (no PTFE) (EP231X-LL)                |       |             |                |                         |            |                    |                   |                |
| QC31A,                                    | QC32A | 11-Sep-2020 | 25-Sep-2020    | 10-Mar-2021             | ✓          | 28-Sep-2020        | 10-Mar-2021       | ✓              |
| HDPE (no PTFE) (EP231X-LL)                |       |             |                |                         |            |                    |                   |                |
| QC35A,                                    | QC36A | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021             | <b>√</b>   | 28-Sep-2020        | 16-Mar-2021       | ✓              |
| EP231C: Perfluoroalkyl Sulfonamides       |       |             |                |                         |            |                    |                   |                |
| HDPE (no PTFE) (EP231X-LL)                |       |             |                |                         |            |                    |                   |                |
| QC31A,                                    | QC32A | 11-Sep-2020 | 25-Sep-2020    | 10-Mar-2021             | ✓          | 28-Sep-2020        | 10-Mar-2021       | ✓              |
| HDPE (no PTFE) (EP231X-LL)                |       |             |                |                         |            |                    |                   |                |
| QC35A,                                    | QC36A | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021             | ✓          | 28-Sep-2020        | 16-Mar-2021       | ✓              |
| EP231D: (n:2) Fluorotelomer Sulfonic Acid | ls    |             |                |                         |            |                    |                   |                |
| HDPE (no PTFE) (EP231X-LL)                |       |             |                |                         |            |                    |                   |                |
| QC31A,                                    | QC32A | 11-Sep-2020 | 25-Sep-2020    | 10-Mar-2021             | ✓          | 28-Sep-2020        | 10-Mar-2021       | ✓              |
| HDPE (no PTFE) (EP231X-LL)                |       |             |                |                         |            |                    |                   |                |
| QC35A,                                    | QC36A | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021             | ✓          | 28-Sep-2020        | 16-Mar-2021       | ✓              |
| EP231P: PFAS Sums                         |       |             |                |                         |            |                    |                   |                |
| HDPE (no PTFE) (EP231X-LL)                |       |             |                |                         |            |                    |                   |                |
| QC31A,                                    | QC32A | 11-Sep-2020 | 25-Sep-2020    | 10-Mar-2021             | ✓          | 28-Sep-2020        | 10-Mar-2021       | ✓              |
| HDPE (no PTFE) (EP231X-LL)                |       |             |                |                         |            |                    |                   |                |
| QC35A,                                    | QC36A | 17-Sep-2020 | 25-Sep-2020    | 16-Mar-2021             | ✓          | 28-Sep-2020        | 16-Mar-2021       | ✓              |

 Page
 : 3 of 4

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: × = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

| Matrix: WATER                                       |           | Evaluation: W = Quality Control requestoy flot within specimeation; V = Quality Control requestoy within |         |        |          |            |                                |  |  |  |  |
|-----------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------|---------|--------|----------|------------|--------------------------------|--|--|--|--|
| Quality Control Sample Type                         |           | C                                                                                                        | Count   |        | Rate (%) |            | Quality Control Specification  |  |  |  |  |
| Analytical Methods                                  | Method    | OC                                                                                                       | Reaular | Actual | Expected | Evaluation |                                |  |  |  |  |
| Laboratory Duplicates (DUP)                         |           |                                                                                                          |         |        |          |            |                                |  |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS | EP231X-LL | 1                                                                                                        | 6       | 16.67  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Laboratory Control Samples (LCS)                    |           |                                                                                                          |         |        |          |            |                                |  |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS | EP231X-LL | 1                                                                                                        | 6       | 16.67  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Method Blanks (MB)                                  |           |                                                                                                          |         |        |          |            |                                |  |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS | EP231X-LL | 1                                                                                                        | 6       | 16.67  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
| Matrix Spikes (MS)                                  |           |                                                                                                          |         |        |          |            |                                |  |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS | EP231X-LL | 1                                                                                                        | 6       | 16.67  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |  |
|                                                     |           |                                                                                                          |         |        |          |            |                                |  |  |  |  |

 Page
 : 4 of 4

 Work Order
 : ES2033439

 Client
 : GHD PTY LTD

 Project
 : 12516828



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Per- and Polyfluoroalkyl Substances<br>(PFAS by LCMSMS | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is concentrated, combined with an equal volume of reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                    | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Solid Phase Extraction (SPE) for PFAS in water         | ORG72     | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                  |

| ENVÎROLAB | Eก <b>ง</b> ั้เหือเคย |
|-----------|-----------------------|
| GROUP     | @mpl                  |

# CHAIN OF CUSTODY FORM - Client

| ENVIROLAB                                                               | <u>empl</u>                                        | CH          | AIN C           | OF CUS              | STC                                                                                                                                                                      | )D       | YF        | OI       | RM        | -       | Cli    | en      | t         |                                                                                                                                                            | Sydi<br>12 A        | ney Lai           | <u>b</u> - Env<br>St, Cha | umber<br>irolab S<br>tswood | ervices<br>I, NSW | s<br>2067                                                     |
|-------------------------------------------------------------------------|----------------------------------------------------|-------------|-----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|----------|-----------|---------|--------|---------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|---------------------------|-----------------------------|-------------------|---------------------------------------------------------------|
| [Copyright and Confid                                                   | ential]                                            |             |                 |                     |                                                                                                                                                                          |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   | •                         | •                           | . –               | virolab.com.au                                                |
| Client: GHD Pty Ltd                                                     | · <del>- · · · · · · · · · · · · · · · · · ·</del> |             | -               |                     | Client                                                                                                                                                                   | Projec   | t Name    | /Numb    | er/Site e | etc (ie | report | title): |           |                                                                                                                                                            | 16-1                | 8 Hayd            | en Crt,                   | aborato<br>Myaree           | e, WA 6           | 3154                                                          |
| Contact Person: Se                                                      |                                                    |             |                 |                     |                                                                                                                                                                          | •        |           |          | nga Stat  | •       | •      | •       |           |                                                                                                                                                            | O O                 | 931.7             | 2505   1                  | ⊠ lab@                      | mpi.co            | ım.au                                                         |
| Project Mgr: Dilara                                                     | Valiff                                             |             |                 |                     | PO No                                                                                                                                                                    | o.: 1251 | _         |          |           |         |        |         |           |                                                                                                                                                            | Mell                | ourne             | Lab - E                   | Envirola<br>Crovd           | b Serv            | ices<br>uth, VIC 3136                                         |
| Sampler: Sean Spa                                                       | rrow                                               |             |                 |                     | Envirolab Quote No. :                                                                                                                                                    |          |           |          |           |         |        |         |           | 0 03                                                                                                                                                       | 9763                | 2500              | ⊠ melb                    | ourne(                      | Denvirolab.com.au |                                                               |
| Address:  Level 4, 211 Victoria Square, Adelaide 5000                   |                                                    |             |                 |                     | Date results required: Standard  Or choose: standard / same day / 1 day / 2 day / 3 day  Note: Inform lab in advance if urgent turnaround is required - surcharges apply |          |           |          |           |         |        |         |           | Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067  ① 08 7087 6800   ▷ ⟨ adelaide@envirolab.com.au  Brisbane Office - Envirolab Services |                     |                   |                           |                             |                   |                                                               |
| Phone:                                                                  |                                                    | Mob:        | 0498 260 62     | 6                   |                                                                                                                                                                          |          | port for  | rmat: e  | sdat / e  | quis /  | '      |         |           |                                                                                                                                                            | 20a.                | 10-20             | Denot !                   | St. Bany                    | vo. QLI           | O 4014<br>envirolab.com.au                                    |
| Email: GHDLabReports@ghd.com sean.sparrow@ghd.com dilara.valiff@ghd.com |                                                    |             |                 |                     | Lab C                                                                                                                                                                    | omme     | nts:      |          |           |         |        |         |           |                                                                                                                                                            | <u>Darv</u><br>Unit | vin Off<br>20/119 | i <u>ce</u> - Er<br>Reich | virolab<br>ardt Roa         | Servic<br>ad, Wi  |                                                               |
| * * ·                                                                   | Sample infor                                       | mation      |                 |                     |                                                                                                                                                                          | ٠        |           |          |           |         | Test   | s Req   | ired      | ·                                                                                                                                                          |                     |                   |                           |                             |                   | Comments                                                      |
| Envirolab Sample<br>ID                                                  | Client Sample ID or information                    | Depth       | Date<br>sampled | Type of sample      | PFAS in Water<br>Ultra Trace                                                                                                                                             |          |           |          |           |         |        | ,       |           |                                                                                                                                                            |                     |                   |                           |                             |                   | Provide as much<br>information about the<br>sample as you can |
| 1                                                                       | 6627-11131                                         |             | 23/09/2020      | water               | х                                                                                                                                                                        | 1        |           |          |           |         |        |         |           |                                                                                                                                                            | -                   |                   |                           |                             |                   |                                                               |
| 2                                                                       | QC37 -                                             |             | 23/09/2020      | water               | х                                                                                                                                                                        |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   |                           |                             |                   | -                                                             |
| 3.                                                                      | QC37A                                              |             | 23/09/2020      | water               | х                                                                                                                                                                        |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   |                           |                             | $\neg$            | Please forward to ALS                                         |
| 4,                                                                      | FB12                                               |             | 23/09/2020      | water               | Х                                                                                                                                                                        |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |
| 5.                                                                      | RB12                                               |             | 23/09/2020      | <u>water</u>        | Х                                                                                                                                                                        |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |
|                                                                         |                                                    |             |                 |                     |                                                                                                                                                                          |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |
|                                                                         |                                                    |             |                 |                     |                                                                                                                                                                          |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |
|                                                                         | <u> </u>                                           |             |                 |                     |                                                                                                                                                                          |          |           |          |           |         |        |         |           |                                                                                                                                                            | •                   |                   |                           |                             |                   |                                                               |
|                                                                         |                                                    |             |                 |                     |                                                                                                                                                                          |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |
|                                                                         |                                                    |             |                 |                     |                                                                                                                                                                          |          |           |          |           |         |        |         | ė         |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |
|                                                                         |                                                    |             |                 |                     |                                                                                                                                                                          |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |
|                                                                         |                                                    |             |                 |                     |                                                                                                                                                                          |          |           |          |           |         |        |         | ,         |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |
|                                                                         | Please tick the box if observed                    | settled sec | liment preser   | nt in water sample: | s is to be                                                                                                                                                               | e includ | ded in ti | he extra | action a  | nd/or   | analys | is      |           |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |
| Relinquished by (Co                                                     | ompany):                                           |             |                 | Received by (Com    | pany):                                                                                                                                                                   | GL       | \$ 9      | 340      | l,        |         |        |         | ,         |                                                                                                                                                            | ,                   | La                | b Use                     | Only                        |                   |                                                               |
|                                                                         |                                                    |             | cha             | 200                 | 3N                                                                                                                                                                       | 5        |           |          | Job nu    | ımber:  | 252    | -14     | 6         |                                                                                                                                                            | Coolir              | g: Ice            | /Ce pa                    | ack / None                  |                   |                                                               |
| Date & Time: Date & Time: 25                                            |                                                    |             |                 |                     |                                                                                                                                                                          |          |           |          | 3.7       |         |        | Secur   | ity seal: | Intact                                                                                                                                                     | Broken / None       |                   |                           |                             |                   |                                                               |
| Signature:                                                              |                                                    |             | •               | Signature:          | 1-1                                                                                                                                                                      | クー       |           |          |           |         | TAT R  | eq - SA | ME day    | / 1 /                                                                                                                                                      | 2 / 3               | 146               | STD)                      |                             |                   |                                                               |
|                                                                         |                                                    |             |                 |                     | 100                                                                                                                                                                      |          |           |          |           |         |        |         |           |                                                                                                                                                            |                     |                   |                           |                             |                   |                                                               |

Form 302\_V006

Issue date: 7 October 2019

Page 1 of 1

**ENVIROLAB GROUP** 



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 252146**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Dilara Valiff                    |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                                    |
|--------------------------------------|------------------------------------|
| Your Reference                       | CFS Brukunga State Training Centre |
| Number of Samples                    | 5 Water                            |
| Date samples received                | 25/09/2020                         |
| Date completed instructions received | 25/09/2020                         |

### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                   |  |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Date results requested by                                                             | 02/10/2020                                                        |  |  |  |  |
| Date of Issue                                                                         | 30/09/2020                                                        |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                   |  |  |  |  |
| Accredited for compliance with ISO/                                                   | IEC 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |  |

#### Results Approved By

Phalak Inthakesone, Organics Development Manager, Sydney

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Water TRACE Short                          |       |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                                      |       | 252146-1   | 252146-2   | 252146-4   | 252146-5   |
| Your Reference                                     | UNITS | 6627-11131 | QC37       | FB12       | RB12       |
| Date Sampled                                       |       | 23/09/2020 | 23/09/2020 | 23/09/2020 | 23/09/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 28/09/2020 | 28/09/2020 | 28/09/2020 | 28/09/2020 |
| Date analysed                                      | -     | 29/09/2020 | 29/09/2020 | 29/09/2020 | 29/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    |
| 6:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 97         | 94         | 93         | 94         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 98         | 96         | 97         | 97         |
| Extracted ISTD 18 O2 PFHxS                         | %     | 85         | 82         | 79         | 84         |
| Extracted ISTD 13 C4 PFOS                          | %     | 67         | 67         | 68         | 89         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 90         | 87         | 85         | 93         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 146        | 136        | 128        | 136        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 67         | 61         | 61         | 96         |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    |
| Total Positive PFOS & PFOA                         | μg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    |
| Total Positive PFAS                                | μg/L  | <0.0002    | <0.0002    | <0.0002    | <0.0002    |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY CON                                        | TROL: PFAS | in Water | TRACE Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|----------|-------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL      | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | 252146-2   |
| Date prepared                                      | -          |          |             | 28/09/2020 | 1 | 28/09/2020 | 28/09/2020 |     | 28/09/2020 | 28/09/2020 |
| Date analysed                                      | -          |          |             | 29/09/2020 | 1 | 29/09/2020 | 29/09/2020 |     | 29/09/2020 | 29/09/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | <0.0002    | <0.0002    | 0   | 106        | 105        |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | <0.0002    | <0.0002    | 0   | 99         | 102        |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | <0.0002    | <0.0002    | 0   | 103        | 102        |
| 6:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 102        | 104        |
| 8:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 103        | 106        |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |          | Org-029     | 95         | 1 | 97         | 95         | 2   | 91         | 91         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |          | Org-029     | 97         | 1 | 98         | 91         | 7   | 95         | 96         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |          | Org-029     | 90         | 1 | 85         | 86         | 1   | 89         | 87         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |          | Org-029     | 82         | 1 | 67         | 71         | 6   | 84         | 70         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |          | Org-029     | 91         | 1 | 90         | 92         | 2   | 90         | 88         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |          | Org-029     | 105        | 1 | 146        | 149        | 2   | 97         | 152        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %          |          | Org-029     | 69         | 1 | 67         | 72         | 7   | 73         | 75         |

| Result Definiti | ons                                       |  |  |  |  |  |
|-----------------|-------------------------------------------|--|--|--|--|--|
| NT              | Not tested                                |  |  |  |  |  |
| NA              | Test not required                         |  |  |  |  |  |
| INS             | Insufficient sample for this test         |  |  |  |  |  |
| PQL             | tical Quantitation Limit                  |  |  |  |  |  |
| <               | han                                       |  |  |  |  |  |
| >               | Greater than                              |  |  |  |  |  |
| RPD             | Relative Percent Difference               |  |  |  |  |  |
| LCS             | Laboratory Control Sample                 |  |  |  |  |  |
| NS              | Not specified                             |  |  |  |  |  |
| NEPM            | National Environmental Protection Measure |  |  |  |  |  |
| NR              | Not Reported                              |  |  |  |  |  |

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

## **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 252146 Page | 7 of 7

Revision No: R00



### **CERTIFICATE OF ANALYSIS**

**Work Order** : ES2034113

: GHD PTY LTD

Contact : DILARA VALIFF

Address : 2/11 VICTORIA SQUARE

ADELAIDE SA. AUSTRALIA 5000

Telephone : +61 08 8111 6600

**Project** : CFS Brukunga State Training Centre

Order number : 12516828

C-O-C number

Sampler : SEAN SPARROW

Site

Client

Quote number : EN/005

No. of samples received : 1 No. of samples analysed : 1

Page : 1 of 4

> Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

**Date Samples Received** : 28-Sep-2020 17:00 **Date Analysis Commenced** : 01-Oct-2020

Issue Date : 06-Oct-2020 13:43



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.** 

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Accreditation Category Position

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW 

 Page
 : 2 of 4

 Work Order
 : ES2034113

 Client
 : GHD PTY LTD

Project : CFS Brukunga State Training Centre



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

 Page
 : 3 of 4

 Work Order
 : ES2034113

 Client
 : GHD PTY LTD

Project : CFS Brukunga State Training Centre



### Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)            |                        | Clie       | ent sample ID  | QC37A             | <br> | <br> |
|----------------------------------------------|------------------------|------------|----------------|-------------------|------|------|
|                                              | Cli                    | ent sampli | ng date / time | 23-Sep-2020 00:00 | <br> | <br> |
| Compound                                     | CAS Number             | LOR        | Unit           | ES2034113-001     | <br> | <br> |
|                                              |                        |            |                | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acid         | ls                     |            |                |                   |      |      |
| Perfluorobutane sulfonic acid                | 375-73-5               | 0.002      | μg/L           | <0.002            | <br> | <br> |
| (PFBS)                                       |                        |            |                |                   |      |      |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.002      | μg/L           | <0.002            | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.002      | μg/L           | <0.002            | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic A          | Acids                  |            |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.01       | μg/L           | <0.01             | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.002      | μg/L           | <0.002            | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.002      | μg/L           | <0.002            | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.002      | μg/L           | <0.002            | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.002      | μg/L           | <0.002            | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfoni          | c Acids                |            |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.005      | μg/L           | <0.005            | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2             | 0.005      | μg/L           | <0.005            | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid (8:2 FTS)    | 39108-34-4             | 0.005      | μg/L           | <0.005            | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.005      | μg/L           | <0.005            | <br> | <br> |
| EP231P: PFAS Sums                            |                        |            |                |                   |      |      |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.002      | μg/L           | <0.002            | <br> | <br> |
| Sum of PFAS (WA DER List)                    |                        | 0.002      | μg/L           | <0.002            | <br> | <br> |
| EP231S: PFAS Surrogate                       |                        |            |                |                   |      |      |
| 13C4-PFOS                                    |                        | 0.002      | %              | 101               | <br> | <br> |
| 13C8-PFOA                                    |                        | 0.002      | %              | 104               | <br> | <br> |

 Page
 : 4 of 4

 Work Order
 : ES2034113

 Client
 : GHD PTY LTD

Project : CFS Brukunga State Training Centre



## Surrogate Control Limits

| Sub-Matrix: WATER      | Recovery Limits (%) |     |      |  |
|------------------------|---------------------|-----|------|--|
| Compound               | CAS Number          | Low | High |  |
| EP231S: PFAS Surrogate |                     |     |      |  |
| 13C4-PFOS              |                     | 60  | 120  |  |
| 13C8-PFOA              |                     | 60  | 120  |  |



#### **QUALITY CONTROL REPORT**

· ES2034113 Work Order

Client : GHD PTY LTD

Contact : DILARA VALIFF

Address : 2/11 VICTORIA SQUARE

ADELAIDE SA. AUSTRALIA 5000

Telephone : +61 08 8111 6600

Project : CFS Brukunga State Training Centre

Order number : 12516828

C-O-C number

Sampler : SEAN SPARROW

Site

Quote number : EN/005

No. of samples received : 1 No. of samples analysed : 1 Page : 1 of 4

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 28-Sep-2020 **Date Analysis Commenced** : 01-Oct-2020

· 06-Oct-2020 Issue Date



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW 

 Page
 : 2 of 4

 Work Order
 : ES2034113

 Client
 : GHD PTY LTD

Project : CFS Brukunga State Training Centre



#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    | CASTON CONTROL OF CHIEF TO SHORT ACIDS (QC Lot: 3286122)  CASTON CONTROL OF CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CASTON CAS |                                                        |             |       |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Method: Compound                                       | CAS Number  | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroal  | lkyl Sulfonic Acids (Q0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C Lot: 3286122)                                        |             |       |      |                 |                        |         |                     |
| ES2034113-001        | QC37A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 355-46-4    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 1763-23-1   | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
| EP231B: Perfluoroa   | Ikyl Carboxylic Acids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (QC Lot: 3286122)                                      |             |       |      |                 |                        |         |                     |
| ES2034113-001        | QC37A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EP231X-LL: Perfluoropentanoic acid (PFPeA)             | 2706-90-3   | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X-LL: Perfluorohexanoic acid (PFHxA)              | 307-24-4    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X-LL: Perfluoroheptanoic acid (PFHpA)             | 375-85-9    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X-LL: Perfluorooctanoic acid (PFOA)               | 335-67-1    | 0.002 | μg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X-LL: Perfluorobutanoic acid (PFBA)               | 375-22-4    | 0.01  | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
| EP231D: (n:2) Fluor  | otelomer Sulfonic Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ds (QC Lot: 3286122)                                   |             |       |      |                 |                        |         |                     |
| ES2034113-001        | QC37A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.005 | μg/L | <0.005          | <0.005                 | 0.00    | No Limit            |

 Page
 : 3 of 4

 Work Order
 : ES2034113

 Client
 : GHD PTY LTD

Project : CFS Brukunga State Training Centre



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |      |        |               |                    |          |            |
|--------------------------------------------------------|-------------------|---------------------------------------|------|--------|---------------|--------------------|----------|------------|
|                                                        |                   |                                       |      | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                       | CAS Number        | LOR                                   | Unit | Result | Concentration | LCS                | Low      | High       |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 32861    | 22)               |                                       |      |        |               |                    |          |            |
| EP231X-LL: Perfluorobutane sulfonic acid (PFBS)        | 375-73-5          | 0.002                                 | μg/L | <0.002 | 0.025 μg/L    | 96.4               | 72.0     | 130        |
| EP231X-LL: Perfluorohexane sulfonic acid (PFHxS)       | 355-46-4          | 0.002                                 | μg/L | <0.002 | 0.025 μg/L    | 122                | 68.0     | 131        |
| EP231X-LL: Perfluorooctane sulfonic acid (PFOS)        | 1763-23-1         | 0.002                                 | μg/L | <0.002 | 0.025 μg/L    | 116                | 65.0     | 140        |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 328    | 86122)            |                                       |      |        |               |                    |          |            |
| EP231X-LL: Perfluorobutanoic acid (PFBA)               | 375-22-4          | 0.01                                  | μg/L | <0.01  | 0.125 μg/L    | 99.7               | 73.0     | 129        |
| EP231X-LL: Perfluoropentanoic acid (PFPeA)             | 2706-90-3         | 0.002                                 | μg/L | <0.002 | 0.025 μg/L    | 120                | 72.0     | 129        |
| EP231X-LL: Perfluorohexanoic acid (PFHxA)              | 307-24-4          | 0.002                                 | μg/L | <0.002 | 0.025 μg/L    | 117                | 72.0     | 129        |
| EP231X-LL: Perfluoroheptanoic acid (PFHpA)             | 375-85-9          | 0.002                                 | μg/L | <0.002 | 0.025 μg/L    | 122                | 72.0     | 130        |
| EP231X-LL: Perfluorooctanoic acid (PFOA)               | 335-67-1          | 0.002                                 | μg/L | <0.002 | 0.025 μg/L    | 123                | 71.0     | 133        |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:     | 3286122)          |                                       |      |        |               |                    |          |            |
| EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4       | 0.005                                 | μg/L | <0.005 | 0.025 μg/L    | 109                | 63.0     | 143        |
| EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2        | 0.005                                 | μg/L | <0.005 | 0.025 μg/L    | 116                | 64.0     | 140        |
| EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4        | 0.005                                 | μg/L | <0.005 | 0.025 μg/L    | 114                | 67.0     | 138        |
| EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0       | 0.005                                 | μg/L | <0.005 | 0.025 μg/L    | 109                | 75.2     | 137        |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    | b-Matrix: <b>WATER</b>                   |                                                  |               |            |                  |            |           |
|----------------------|------------------------------------------|--------------------------------------------------|---------------|------------|------------------|------------|-----------|
|                      |                                          |                                                  |               | Spike      | SpikeRecovery(%) | Recovery L | imits (%) |
| Laboratory sample ID | Client sample ID                         | Method: Compound                                 | Concentration | MS         | Low              | High       |           |
| EP231A: Perfluoro    | alkyl Sulfonic Acids (QCLot: 3286122)    |                                                  |               |            |                  |            |           |
| ES2034160-001        | Anonymous                                | EP231X-LL: Perfluorobutane sulfonic acid (PFBS)  | 375-73-5      | 0.025 μg/L | 82.4             | 72.0       | 130       |
|                      |                                          | EP231X-LL: Perfluorohexane sulfonic acid (PFHxS) | 355-46-4      | 0.025 μg/L | # Not            | 68.0       | 131       |
|                      |                                          |                                                  |               |            | Determined       |            |           |
|                      |                                          | EP231X-LL: Perfluorooctane sulfonic acid (PFOS)  | 1763-23-1     | 0.025 μg/L | 122              | 65.0       | 140       |
| EP231B: Perfluoro    | oalkyl Carboxylic Acids (QCLot: 3286122) |                                                  |               |            |                  |            |           |
| ES2034160-001        | Anonymous                                | EP231X-LL: Perfluorobutanoic acid (PFBA)         | 375-22-4      | 0.125 μg/L | 74.1             | 73.0       | 129       |
|                      |                                          | EP231X-LL: Perfluoropentanoic acid (PFPeA)       | 2706-90-3     | 0.025 μg/L | 91.2             | 72.0       | 129       |
|                      |                                          | EP231X-LL: Perfluorohexanoic acid (PFHxA)        | 307-24-4      | 0.025 μg/L | # Not            | 72.0       | 129       |
|                      |                                          |                                                  |               |            | Determined       |            |           |
|                      |                                          | EP231X-LL: Perfluoroheptanoic acid (PFHpA)       | 375-85-9      | 0.025 μg/L | 112              | 72.0       | 130       |
|                      |                                          | EP231X-LL: Perfluorooctanoic acid (PFOA)         | 335-67-1      | 0.025 μg/L | 120              | 71.0       | 133       |

 Page
 : 4 of 4

 Work Order
 : ES2034113

 Client
 : GHD PTY LTD





| Sub-Matrix: WATER    | Sub-Matrix: WATER                                          |                                                        |             |                                     |      | Matrix Spike (MS) Report |           |  |  |  |
|----------------------|------------------------------------------------------------|--------------------------------------------------------|-------------|-------------------------------------|------|--------------------------|-----------|--|--|--|
|                      |                                                            |                                                        |             | Spike SpikeRecovery(%) Recovery Lin |      |                          | imits (%) |  |  |  |
| Laboratory sample ID | Client sample ID                                           | Method: Compound                                       | CAS Number  | Concentration                       | MS   | Low                      | High      |  |  |  |
| EP231D: (n:2) Fluo   | P231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3286122) |                                                        |             |                                     |      |                          |           |  |  |  |
| ES2034160-001        | Anonymous                                                  | EP231X-LL: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.025 μg/L                          | 108  | 63.0                     | 143       |  |  |  |
|                      |                                                            | EP231X-LL: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.025 μg/L                          | 114  | 64.0                     | 140       |  |  |  |
|                      |                                                            | EP231X-LL: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.025 μg/L                          | 100  | 67.0                     | 138       |  |  |  |
|                      |                                                            | EP231X-LL: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.025 μg/L                          | 87.6 | 75.2                     | 137       |  |  |  |



## QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2034113** Page : 1 of 4

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

Contact : DILARA VALIFF Telephone : +61 2 8784 8555
Project : CFS Brukunga State Training Centre Date Samples Received : 28-Sep-2020

Site : Issue Date : 06-Oct-2020
Sampler : SEAN SPARROW No. of samples received : 1

Order number : 12516828 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 4

 Work Order
 : ES2034113

 Client
 : GHD PTY LTD

Project : CFS Brukunga State Training Centre



#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

| Compound Group Name                     | Laboratory Sample ID | Client Sample ID | Analyte                | CAS Number | Data       | Limits | Comment                          |
|-----------------------------------------|----------------------|------------------|------------------------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries            |                      |                  |                        |            |            |        |                                  |
| EP231A: Perfluoroalkyl Sulfonic Acids   | ES2034160001         | Anonymous        | Perfluorohexane        | 355-46-4   | Not        |        | MS recovery not determined,      |
|                                         |                      |                  | sulfonic acid          |            | Determined |        | background level greater than or |
|                                         |                      |                  | (PFHxS)                |            |            |        | equal to 4x spike level.         |
| EP231B: Perfluoroalkyl Carboxylic Acids | ES2034160001         | Anonymous        | Perfluorohexanoic acid | 307-24-4   | Not        |        | MS recovery not determined,      |
|                                         |                      |                  | (PFHxA)                |            | Determined |        | background level greater than or |
|                                         |                      |                  |                        |            |            |        | equal to 4x spike level.         |

#### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach ; ✓ = Within holding time.

| Matik. WATER                               |             |                |                        | Lvaluation | I loluling time | breach, • - with | in notaling time |
|--------------------------------------------|-------------|----------------|------------------------|------------|-----------------|------------------|------------------|
| Method                                     | Sample Date | Ex             | traction / Preparation |            | Analysis        |                  |                  |
| Container / Client Sample ID(s)            |             | Date extracted | Due for extraction     | Evaluation | Date analysed   | Due for analysis | Evaluation       |
| EP231A: Perfluoroalkyl Sulfonic Acids      |             |                |                        |            |                 |                  |                  |
| HDPE (no PTFE) (EP231X-LL)<br>QC37A        | 23-Sep-2020 | 01-Oct-2020    | 22-Mar-2021            | 1          | 01-Oct-2020     | 22-Mar-2021      | ✓                |
| EP231B: Perfluoroalkyl Carboxylic Acids    |             |                |                        |            |                 |                  |                  |
| HDPE (no PTFE) (EP231X-LL)<br>QC37A        | 23-Sep-2020 | 01-Oct-2020    | 22-Mar-2021            | 1          | 01-Oct-2020     | 22-Mar-2021      | <b>✓</b>         |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                        |            |                 |                  |                  |
| HDPE (no PTFE) (EP231X-LL)<br>QC37A        | 23-Sep-2020 | 01-Oct-2020    | 22-Mar-2021            | 1          | 01-Oct-2020     | 22-Mar-2021      | <b>✓</b>         |
| EP231P: PFAS Sums                          |             |                |                        |            |                 |                  |                  |
| HDPE (no PTFE) (EP231X-LL) QC37A           | 23-Sep-2020 | 01-Oct-2020    | 22-Mar-2021            | 1          | 01-Oct-2020     | 22-Mar-2021      | <b>✓</b>         |

Page : 3 of 4 Work Order ES2034113 GHD PTY LTD Client





# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: <b>WATER</b> Evaluation: <b>x</b> = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification; |           |    |         |        |          |            |                                |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|---------|--------|----------|------------|--------------------------------|--|--|--|
| Quality Control Sample Type                                                                                                                         |           | Co | unt     |        | Rate (%) |            | Quality Control Specification  |  |  |  |
| Analytical Methods                                                                                                                                  | Method    | QC | Reaular | Actual | Expected | Evaluation |                                |  |  |  |
| Laboratory Duplicates (DUP)                                                                                                                         |           |    |         |        |          |            |                                |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS                                                                                                 | EP231X-LL | 1  | 3       | 33.33  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Laboratory Control Samples (LCS)                                                                                                                    |           |    |         |        |          |            |                                |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS                                                                                                 | EP231X-LL | 1  | 3       | 33.33  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Method Blanks (MB)                                                                                                                                  |           |    |         |        |          |            |                                |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS                                                                                                 | EP231X-LL | 1  | 3       | 33.33  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Matrix Spikes (MS)                                                                                                                                  |           |    |         |        |          |            |                                |  |  |  |
| Per- and Polyfluoroalkyl Substances (PFAS by LCMSMS                                                                                                 | EP231X-LL | 1  | 3       | 33.33  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |

 Page
 : 4 of 4

 Work Order
 : ES2034113

 Client
 : GHD PTY LTD





### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                     | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Per- and Polyfluoroalkyl Substances<br>(PFAS by LCMSMS | EP231X-LL | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is concentrated, combined with an equal volume of reagent water and filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                    | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Solid Phase Extraction (SPE) for PFAS in<br>water      | ORG72     | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                  |



# **CHAIN OF CUSTODY FORM - Client**

| Copyright and Confidency | ential]                                                               |              |                 |                      |                                                        |                                               |                    |          |             |          |             |            |                                                                                                        | 1        | 2 Ashle<br>02 99  | ey St, C<br>10 6200 |                                                            | od, N<br>dney(   | ISW 20<br>@envir   | 067<br>rolab.com.au                                     |
|--------------------------|-----------------------------------------------------------------------|--------------|-----------------|----------------------|--------------------------------------------------------|-----------------------------------------------|--------------------|----------|-------------|----------|-------------|------------|--------------------------------------------------------------------------------------------------------|----------|-------------------|---------------------|------------------------------------------------------------|------------------|--------------------|---------------------------------------------------------|
| lient: GHD Pty Ltd       |                                                                       |              |                 |                      | Client Project Name/Number/Site etc (ie report title): |                                               |                    |          |             |          |             | <b>—</b> 1 | Perth Lab - MPL Laboratories<br>16-18 Hayden Crt, Myaree, WA 6154<br>◑ 08 9317 2505   ☑ lab@mpl.com.au |          |                   |                     |                                                            |                  |                    |                                                         |
| ontact Person: Se        | <del></del>                                                           |              |                 | <del></del>          | <del>                                     </del>       |                                               |                    |          | 12516       | 828      |             |            |                                                                                                        | <u> </u> | lelbou            | ne Lab              | Envir                                                      | olab s           | Service            | es                                                      |
| roject Mgr: Dilara       |                                                                       |              |                 |                      | PO No.: 12516828                                       |                                               |                    |          |             |          | l 2         | 5 Rese     | arch D                                                                                                 | rive, Cr | oydor             | n South             | h, VIC 3136<br>envirolab.com.au                            |                  |                    |                                                         |
| ampler: Sean Spar        | rrow                                                                  |              |                 |                      |                                                        | lab Que<br>esults r                           |                    |          |             |          |             |            |                                                                                                        | `        | 03 97             | 53 ZOU              | ווו בשן ע                                                  | einon            | mewe               | ilvirolab.com.au                                        |
| Address:                 | Level 4, 211 Victoria Squ                                             | are, Adelaid | e 5000          | •                    | Or cho                                                 | ose; s                                        | ·<br>tandaro       | d / sam  |             |          | 2 day / 3 o |            | surchar                                                                                                | ges 7    | a The I<br>08 70  | Parade,<br>87 6800  | <u>e</u> - Envi:<br>, Norwo<br>0   ⊠ ac<br><u>e</u> - Envi | od, Sa<br>delaid | A 5067<br>le@env   | virolab.com.au                                          |
| hone:                    |                                                                       | Mob:         | 0498 260 626    | <u> </u>             | Additio                                                | onal rep                                      | ort for            | mat: e   | sdat / ed   | uis /    |             |            |                                                                                                        | 2        | 0a, 10-           | 20 Dep              | ot St, B                                                   | anyo,            | , QLD 4            | 4014                                                    |
| imail:                   | GHDLabReports@ghd.co<br>sean.sparrow@ghd.com<br>dilara.valiff@ghd.com | <u>m</u>     |                 |                      | Lab Co                                                 | ommen                                         | ts:                |          |             | ٠        |             |            |                                                                                                        | <br>     | arwin<br>Init 20/ | Office -            | - Enviro                                                   | lab So<br>Road   | ervices<br>I, Winn | virolab.com.au<br>s<br>nellie, NT 0820<br>rolab.com.au  |
|                          | Sample infor                                                          | mation 🗓 🗼   | . 450 E Barrie  |                      | J.es                                                   | 44                                            |                    | , , ,    | . ·š        |          | Tests I     | Requir     | ed                                                                                                     |          | ·, .              | ** .                | . ec                                                       |                  | F. S.              | Comments                                                |
| Envirolab Sample<br>ID   | Client Sample ID or<br>information                                    | Depth        | Date<br>sampled | Type of sample       | PFAS full suite (standard LOR)                         |                                               |                    |          |             |          |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    | Provide as much information about the sample as you can |
| 1                        | Tank1                                                                 |              | 28/10/2020      | <u>water</u>         | Х                                                      |                                               |                    |          |             |          |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    |                                                         |
| 2                        | Tank2                                                                 |              | 28/10/2020      | water                | Х                                                      |                                               |                    |          |             | •        |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    |                                                         |
| 3                        | Tank3                                                                 |              | 28/10/2020      | <u>water</u>         | х                                                      |                                               |                    |          |             |          |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    |                                                         |
| Ý                        | Tank4                                                                 |              | 28/10/2020      | <u>water</u>         | х                                                      |                                               |                    |          |             |          |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    |                                                         |
| 7                        | Tank5                                                                 |              | 28/10/2020      | <u>water</u>         | х                                                      |                                               |                    |          |             |          |             |            |                                                                                                        |          |                   | $\neg$              |                                                            |                  | $\Box$             |                                                         |
| 6                        | Tank6                                                                 |              | 28/10/2020      | <u>water</u>         | х                                                      |                                               |                    |          |             |          |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    |                                                         |
| 7                        | Tank7                                                                 | _            | 28/10/2020      | <u>water</u>         | х                                                      | 1                                             |                    | _        |             |          |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    |                                                         |
| 8                        | QC38                                                                  |              | 28/10/2020      | water                | x                                                      | `                                             |                    |          |             |          |             |            |                                                                                                        |          |                   | 1                   |                                                            |                  | $\neg$             |                                                         |
|                          | QC38A                                                                 | , ,          | 28/10/2020      | water                | x                                                      |                                               |                    |          | ļ           |          |             |            |                                                                                                        |          | $\neg$            | 1                   |                                                            |                  | P                  | Please forward to ALS                                   |
| 9                        | FB13                                                                  |              | 28/10/2020      | water                | х                                                      | ,                                             |                    |          |             |          |             |            |                                                                                                        |          |                   |                     |                                                            | $\top$           |                    |                                                         |
| 10                       | RB13                                                                  |              | 28/10/2020      | <u>water</u>         | Х                                                      | i                                             |                    |          |             | •        |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    |                                                         |
|                          |                                                                       |              |                 |                      | <u> </u>                                               | <u>L.                                    </u> |                    |          |             |          |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    |                                                         |
|                          | Please tick the box if observed                                       | settled sedi | iment presen    | t in water samples i | s to be                                                |                                               | d in the           | extrac   | tion and    | d/or ar  | nalysis     |            |                                                                                                        |          | 557 w             |                     | - 1.0                                                      | - Jan            |                    | <u> </u>                                                |
| Relinquished by (C       | ompany):                                                              |              | _               | Received by (Comp    | pany):                                                 | ELD                                           | <u> Allè</u>       | <u>U</u> | <u> Α1Α</u> |          | , jet       |            |                                                                                                        |          | <u>-2</u>         | Lab U               | lse Only                                                   | 1                |                    |                                                         |
| Print Name:              |                                                                       |              |                 | Print Name:          |                                                        | ·                                             | <del>_ T / '</del> | MA       |             |          | Job num     | ber:       |                                                                                                        | 578      |                   |                     |                                                            | $\overline{}$    | $\overline{}$      | None                                                    |
| Date & Time:             |                                                                       |              | _ ,             | Date & Time:         | j                                                      |                                               | 911                | <u> </u> | 8/1         | <u>ر</u> | Tempera     |            |                                                                                                        | 7-9      |                   |                     |                                                            | eali             | ntact / l          | Broken / None                                           |
| Signature:               |                                                                       |              |                 | Signature:           |                                                        |                                               |                    | -        | <u> </u>    |          | TAT Req     | - SAN      | E day                                                                                                  | 11/2     | 3. / 4            | / STD               | <u> </u>                                                   |                  |                    |                                                         |
|                          |                                                                       |              |                 |                      |                                                        |                                               |                    |          |             |          |             |            |                                                                                                        |          |                   |                     |                                                            |                  |                    |                                                         |

**ENVIROLAB GROUP** 

National phone number 1300 424 344



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

### **CERTIFICATE OF ANALYSIS 254518**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Sean Sparrow, Dilara Valiff      |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                 |
|--------------------------------------|-----------------|
| Your Reference                       | <u>12516828</u> |
| Number of Samples                    | 10 Water        |
| Date samples received                | 29/10/2020      |
| Date completed instructions received | 29/10/2020      |

### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                     |                                                                                       |  |  |  |  |  |  |  |
|------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Date results requested by          | 05/11/2020                                                                            |  |  |  |  |  |  |  |
| Date of Issue                      | 02/11/2020                                                                            |  |  |  |  |  |  |  |
| NATA Accreditation Number 2901.    | NATA Accreditation Number 2901. This document shall not be reproduced except in full. |  |  |  |  |  |  |  |
| Accredited for compliance with ISO | /IEC 17025 - Testing. Tests not covered by NATA are denoted with *                    |  |  |  |  |  |  |  |

Results Approved By

Alexander Mitchell Maclean, Senior Chemist

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Waters Extended                     |       |            |            |            |            |            |
|---------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                               |       | 254518-1   | 254518-2   | 254518-3   | 254518-4   | 254518-5   |
| Your Reference                              | UNITS | Tank-1     | Tank-2     | Tank-3     | Tank-4     | Tank-5     |
| Date Sampled                                |       | 28/10/2020 | 28/10/2020 | 28/10/2020 | 28/10/2020 | 28/10/2020 |
| Type of sample                              |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                               | -     | 30/10/2020 | 30/10/2020 | 30/10/2020 | 30/10/2020 | 30/10/2020 |
| Date analysed                               | -     | 30/10/2020 | 30/10/2020 | 30/10/2020 | 30/10/2020 | 30/10/2020 |
| Perfluorobutanesulfonic acid                | μg/L  | 0.02       | 0.02       | 0.02       | 0.01       | 0.02       |
| Perfluoropentanesulfonic acid               | μg/L  | 0.01       | 0.01       | 0.01       | <0.01      | 0.02       |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.08       | 0.09       | 0.08       | 0.07       | 0.09       |
| Perfluoroheptanesulfonic acid               | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.41       | 0.36       | 0.34       | 0.25       | 0.36       |
| Perfluorodecanesulfonic acid                | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluorobutanoic acid                      | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluoropentanoic acid                     | μg/L  | <0.02      | 0.02       | <0.02      | <0.02      | 0.02       |
| Perfluorohexanoic acid                      | μg/L  | 0.05       | 0.06       | 0.05       | 0.04       | 0.06       |
| Perfluoroheptanoic acid                     | μg/L  | <0.01      | 0.01       | <0.01      | 0.01       | 0.01       |
| Perfluorooctanoic acid PFOA                 | μg/L  | 0.02       | 0.02       | 0.02       | 0.01       | 0.02       |
| Perfluorononanoic acid                      | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorodecanoic acid                      | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluoroundecanoic acid                    | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluorododecanoic acid                    | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Perfluorotridecanoic acid                   | μg/L  | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Perfluorotetradecanoic acid                 | μg/L  | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| 4:2 FTS                                     | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                     | μg/L  | 0.02       | 0.02       | 0.01       | <0.01      | 0.01       |
| 8:2 FTS                                     | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| 10:2 FTS                                    | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluorooctane sulfonamide                 | μg/L  | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| N-Methyl perfluorooctane sulfonamide        | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| N-Ethyl perfluorooctanesulfon amide         | μg/L  | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L  | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 98         | 101        | 99         | 104        | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 93         | 96         | 98         | 95         | 97         |
| Extracted ISTD 13 C3 PFBS                   | %     | 95         | 98         | 96         | 97         | 98         |
| Extracted ISTD 18 O2 PFHxS                  | %     | 107        | 110        | 105        | 109        | 109        |
| Extracted ISTD 13 C4 PFOS                   | %     | 107        | 103        | 105        | 105        | 105        |
| Extracted ISTD 13 C <sub>4</sub> PFBA       | %     | 87         | 85         | 83         | 74         | 74         |

| PFAS in Waters Extended                            |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 254518-1   | 254518-2   | 254518-3   | 254518-4   | 254518-5   |
| Your Reference                                     | UNITS | Tank-1     | Tank-2     | Tank-3     | Tank-4     | Tank-5     |
| Date Sampled                                       |       | 28/10/2020 | 28/10/2020 | 28/10/2020 | 28/10/2020 | 28/10/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Extracted ISTD 13 C3 PFPeA                         | %     | 97         | 96         | 96         | 94         | 94         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFHxA  | %     | 112        | 111        | 108        | 109        | 110        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %     | 111        | 112        | 113        | 110        | 114        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 110        | 108        | 105        | 107        | 106        |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %     | 105        | 107        | 101        | 102        | 104        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDA   | %     | 126        | 124        | 118        | 121        | 124        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %     | 121        | 133        | 130        | 123        | 121        |
| Extracted ISTD 13 C <sub>2</sub> PFDoDA            | %     | 89         | 99         | 106        | 116        | 108        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %     | 97         | 76         | 90         | 112        | 107        |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS            | %     | 145        | 135        | 134        | 141        | 133        |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS            | %     | 153        | 139        | 145        | 146        | 139        |
| Extracted ISTD 13 C2 8:2FTS                        | %     | 181        | 161        | 141        | 162        | 150        |
| Extracted ISTD 13 C8 FOSA                          | %     | 110        | 110        | 112        | 106        | 108        |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %     | 76         | 89         | 92         | 108        | 113        |
| Extracted ISTD d <sub>5</sub> N EtFOSA             | %     | 95         | 100        | 101        | 115        | 119        |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %     | 88         | 95         | 97         | 112        | 121        |
| Extracted ISTD d <sub>9</sub> N EtFOSE             | %     | 92         | 92         | 94         | 103        | 108        |
| Extracted ISTD d <sub>3</sub> N MeFOSAA            | %     | 149        | 135        | 135        | 108        | 107        |
| Extracted ISTD d₅ N EtFOSAA                        | %     | 108        | 113        | 113        | 95         | 96         |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.49       | 0.46       | 0.42       | 0.32       | 0.45       |
| Total Positive PFOA & PFOS                         | μg/L  | 0.43       | 0.38       | 0.36       | 0.26       | 0.37       |
| Total Positive PFAS                                | μg/L  | 0.61       | 0.62       | 0.53       | 0.39       | 0.61       |

| PFAS in Waters Extended                     |       |            |            |            |            |            |
|---------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                               |       | 254518-6   | 254518-7   | 254518-8   | 254518-9   | 254518-10  |
| Your Reference                              | UNITS | Tank-6     | Tank-7     | QC38       | FB13       | RB13       |
| Date Sampled                                |       | 28/10/2020 | 28/10/2020 | 28/10/2020 | 28/10/2020 | 28/10/2020 |
| Type of sample                              |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                               | -     | 30/10/2020 | 30/10/2020 | 30/10/2020 | 30/10/2020 | 30/10/2020 |
| Date analysed                               | -     | 30/10/2020 | 30/10/2020 | 30/10/2020 | 30/10/2020 | 30/10/2020 |
| Perfluorobutanesulfonic acid                | μg/L  | 0.02       | 0.02       | 0.02       | <0.01      | <0.01      |
| Perfluoropentanesulfonic acid               | μg/L  | 0.01       | 0.01       | 0.01       | <0.01      | <0.01      |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.08       | 0.07       | 0.09       | <0.01      | <0.01      |
| Perfluoroheptanesulfonic acid               | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.32       | 0.28       | 0.35       | <0.01      | <0.01      |
| Perfluorodecanesulfonic acid                | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluorobutanoic acid                      | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluoropentanoic acid                     | μg/L  | 0.02       | <0.02      | 0.02       | <0.02      | <0.02      |
| Perfluorohexanoic acid                      | μg/L  | 0.05       | 0.05       | 0.06       | <0.01      | <0.01      |
| Perfluoroheptanoic acid                     | μg/L  | 0.01       | <0.01      | 0.01       | <0.01      | <0.01      |
| Perfluorooctanoic acid PFOA                 | μg/L  | 0.02       | 0.02       | 0.02       | <0.01      | <0.01      |
| Perfluorononanoic acid                      | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| Perfluorodecanoic acid                      | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluoroundecanoic acid                    | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluorododecanoic acid                    | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Perfluorotridecanoic acid                   | μg/L  | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Perfluorotetradecanoic acid                 | μg/L  | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| 4:2 FTS                                     | μg/L  | <0.01      | <0.01      | <0.01      | <0.01      | <0.01      |
| 6:2 FTS                                     | μg/L  | 0.01       | 0.01       | 0.01       | <0.01      | <0.01      |
| 8:2 FTS                                     | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| 10:2 FTS                                    | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Perfluorooctane sulfonamide                 | μg/L  | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| N-Methyl perfluorooctane sulfonamide        | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| N-Ethyl perfluorooctanesulfon amide         | μg/L  | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| N-Et perfluorooctanesulfonamid oethanol     | μg/L  | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L  | <0.02      | <0.02      | <0.02      | <0.02      | <0.02      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 100        | 101        | 99         | 103        | 101        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 96         | 96         | 98         | 98         | 99         |
| Extracted ISTD 13 C3 PFBS                   | %     | 93         | 102        | 97         | 96         | 103        |
| Extracted ISTD 18 O2 PFHxS                  | %     | 107        | 109        | 113        | 109        | 113        |
| Extracted ISTD 13 C4 PFOS                   | %     | 106        | 107        | 103        | 108        | 110        |
| Extracted ISTD 13 C <sub>4</sub> PFBA       | %     | 74         | 80         | 74         | 103        | 107        |

| PFAS in Waters Extended                 |       |            |            |            |            |            |
|-----------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                           |       | 254518-6   | 254518-7   | 254518-8   | 254518-9   | 254518-10  |
| Your Reference                          | UNITS | Tank-6     | Tank-7     | QC38       | FB13       | RB13       |
| Date Sampled                            |       | 28/10/2020 | 28/10/2020 | 28/10/2020 | 28/10/2020 | 28/10/2020 |
| Type of sample                          |       | Water      | Water      | Water      | Water      | Water      |
| Extracted ISTD 13 C3 PFPeA              | %     | 93         | 97         | 93         | 102        | 107        |
| Extracted ISTD 13 C <sub>2</sub> PFHxA  | %     | 108        | 114        | 109        | 114        | 113        |
| Extracted ISTD 13 C <sub>4</sub> PFHpA  | %     | 111        | 118        | 113        | 112        | 114        |
| Extracted ISTD 13 C <sub>4</sub> PFOA   | %     | 106        | 110        | 106        | 107        | 111        |
| Extracted ISTD 13 C <sub>5</sub> PFNA   | %     | 102        | 105        | 102        | 108        | 115        |
| Extracted ISTD 13 C2 PFDA               | %     | 118        | 118        | 119        | 122        | 123        |
| Extracted ISTD 13 C2 PFUnDA             | %     | 117        | 106        | 123        | 121        | 120        |
| Extracted ISTD 13 C2 PFDoDA             | %     | 110        | 90         | 104        | 111        | 104        |
| Extracted ISTD 13 C2 PFTeDA             | %     | 111        | 74         | 70         | 70         | 71         |
| Extracted ISTD 13 C <sub>2</sub> 4:2FTS | %     | 133        | 141        | 137        | 111        | 115        |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS | %     | 138        | 145        | 147        | 124        | 137        |
| Extracted ISTD 13 C2 8:2FTS             | %     | 157        | 138        | 155        | 125        | 137        |
| Extracted ISTD 13 C8 FOSA               | %     | 104        | 105        | 107        | 105        | 105        |
| Extracted ISTD d <sub>3</sub> N MeFOSA  | %     | 110        | 97         | 101        | 103        | 93         |
| Extracted ISTD d₅ N EtFOSA              | %     | 117        | 97         | 100        | 101        | 90         |
| Extracted ISTD d <sub>7</sub> N MeFOSE  | %     | 117        | 97         | 105        | 96         | 103        |
| Extracted ISTD d <sub>9</sub> N EtFOSE  | %     | 107        | 87         | 96         | 90         | 93         |
| Extracted ISTD d <sub>3</sub> N MeFOSAA | %     | 105        | 103        | 112        | 123        | 125        |
| Extracted ISTD d₅ N EtFOSAA             | %     | 96         | 91         | 95         | 112        | 114        |
| Total Positive PFHxS & PFOS             | μg/L  | 0.41       | 0.36       | 0.44       | <0.01      | <0.01      |
| Total Positive PFOA & PFOS              | μg/L  | 0.34       | 0.30       | 0.37       | <0.01      | <0.01      |
| Total Positive PFAS                     | μg/L  | 0.55       | 0.47       | 0.59       | <0.01      | <0.01      |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.                                                                                                                                                                                                                                                                                                                                                                                 |
|           | Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY CON                                 | ITROL: PFA | S in Wate | ers Extended |            |   | Du         | plicate    |     | Spike Re   | covery % |
|---------------------------------------------|------------|-----------|--------------|------------|---|------------|------------|-----|------------|----------|
| Test Description                            | Units      | PQL       | Method       | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | [NT]     |
| Date prepared                               | -          |           |              | 30/10/2020 | 1 | 30/10/2020 | 30/10/2020 |     | 30/10/2020 |          |
| Date analysed                               | -          |           |              | 30/10/2020 | 1 | 30/10/2020 | 30/10/2020 |     | 30/10/2020 |          |
| Perfluorobutanesulfonic acid                | μg/L       | 0.01      | Org-029      | <0.01      | 1 | 0.02       | 0.02       | 0   | 98         |          |
| Perfluoropentanesulfonic acid               | μg/L       | 0.01      | Org-029      | <0.01      | 1 | 0.01       | 0.01       | 0   | 94         |          |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L       | 0.01      | Org-029      | <0.01      | 1 | 0.08       | 0.08       | 0   | 96         |          |
| Perfluoroheptanesulfonic acid               | μg/L       | 0.01      | Org-029      | <0.01      | 1 | <0.01      | <0.01      | 0   | 98         |          |
| Perfluorooctanesulfonic acid PFOS           | μg/L       | 0.01      | Org-029      | <0.01      | 1 | 0.41       | 0.40       | 2   | 91         |          |
| Perfluorodecanesulfonic acid                | μg/L       | 0.02      | Org-029      | <0.02      | 1 | <0.02      | <0.02      | 0   | 99         |          |
| Perfluorobutanoic acid                      | μg/L       | 0.02      | Org-029      | <0.02      | 1 | <0.02      | <0.02      | 0   | 98         |          |
| Perfluoropentanoic acid                     | μg/L       | 0.02      | Org-029      | <0.02      | 1 | <0.02      | <0.02      | 0   | 102        |          |
| Perfluorohexanoic acid                      | μg/L       | 0.01      | Org-029      | <0.01      | 1 | 0.05       | 0.04       | 22  | 95         |          |
| Perfluoroheptanoic acid                     | μg/L       | 0.01      | Org-029      | <0.01      | 1 | <0.01      | <0.01      | 0   | 98         |          |
| Perfluorooctanoic acid PFOA                 | μg/L       | 0.01      | Org-029      | <0.01      | 1 | 0.02       | 0.02       | 0   | 98         |          |
| Perfluorononanoic acid                      | μg/L       | 0.01      | Org-029      | <0.01      | 1 | <0.01      | <0.01      | 0   | 95         |          |
| Perfluorodecanoic acid                      | μg/L       | 0.02      | Org-029      | <0.02      | 1 | <0.02      | <0.02      | 0   | 102        |          |
| Perfluoroundecanoic acid                    | μg/L       | 0.02      | Org-029      | <0.02      | 1 | <0.02      | <0.02      | 0   | 102        |          |
| Perfluorododecanoic acid                    | μg/L       | 0.05      | Org-029      | <0.05      | 1 | <0.05      | <0.05      | 0   | 100        |          |
| Perfluorotridecanoic acid                   | μg/L       | 0.1       | Org-029      | <0.1       | 1 | <0.1       | <0.1       | 0   | 101        |          |
| Perfluorotetradecanoic acid                 | μg/L       | 0.5       | Org-029      | <0.5       | 1 | <0.5       | <0.5       | 0   | 102        |          |
| 1:2 FTS                                     | μg/L       | 0.01      | Org-029      | <0.01      | 1 | <0.01      | <0.01      | 0   | 96         |          |
| 3:2 FTS                                     | μg/L       | 0.01      | Org-029      | <0.01      | 1 | 0.02       | 0.02       | 0   | 109        |          |
| 3:2 FTS                                     | μg/L       | 0.02      | Org-029      | <0.02      | 1 | <0.02      | 0.02       | 0   | 98         |          |
| 0:2 FTS                                     | μg/L       | 0.02      | Org-029      | <0.02      | 1 | <0.02      | <0.02      | 0   | 76         |          |
| Perfluorooctane sulfonamide                 | μg/L       | 0.1       | Org-029      | <0.1       | 1 | <0.1       | <0.1       | 0   | 106        |          |
| I-Methyl perfluorooctane sulfonamide        | μg/L       | 0.05      | Org-029      | <0.05      | 1 | <0.05      | <0.05      | 0   | 107        |          |
| I-Ethyl perfluorooctanesulfon amide         | μg/L       | 0.1       | Org-029      | <0.1       | 1 | <0.1       | <0.1       | 0   | 102        |          |
| N-Me perfluorooctanesulfonamid oethanol     | μg/L       | 0.05      | Org-029      | <0.05      | 1 | <0.05      | <0.05      | 0   | 102        |          |
| I-Et perfluorooctanesulfonamid oethanol     | μg/L       | 0.5       | Org-029      | <0.5       | 1 | <0.5       | <0.5       | 0   | 104        |          |
| MePerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.02      | Org-029      | <0.02      | 1 | <0.02      | <0.02      | 0   | 99         |          |
| EtPerfluorooctanesulf- amid oacetic acid    | μg/L       | 0.02      | Org-029      | <0.02      | 1 | <0.02      | <0.02      | 0   | 102        |          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %          |           | Org-029      | 89         | 1 | 98         | 96         | 2   | 97         |          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %          |           | Org-029      | 98         | 1 | 93         | 94         | 1   | 98         |          |

| QUALITY CO                                         | NTROL: PFA | S in Wate | ers Extended |       |   | Du   | plicate |     | Spike Re | covery % |
|----------------------------------------------------|------------|-----------|--------------|-------|---|------|---------|-----|----------|----------|
| Test Description                                   | Units      | PQL       | Method       | Blank | # | Base | Dup.    | RPD | LCS-W1   | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFBS   | %          |           | Org-029      | 94    | 1 | 95   | 99      | 4   | 100      | [NT]     |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029      | 100   | 1 | 107  | 114     | 6   | 106      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029      | 107   | 1 | 107  | 108     | 1   | 106      | [NT]     |
| Extracted ISTD 13 C <sub>4</sub> PFBA              | %          |           | Org-029      | 100   | 1 | 87   | 87      | 0   | 101      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>3</sub> PFPeA  | %          |           | Org-029      | 99    | 1 | 97   | 99      | 2   | 100      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFHxA  | %          |           | Org-029      | 108   | 1 | 112  | 117     | 4   | 108      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFHpA  | %          |           | Org-029      | 105   | 1 | 111  | 113     | 2   | 106      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |           | Org-029      | 104   | 1 | 110  | 111     | 1   | 103      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>5</sub> PFNA   | %          |           | Org-029      | 103   | 1 | 105  | 109     | 4   | 104      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDA   | %          |           | Org-029      | 117   | 1 | 126  | 128     | 2   | 115      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFUnDA | %          |           | Org-029      | 110   | 1 | 121  | 121     | 0   | 112      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFDoDA | %          |           | Org-029      | 106   | 1 | 89   | 78      | 13  | 110      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> PFTeDA | %          |           | Org-029      | 73    | 1 | 97   | 65      | 40  | 127      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 4:2FTS | %          |           | Org-029      | 110   | 1 | 145  | 148     | 2   | 105      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029      | 114   | 1 | 153  | 157     | 3   | 108      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029      | 127   | 1 | 181  | 173     | 5   | 136      | [NT]     |
| Extracted ISTD <sup>13</sup> C <sub>8</sub> FOSA   | %          |           | Org-029      | 105   | 1 | 110  | 108     | 2   | 103      | [NT]     |
| Extracted ISTD d <sub>3</sub> N MeFOSA             | %          |           | Org-029      | 96    | 1 | 76   | 77      | 1   | 108      | [NT]     |
| Extracted ISTD d <sub>5</sub> N EtFOSA             | %          |           | Org-029      | 90    | 1 | 95   | 96      | 1   | 110      | [NT]     |
| Extracted ISTD d <sub>7</sub> N MeFOSE             | %          |           | Org-029      | 97    | 1 | 88   | 82      | 7   | 104      | [NT]     |

| QUALITY CON                             | NTROL: PFA | S in Wate | ers Extended |       |   | Du   | olicate |     | Spike Recovery % |      |  |
|-----------------------------------------|------------|-----------|--------------|-------|---|------|---------|-----|------------------|------|--|
| Test Description                        | Units      | PQL       | Method       | Blank | # | Base | Dup.    | RPD | LCS-W1           | [NT] |  |
| Extracted ISTD d <sub>9</sub> N EtFOSE  | %          |           | Org-029      | 89    | 1 | 92   | 87      | 6   | 103              | [NT] |  |
| Extracted ISTD d <sub>3</sub> N MeFOSAA | %          |           | Org-029      | 113   | 1 | 149  | 150     | 1   | 116              | [NT] |  |
| Extracted ISTD d₅ N EtFOSAA             | %          |           | Org-029      | 103   | 1 | 108  | 107     | 1   | 109              | [NT] |  |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 254518 Page | 11 of 12 Revision No: R00

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 254518 Page | 12 of 12

Revision No: R00

| ENVÎROLAB | ENVIROLAB |
|-----------|-----------|
| GROUP     | @mpl      |

# **CHAIN OF CUSTODY FORM - Client**

| [Copyright and Confid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lential]                                                                                                        |               |                    |                                                              | :                              |          |                     |          |              |            |              |          |                  |              |                  |                                                                                          | y St, Cha<br>0 6200 |                     |                                                                                                                    | / 2067<br>nvirolab.com.au                          |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|--------------------|--------------------------------------------------------------|--------------------------------|----------|---------------------|----------|--------------|------------|--------------|----------|------------------|--------------|------------------|------------------------------------------------------------------------------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------|
| Olivert OUR RELIEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | ****          |                    |                                                              | ·                              |          |                     |          | <u></u>      |            | -            |          |                  | · · ·        |                  |                                                                                          | b - MPL             |                     |                                                                                                                    | CAEA                                               |          |
| Client: GHD Pty Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |               |                    |                                                              | Client                         | Projec   | t Name              | /Numb    |              |            | report       | title):  |                  |              | 3)               | 08 931                                                                                   | yden Crt<br>7 2505  | ., wiyare<br>⊠ lab@ | e, wa<br>gmpl.c                                                                                                    | om.au                                              |          |
| Contact Person: Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |               | <del></del>        |                                                              | <b> </b>                       |          |                     |          | 125          | 16828      |              |          |                  |              | - М              | elbourr                                                                                  | ne Lab - I          | Envirol             | ab Ser                                                                                                             | vices                                              |          |
| Project Mgr: Dilara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |               |                    | <del></del>                                                  |                                | o.: 1251 |                     |          |              |            | •            |          |                  |              | 25               | 25 Research Drive, Croydon South, VIC 3136 © 03 9763 2500   🖾 melbourne@envirolab.com.au |                     |                     |                                                                                                                    |                                                    |          |
| Sampler: Sean Spa<br>Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rrow                                                                                                            | <del></del>   |                    |                                                              |                                |          | require             |          |              |            |              |          |                  |              | - I (2)          | 03 976                                                                                   | 3 2500              | ksi meir            | ourne                                                                                                              | @envirolab.com.au                                  |          |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level 4, 244 Westerle Co.                                                                                       |               |                    |                                                              | l                              |          |                     |          |              |            |              | ,        |                  |              |                  |                                                                                          | Office -            |                     |                                                                                                                    |                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Level 4, 211 Victoria Squ                                                                                       | uare, Agelaid | 1e 5000            |                                                              |                                |          | standar<br>ab in ad |          |              | •          |              | •        |                  | rhame        | ന                |                                                                                          |                     |                     |                                                                                                                    | envirolab.com.au                                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |                    |                                                              | apply                          |          |                     | runce i  | i urgen      | t turra    |              | rogune   | - G - GUI        | craige       |                  | risbane                                                                                  | Office -            | Enviro              | lab Ser                                                                                                            | vices                                              |          |
| Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01151 15                                                                                                        | Mob:          | 0498 260 62        | 16                                                           |                                |          | port for            | mat: e   | sdat /       | equis /    | ·            |          |                  |              | 20               | a, 10-2                                                                                  | 0 Depot             | St, Ban             | yo, QL                                                                                                             |                                                    |          |
| Emaîl:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GHDLabReports@ghd.com<br>sean.sparrow@ghd.com                                                                   | <u>om</u>     |                    |                                                              | Lab C                          | ommer    | nts:                |          |              |            |              |          |                  |              | $\prod^{\omega}$ | U/ 320                                                                                   | ) 3002   1          | ZS Drist            | ane@                                                                                                               | enviroiab.com.au                                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dilara.valiff@ghd.com                                                                                           | •             | •                  |                                                              |                                |          |                     |          |              |            |              |          |                  |              | Da<br>U          | arwin O                                                                                  | <u>ffice</u> - Er   | nvirolat            | Servi                                                                                                              | ces<br>'innellie, NT 0820                          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               |                    |                                                              |                                |          |                     |          |              |            |              |          |                  |              | 9                | 08 8967                                                                                  | / 1201              | ⊠ darw              | /in@en                                                                                                             | virolab.com.au                                     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample info                                                                                                     | rmation       |                    |                                                              |                                |          |                     |          |              |            |              | sts Rec  |                  |              | unio e           |                                                                                          |                     | JP2-55-20           | Jetensky)                                                                                                          | 7.7 宋 4 7. 温馨 PROME TO SHE                         |          |
| Manage de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya | ) Casa (mga ilia - rationalisis kentera untarradisis ( mm ta - mm ta - mm ta - mm ta - mm ta - mm ta - mm t<br> |               | 7 (1984) S. (1984) | College 14 1 12 20 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | e s                            |          |                     |          |              | Michigans, | 19949000     | ses iver | T                | SEC. (1983)  |                  | Tr. Is a property of the                                                                 |                     | TOWN TOWN TOWN      | Annu redenial helitalist<br>read reproduce intellige<br>despris de la financial del<br>despris de la financial del | Comments                                           | Parties. |
| Envirolab Sample<br>ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Client Sample ID or information                                                                                 | Depth         | Date<br>sampled    | Type of sample                                               | PFAS full suite (standard LOR) |          |                     |          |              |            |              |          |                  |              |                  |                                                                                          |                     |                     |                                                                                                                    | Provide as mu<br>information abou<br>sample as you | ut the   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tank1                                                                                                           |               | 28/10/2020         |                                                              | 1                              | <u> </u> |                     |          | ["           |            | —            | En       | viron            |              | _                | ı                                                                                        | 1 .                 |                     | ļ                                                                                                                  |                                                    |          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tank2                                                                                                           |               | <del> </del>       | water                                                        | X                              |          |                     |          |              |            | ₩            | Svo      | dnev             | ment         | al Di            | vision                                                                                   |                     | <u> </u>            | <b> </b>                                                                                                           |                                                    |          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tank3                                                                                                           |               | 28/10/2020         | water                                                        | Х                              |          |                     |          |              | <u> </u>   | <del> </del> | Ţ,       | Vork (           | Order f      | Refere           | nca                                                                                      |                     | 4'                  | <u> </u>                                                                                                           |                                                    |          |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tank4                                                                                                           | <del> </del>  | 28/10/2020         | <u>water</u>                                                 | Х                              |          |                     |          |              | ļ          | —            | ı        | ES,              | 200          | 382              | vision<br>nce<br>209                                                                     | 1                   |                     | <u> </u>                                                                                                           | j.                                                 |          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tank5                                                                                                           |               | 28/10/2020         | <u>water</u>                                                 | Х                              |          |                     |          |              |            | —            | _        |                  | - 1          |                  | -00                                                                                      | ļ                   | <u> </u>            |                                                                                                                    |                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tank6                                                                                                           | <u> </u>      | 28/10/2020         | <u>water</u>                                                 | Х                              |          |                     |          |              | ļ          | ₽            |          |                  | 7.11         | 111              |                                                                                          | -                   | <u> </u>            | <u> </u>                                                                                                           |                                                    |          |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tank7                                                                                                           | 1             | 28/10/2020         | <u>water</u>                                                 | Х                              |          |                     |          |              | ļ          | $\perp$      |          |                  |              | M                |                                                                                          |                     |                     | <u> </u>                                                                                                           |                                                    |          |
| <u>}</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |               | 28/10/2020         | <u>water</u>                                                 | X                              |          |                     |          |              |            |              |          |                  | 5/12         |                  |                                                                                          | <u>:</u>            |                     |                                                                                                                    |                                                    |          |
| _ ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QC38                                                                                                            |               | 28/10/2020         | <u>water</u>                                                 | Х                              | ·        |                     |          |              | ļ          | <u> </u>     | -        | III <b>₩</b> , ₹ | ,[ ]         | 1                |                                                                                          | _                   |                     |                                                                                                                    |                                                    |          |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QC38A                                                                                                           |               | 28/10/2020         | water                                                        | X                              |          |                     |          |              |            | $\perp$      | Telepho  | ne: +6           | 31-2-8784    | 8555             | ,                                                                                        |                     |                     | <u> </u>                                                                                                           | Please forward to ALS                              | 3        |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FB13                                                                                                            | <del></del>   | 28/10/2020         | <u>water</u>                                                 | Х                              |          |                     |          | !            |            |              |          |                  |              |                  |                                                                                          |                     |                     | <u> </u>                                                                                                           |                                                    |          |
| (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB13                                                                                                            | <del> </del>  | 28/10/2020         | <u>water</u>                                                 | Х                              |          |                     |          |              | _          | <u> </u>     | <u> </u> |                  |              |                  |                                                                                          |                     |                     | Ĺ                                                                                                                  |                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>A</b>                                                                                                        | <u> </u>      | <u> </u>           |                                                              |                                |          |                     |          |              |            | <u> </u>     |          |                  |              | <u> </u>         |                                                                                          |                     |                     |                                                                                                                    |                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Please tick the box if observed                                                                                 | settled sedi  | ment present       |                                                              |                                | 1,7      | in the              | extract  | tion an      | d/or ar    | nalysis      |          |                  |              |                  |                                                                                          |                     |                     |                                                                                                                    |                                                    |          |
| Relinquished by (Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3, <u>0,70</u> 3,700                                                                                            | <del></del>   |                    | Received by (Compa                                           | any):                          | 47       | <u> </u>            | <u> </u> | <del> </del> |            |              |          | hii .            |              |                  | L                                                                                        | ab Use (            | Only                |                                                                                                                    |                                                    |          |
| Print Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C-Wallenso                                                                                                      | ,55           |                    | Print Name:                                                  |                                |          | 9 9                 | MAC      | <u>w</u>     |            | Job n        | umber:   | 76               | <u> </u>     | 18               |                                                                                          | Coolin              | ıg: lqe/            | lce pa                                                                                                             | ck / None                                          |          |
| Date & Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del></del>                                                                                                     |               |                    | Date & Time:                                                 |                                | 1        | 9110                | <u> </u> | 811          | <u>Ų</u>   | Temp         | erature  | :                | <u>  Q -</u> | 9                |                                                                                          | Securi              | ity seak            | Intact                                                                                                             | / Broken / None                                    |          |
| Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | <u> </u>      |                    | Signature:                                                   |                                |          | -                   | 1        | <u> </u>     | <u>/</u> り | TAT R        | eq - SA  | ME da            | y / 1        | 1213             | . 141                                                                                    | STD                 |                     |                                                                                                                    |                                                    |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |               | 9.                 | 5°C SUST                                                     | in,                            | 29/1     | 0/20                | -        | tpm          |            |              |          |                  |              |                  |                                                                                          |                     |                     |                                                                                                                    |                                                    |          |

**ENVIROLAB GROUP** 

National phone number 1300 424 344

<u>Sydney Lab</u> - Envirolab Services



### **CERTIFICATE OF ANALYSIS**

Work Order : ES2038209

2038209 Page : 1 of 5

Client : GHD PTY LTD

Contact : DILARA VALIFF

Contact : DILARA VALIFF Contact : Angus Harding

Address : LEVEL 15, 133 CASTLEREAGH STREET Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW, AUSTRALIA 2000

 Telephone
 : +61 08 8111 6600
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 29-Oct-2020 19:00

Order number : 12516828 Date Analysis Commenced : 04-Nov-2020

C-O-C number : ---- Issue Date : 05-Nov-2020 09:23

Sampler : SEAN SPARROW

Site :

Quote number : EN/005

No. of samples received : 1
No. of samples analysed : 1

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

: Environmental Division Sydney

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW

 Page
 : 2 of 5

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DDD) requirements.

 Page
 : 3 of 5

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)                |            | Clie        | ent sample ID  | QC38A             | <br> | <br> |
|--------------------------------------------------|------------|-------------|----------------|-------------------|------|------|
| (WAILK)                                          | CI         | ient sampli | ng date / time | 28-Oct-2020 00:00 | <br> | <br> |
| Compound                                         | CAS Number | LOR         | Unit           | ES2038209-001     | <br> | <br> |
|                                                  |            |             |                | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids            |            |             |                |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)             | 375-73-5   | 0.02        | μg/L           | <0.02             | <br> | <br> |
| Perfluoropentane sulfonic acid (PFPeS)           | 2706-91-4  | 0.02        | μg/L           | <0.02             | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)            | 355-46-4   | 0.02        | μg/L           | 80.0              | <br> | <br> |
| Perfluoroheptane sulfonic acid (PFHpS)           | 375-92-8   | 0.02        | μg/L           | <0.02             | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)             | 1763-23-1  | 0.01        | μg/L           | 0.37              | <br> | <br> |
| Perfluorodecane sulfonic acid (PFDS)             | 335-77-3   | 0.02        | μg/L           | <0.02             | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Acid           | s          |             |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                    | 375-22-4   | 0.1         | μg/L           | <0.1              | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)                  | 2706-90-3  | 0.02        | μg/L           | 0.02              | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)                   | 307-24-4   | 0.02        | μg/L           | 0.05              | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)                  | 375-85-9   | 0.02        | μg/L           | <0.02             | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                    | 335-67-1   | 0.01        | μg/L           | 0.02              | <br> | <br> |
| Perfluorononanoic acid (PFNA)                    | 375-95-1   | 0.02        | μg/L           | <0.02             | <br> | <br> |
| Perfluorodecanoic acid (PFDA)                    | 335-76-2   | 0.02        | μg/L           | <0.02             | <br> | <br> |
| Perfluoroundecanoic acid (PFUnDA)                | 2058-94-8  | 0.02        | μg/L           | <0.02             | <br> | <br> |
| Perfluorododecanoic acid (PFDoDA)                | 307-55-1   | 0.02        | μg/L           | <0.02             | <br> | <br> |
| Perfluorotridecanoic acid (PFTrDA)               | 72629-94-8 | 0.02        | μg/L           | <0.02             | <br> | <br> |
| Perfluorotetradecanoic acid (PFTeDA)             | 376-06-7   | 0.05        | μg/L           | <0.05             | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamides              |            |             |                |                   |      |      |
| Perfluorooctane sulfonamide (FOSA)               | 754-91-6   | 0.02        | μg/L           | <0.02             | <br> | <br> |
| N-Methyl perfluorooctane<br>sulfonamide (MeFOSA) | 31506-32-8 | 0.05        | μg/L           | <0.05             | <br> | <br> |
| N-Ethyl perfluorooctane<br>sulfonamide (EtFOSA)  | 4151-50-2  | 0.05        | μg/L           | <0.05             | <br> | <br> |

 Page
 : 4 of 5

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)                               |                        | Clie        | ent sample ID  | QC38A             | <br> | <br> |
|-----------------------------------------------------------------|------------------------|-------------|----------------|-------------------|------|------|
|                                                                 | Cli                    | ient sampli | ng date / time | 28-Oct-2020 00:00 | <br> | <br> |
| Compound                                                        | CAS Number             | LOR         | Unit           | ES2038209-001     | <br> | <br> |
|                                                                 |                        |             |                | Result            | <br> | <br> |
| EP231C: Perfluoroalkyl Sulfonamides                             | - Continued            |             |                |                   |      |      |
| N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)            | 24448-09-7             | 0.05        | μg/L           | <0.05             | <br> | <br> |
| N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)             | 1691-99-2              | 0.05        | μg/L           | <0.05             | <br> | <br> |
| N-Methyl perfluorooctane<br>sulfonamidoacetic acid<br>(MeFOSAA) | 2355-31-9              | 0.02        | μg/L           | <0.02             | <br> | <br> |
| N-Ethyl perfluorooctane<br>sulfonamidoacetic acid<br>(EtFOSAA)  | 2991-50-6              | 0.02        | μg/L           | <0.02             | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonic                            | Acids                  |             |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                       | 757124-72-4            | 0.05        | μg/L           | <0.05             | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS)                    | 27619-97-2             | 0.05        | μg/L           | <0.05             | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS)                    | 39108-34-4             | 0.05        | μg/L           | <0.05             | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)                     | 120226-60-0            | 0.05        | μg/L           | <0.05             | <br> | <br> |
| EP231P: PFAS Sums                                               |                        |             |                |                   |      |      |
| Sum of PFAS                                                     |                        | 0.01        | μg/L           | 0.54              | <br> | <br> |
| Sum of PFHxS and PFOS                                           | 355-46-4/1763-23-<br>1 | 0.01        | μg/L           | 0.45              | <br> | <br> |
| Sum of PFAS (WA DER List)                                       |                        | 0.01        | μg/L           | 0.54              | <br> | <br> |
| EP231S: PFAS Surrogate                                          |                        |             |                |                   |      |      |
| 13C4-PFOS                                                       |                        | 0.02        | %              | 110               | <br> | <br> |
| 13C8-PFOA                                                       |                        | 0.02        | %              | 99.5              | <br> | <br> |

 Page
 : 5 of 5

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Surrogate Control Limits

| Sub-Matrix: WATER      |            | Recovery | Limits (%) |
|------------------------|------------|----------|------------|
| Compound               | CAS Number | Low      | High       |
| EP231S: PFAS Surrogate |            |          |            |
| 13C4-PFOS              |            | 60       | 120        |
| 13C8-PFOA              |            | 60       | 120        |



#### **QUALITY CONTROL REPORT**

· ES2038209 Work Order

Page : 1 of 7

Client : GHD PTY LTD

Laboratory : Environmental Division Sydney

Contact : DILARA VALIFF Contact : Angus Harding

Address : LEVEL 15. 133 CASTLEREAGH STREET Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Accreditation No. 825

Accredited for compliance with ISO/IEC 17025 - Testing

SYDNEY NSW. AUSTRALIA 2000 : +61 08 8111 6600

Telephone : +61 2 8784 8555

Project : 12516828 Order number : 12516828 Date Samples Received : 29-Oct-2020 **Date Analysis Commenced** : 04-Nov-2020

C-O-C number

Issue Date

· 05-Nov-2020

Sampler : SEAN SPARROW

Site

Quote number : EN/005

No. of samples received : 1

No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

Telephone

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW 

 Page
 : 2 of 7

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                         |                                                |            |      |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|-------------------------|------------------------------------------------|------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID        | Method: Compound                               | CAS Number | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231A: Perfluoroa   | lkyl Sulfonic Acids (QC | C Lot: 3343845)                                |            |      |      |                 |                        |         |                     |
| EB2028147-001        | Anonymous               | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
| ES2038209-001        | QC38A                   | EP231X: Perfluorooctane sulfonic acid (PFOS)   | 1763-23-1  | 0.01 | μg/L | 0.37            | 0.40                   | 8.34    | 0% - 20%            |
|                      |                         | EP231X: Perfluorobutane sulfonic acid (PFBS)   | 375-73-5   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentane sulfonic acid (PFPeS) | 2706-91-4  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexane sulfonic acid (PFHxS)  | 355-46-4   | 0.02 | μg/L | 0.08            | 0.08                   | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptane sulfonic acid (PFHpS) | 375-92-8   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorodecane sulfonic acid (PFDS)   | 335-77-3   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
| EP231B: Perfluoro    | alkyl Carboxylic Acids  | (QC Lot: 3343845)                              |            |      |      |                 |                        |         |                     |
| EB2028147-001        | Anonymous               | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.01 | μg/L | <0.01           | <0.01                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoropentanoic acid (PFPeA)        | 2706-90-3  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorohexanoic acid (PFHxA)         | 307-24-4   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroheptanoic acid (PFHpA)        | 375-85-9   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorononanoic acid (PFNA)          | 375-95-1   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorodecanoic acid (PFDA)          | 335-76-2   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluoroundecanoic acid (PFUnDA)      | 2058-94-8  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorododecanoic acid (PFDoDA)      | 307-55-1   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorotridecanoic acid (PFTrDA)     | 72629-94-8 | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorotetradecanoic acid (PFTeDA)   | 376-06-7   | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                         | EP231X: Perfluorobutanoic acid (PFBA)          | 375-22-4   | 0.1  | μg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
| ES2038209-001        | QC38A                   | EP231X: Perfluorooctanoic acid (PFOA)          | 335-67-1   | 0.01 | μg/L | 0.02            | 0.02                   | 0.00    | No Limit            |

 Page
 : 3 of 7

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER    |                          |                                              |             |      |      | Laboratory I    | Duplicate (DUP) Report |         |                     |
|----------------------|--------------------------|----------------------------------------------|-------------|------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID         | Method: Compound                             | CAS Number  | LOR  | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EP231B: Perfluoroa   | Ikyl Carboxylic Acids (C | QC Lot: 3343845) - continued                 |             |      |      |                 |                        |         |                     |
| ES2038209-001        | QC38A                    | EP231X: Perfluoropentanoic acid (PFPeA)      | 2706-90-3   | 0.02 | μg/L | 0.02            | 0.02                   | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorohexanoic acid (PFHxA)       | 307-24-4    | 0.02 | μg/L | 0.05            | 0.05                   | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluoroheptanoic acid (PFHpA)      | 375-85-9    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorononanoic acid (PFNA)        | 375-95-1    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorodecanoic acid (PFDA)        | 335-76-2    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluoroundecanoic acid (PFUnDA)    | 2058-94-8   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorododecanoic acid (PFDoDA)    | 307-55-1    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorotridecanoic acid (PFTrDA)   | 72629-94-8  | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorotetradecanoic acid (PFTeDA) | 376-06-7    | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | EP231X: Perfluorobutanoic acid (PFBA)        | 375-22-4    | 0.1  | μg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
| EP231C: Perfluoroal  | kyl Sulfonamides (QC L   | ot: 3343845)                                 |             |      |      |                 |                        |         |                     |
| EB2028147-001        | Anonymous                | EP231X: Perfluorooctane sulfonamide (FOSA)   | 754-91-6    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      | , <b>,</b>               | EP231X: N-Methyl perfluorooctane             | 2355-31-9   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | sulfonamidoacetic acid (MeFOSAA)             |             |      | 13   |                 |                        |         |                     |
|                      |                          | EP231X: N-Ethyl perfluorooctane              | 2991-50-6   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | sulfonamidoacetic acid (EtFOSAA)             |             |      |      |                 |                        |         |                     |
|                      |                          | EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | (MeFOSA)                                     |             |      |      |                 |                        |         |                     |
|                      |                          | EP231X: N-Ethyl perfluorooctane sulfonamide  | 4151-50-2   | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | (EtFOSA)                                     |             |      |      |                 |                        |         |                     |
|                      |                          | EP231X: N-Methyl perfluorooctane             | 24448-09-7  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | sulfonamidoethanol (MeFOSE)                  |             |      |      |                 |                        |         |                     |
|                      |                          | EP231X: N-Ethyl perfluorooctane              | 1691-99-2   | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | sulfonamidoethanol (EtFOSE)                  |             |      |      |                 |                        |         |                     |
| ES2038209-001        | QC38A                    | EP231X: Perfluorooctane sulfonamide (FOSA)   | 754-91-6    | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | EP231X: N-Methyl perfluorooctane             | 2355-31-9   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | sulfonamidoacetic acid (MeFOSAA)             |             |      |      |                 |                        |         |                     |
|                      |                          | EP231X: N-Ethyl perfluorooctane              | 2991-50-6   | 0.02 | μg/L | <0.02           | <0.02                  | 0.00    | No Limit            |
|                      |                          | sulfonamidoacetic acid (EtFOSAA)             |             |      |      |                 |                        |         |                     |
|                      |                          | EP231X: N-Methyl perfluorooctane sulfonamide | 31506-32-8  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | (MeFOSA)                                     |             |      |      |                 |                        |         |                     |
|                      |                          | EP231X: N-Ethyl perfluorooctane sulfonamide  | 4151-50-2   | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | (EtFOSA)                                     | 04440.00.7  | 0.05 | ,    | 0.05            | 2.25                   |         |                     |
|                      |                          | EP231X: N-Methyl perfluorooctane             | 24448-09-7  | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | sulfonamidoethanol (MeFOSE)                  | 4004.00.0   | 0.05 |      | 10.05           | .0.05                  | 0.00    | No. 1 See 16        |
|                      |                          | EP231X: N-Ethyl perfluorooctane              | 1691-99-2   | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
| = D004D              |                          | sulfonamidoethanol (EtFOSE)                  |             |      |      |                 |                        |         |                     |
| , ,                  | otelomer Sulfonic Acids  |                                              |             |      |      |                 |                        |         |                     |
| EB2028147-001        | Anonymous                | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 | 757124-72-4 | 0.05 | μg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                          | FTS)                                         |             |      |      |                 |                        |         |                     |

 Page
 : 4 of 7

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER                                                        |                     |                                                     |             | Laboratory L | Duplicate (DUP) Report |                 |                  |         |                     |
|--------------------------------------------------------------------------|---------------------|-----------------------------------------------------|-------------|--------------|------------------------|-----------------|------------------|---------|---------------------|
| Laboratory sample ID                                                     | Client sample ID    | Method: Compound                                    | CAS Number  | LOR          | Unit                   | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QC Lot: 3343845) - continued |                     |                                                     |             |              |                        |                 |                  |         |                     |
| EB2028147-001                                                            | Anonymous           | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05         | μg/L                   | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                          |                     | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05         | μg/L                   | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                          |                     | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05         | μg/L                   | <0.05           | <0.05            | 0.00    | No Limit            |
| ES2038209-001                                                            | QC38A               | EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)   | 757124-72-4 | 0.05         | μg/L                   | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                          |                     | EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)   | 27619-97-2  | 0.05         | μg/L                   | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                          |                     | EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)   | 39108-34-4  | 0.05         | μg/L                   | <0.05           | <0.05            | 0.00    | No Limit            |
|                                                                          |                     | EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0 | 0.05         | μg/L                   | <0.05           | <0.05            | 0.00    | No Limit            |
| EP231P: PFAS Sum                                                         | s (QC Lot: 3343845) |                                                     |             |              |                        |                 |                  |         |                     |
| EB2028147-001                                                            | Anonymous           | EP231X: Sum of PFAS                                 |             | 0.01         | μg/L                   | <0.01           | <0.01            | 0.00    | No Limit            |
| ES2038209-001                                                            | QC38A               | EP231X: Sum of PFAS                                 |             | 0.01         | μg/L                   | 0.54            | 0.57             | 5.40    | 0% - 20%            |

 Page
 : 5 of 7

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                                 |             |      |      | Method Blank (MB) | ) Laboratory Control Spike (LCS) R |                    | S) Report | leport     |  |  |
|-------------------------------------------------------------------|-------------|------|------|-------------------|------------------------------------|--------------------|-----------|------------|--|--|
|                                                                   |             |      |      | Report            | Spike                              | Spike Recovery (%) | Recovery  | Limits (%) |  |  |
| Method: Compound                                                  | CAS Number  | LOR  | Unit | Result            | Concentration                      | LCS                | Low       | High       |  |  |
| EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 334384              | .5)         |      |      |                   |                                    |                    |           |            |  |  |
| EP231X: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 82.0               | 72.0      | 130        |  |  |
| EP231X: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4   | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 77.2               | 71.0      | 127        |  |  |
| EP231X: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 78.2               | 68.0      | 131        |  |  |
| EP231X: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 76.4               | 69.0      | 134        |  |  |
| EP231X: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1   | 0.01 | μg/L | <0.01             | 0.25 μg/L                          | 94.0               | 65.0      | 140        |  |  |
| EP231X: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 87.2               | 53.0      | 142        |  |  |
| EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 3343              | 3845)       |      |      |                   |                                    |                    |           |            |  |  |
| EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4    | 0.1  | μg/L | <0.1              | 1.25 μg/L                          | 99.6               | 73.0      | 129        |  |  |
| EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3   | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 102                | 72.0      | 129        |  |  |
| EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 79.8               | 72.0      | 129        |  |  |
| EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 111                | 72.0      | 130        |  |  |
| EP231X: Perfluorooctanoic acid (PFOA)                             | 335-67-1    | 0.01 | μg/L | <0.01             | 0.25 μg/L                          | 103                | 71.0      | 133        |  |  |
| EP231X: Perfluorononanoic acid (PFNA)                             | 375-95-1    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 93.0               | 69.0      | 130        |  |  |
| EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 92.6               | 71.0      | 129        |  |  |
| EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8   | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 97.0               | 69.0      | 133        |  |  |
| EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 84.0               | 72.0      | 134        |  |  |
| EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8  | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 86.4               | 65.0      | 144        |  |  |
| EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7    | 0.05 | μg/L | <0.05             | 0.625 μg/L                         | 80.8               | 71.0      | 132        |  |  |
| EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3343845               | 5)          |      |      |                   |                                    |                    |           |            |  |  |
| EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6    | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 80.0               | 67.0      | 137        |  |  |
| EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8  | 0.05 | μg/L | <0.05             | 0.625 μg/L                         | 89.0               | 68.0      | 141        |  |  |
| EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2   | 0.05 | μg/L | <0.05             | 0.625 μg/L                         | 84.0               | 62.6      | 147        |  |  |
| EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7  | 0.05 | μg/L | <0.05             | 0.625 μg/L                         | 113                | 66.0      | 145        |  |  |
| EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2   | 0.05 | μg/L | <0.05             | 0.625 μg/L                         | 114                | 57.6      | 145        |  |  |
| EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9   | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 84.4               | 65.0      | 136        |  |  |
| EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)  | 2991-50-6   | 0.02 | μg/L | <0.02             | 0.25 μg/L                          | 87.4               | 61.0      | 135        |  |  |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3              | 343845)     |      |      |                   |                                    |                    |           |            |  |  |
| EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)                 | 757124-72-4 | 0.05 | μg/L | <0.05             | 0.25 μg/L                          | 82.2               | 63.0      | 143        |  |  |
| EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)                 | 27619-97-2  | 0.05 | μg/L | <0.05             | 0.25 μg/L                          | 98.6               | 64.0      | 140        |  |  |
| EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)                 | 39108-34-4  | 0.05 | μg/L | <0.05             | 0.25 μg/L                          | 79.6               | 67.0      | 138        |  |  |

 Page
 : 6 of 7

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



| Sub-Matrix: WATER                                   | Method Blank (MB)   | Laboratory Control Spike (LCS) Report |      |        |               |                    |          |            |
|-----------------------------------------------------|---------------------|---------------------------------------|------|--------|---------------|--------------------|----------|------------|
|                                                     |                     |                                       |      | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                    | CAS Number          | LOR                                   | Unit | Result | Concentration | LCS                | Low      | High       |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot:  | 3343845) - continue | ed                                    |      |        |               |                    |          |            |
| EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) | 120226-60-0         | 0.05                                  | μg/L | <0.05  | 0.25 μg/L     | 74.2               | 71.4     | 144        |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: WATER                      |                                          |                                                                   |            | M             | atrix Spike (MS) Report |            |           |
|---------------------------------------|------------------------------------------|-------------------------------------------------------------------|------------|---------------|-------------------------|------------|-----------|
| Laboratory cample ID Client cample ID |                                          |                                                                   |            | Spike         | SpikeRecovery(%)        | Recovery L | imits (%) |
| aboratory sample ID                   | Client sample ID                         | Method: Compound                                                  | CAS Number | Concentration | MS                      | Low        | High      |
| P231A: Perfluoro                      | palkyl Sulfonic Acids (QCLot: 3343845)   |                                                                   |            |               |                         |            |           |
| S2038079-001                          | Anonymous                                | EP231X: Perfluorobutane sulfonic acid (PFBS)                      | 375-73-5   | 0.25 μg/L     | 85.7                    | 72.0       | 130       |
|                                       |                                          | EP231X: Perfluoropentane sulfonic acid (PFPeS)                    | 2706-91-4  | 0.25 μg/L     | 80.1                    | 71.0       | 127       |
|                                       |                                          | EP231X: Perfluorohexane sulfonic acid (PFHxS)                     | 355-46-4   | 0.25 μg/L     | 81.8                    | 68.0       | 131       |
|                                       |                                          | EP231X: Perfluoroheptane sulfonic acid (PFHpS)                    | 375-92-8   | 0.25 μg/L     | 75.2                    | 69.0       | 134       |
|                                       |                                          | EP231X: Perfluorooctane sulfonic acid (PFOS)                      | 1763-23-1  | 0.25 μg/L     | 76.6                    | 65.0       | 140       |
|                                       |                                          | EP231X: Perfluorodecane sulfonic acid (PFDS)                      | 335-77-3   | 0.25 μg/L     | 102                     | 53.0       | 142       |
| P231B: Perfluor                       | oalkyl Carboxylic Acids (QCLot: 3343845) |                                                                   |            |               |                         |            |           |
| S2038079-001                          | Anonymous                                | EP231X: Perfluorobutanoic acid (PFBA)                             | 375-22-4   | 1.25 μg/L     | 102                     | 73.0       | 129       |
|                                       |                                          | EP231X: Perfluoropentanoic acid (PFPeA)                           | 2706-90-3  | 0.25 μg/L     | 102                     | 72.0       | 129       |
|                                       |                                          | EP231X: Perfluorohexanoic acid (PFHxA)                            | 307-24-4   | 0.25 μg/L     | 87.3                    | 72.0       | 129       |
|                                       |                                          | EP231X: Perfluoroheptanoic acid (PFHpA)                           | 375-85-9   | 0.25 μg/L     | 112                     | 72.0       | 130       |
|                                       |                                          | EP231X: Perfluorooctanoic acid (PFOA)                             | 335-67-1   | 0.25 μg/L     | 99.9                    | 71.0       | 133       |
|                                       |                                          | EP231X: Perfluorononanoic acid (PFNA)                             | 375-95-1   | 0.25 μg/L     | 85.2                    | 69.0       | 130       |
|                                       |                                          | EP231X: Perfluorodecanoic acid (PFDA)                             | 335-76-2   | 0.25 μg/L     | 93.8                    | 71.0       | 129       |
|                                       |                                          | EP231X: Perfluoroundecanoic acid (PFUnDA)                         | 2058-94-8  | 0.25 μg/L     | 102                     | 69.0       | 133       |
|                                       |                                          | EP231X: Perfluorododecanoic acid (PFDoDA)                         | 307-55-1   | 0.25 μg/L     | 97.2                    | 72.0       | 134       |
|                                       |                                          | EP231X: Perfluorotridecanoic acid (PFTrDA)                        | 72629-94-8 | 0.25 μg/L     | 81.8                    | 65.0       | 144       |
|                                       |                                          | EP231X: Perfluorotetradecanoic acid (PFTeDA)                      | 376-06-7   | 0.625 μg/L    | 78.9                    | 71.0       | 132       |
| P231C: Perfluoro                      | palkyl Sulfonamides (QCLot: 3343845)     |                                                                   |            |               |                         |            |           |
| S2038079-001                          | Anonymous                                | EP231X: Perfluorooctane sulfonamide (FOSA)                        | 754-91-6   | 0.25 μg/L     | 85.0                    | 67.0       | 137       |
|                                       |                                          | EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)             | 31506-32-8 | 0.625 μg/L    | 95.7                    | 68.0       | 141       |
|                                       |                                          | EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)              | 4151-50-2  | 0.625 μg/L    | 85.0                    | 62.6       | 147       |
|                                       |                                          | EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)      | 24448-09-7 | 0.625 μg/L    | 92.1                    | 66.0       | 145       |
|                                       |                                          | EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)       | 1691-99-2  | 0.625 μg/L    | 90.8                    | 57.6       | 145       |
|                                       |                                          | EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA) | 2355-31-9  | 0.25 μg/L     | 79.6                    | 65.0       | 136       |

 Page
 : 7 of 7

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



144

Matrix Spike (MS) Report Sub-Matrix: WATER SpikeRecovery(%) Spike Recovery Limits (%) Laboratory sample ID Client sample ID CAS Number Concentration Low High Method: Compound EP231C: Perfluoroalkyl Sulfonamides (QCLot: 3343845) - continued ES2038079-001 Anonymous EP231X: N-Ethyl perfluorooctane sulfonamidoacetic 2991-50-6 0.25 µg/L 84.4 61.0 135 acid (EtFOSAA) EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 3343845) ES2038079-001 757124-72-4 63.0 143 Anonymous 0.25 µg/L 79.2 EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 27619-97-2 0.25 µg/L 99.0 64.0 140 EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 39108-34-4 79.6 67.0 138 EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) 0.25 µg/L

EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)

120226-60-0

0.25 µg/L

80.0

71.4



# QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2038209** Page : 1 of 4

Client : GHD PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : DILARA VALIFF
 Telephone
 : +61 2 8784 8555

 Project
 : 12516828
 Date Samples Received
 : 29-Oct-2020

 Site
 :
 Issue Date
 : 05-Nov-2020

Sampler : SEAN SPARROW No. of samples received : 1
Order number : 12516828 No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• NO Quality Control Sample Frequency Outliers exist.

 Page
 : 2 of 4

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



## **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **WATER**Evaluation: ★ = Holding time breach; ✓ = Within holding time.

| Method                                     | Sample Date | Ex             | traction / Preparation |            |               | Analysis         |            |
|--------------------------------------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)            |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |
| EP231A: Perfluoroalkyl Sulfonic Acids      |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QC38A              | 28-Oct-2020 | 04-Nov-2020    | 26-Apr-2021            | ✓          | 04-Nov-2020   | 26-Apr-2021      | ✓          |
| EP231B: Perfluoroalkyl Carboxylic Acids    |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QC38A              | 28-Oct-2020 | 04-Nov-2020    | 26-Apr-2021            | ✓          | 04-Nov-2020   | 26-Apr-2021      | ✓          |
| EP231C: Perfluoroalkyl Sulfonamides        |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QC38A              | 28-Oct-2020 | 04-Nov-2020    | 26-Apr-2021            | ✓          | 04-Nov-2020   | 26-Apr-2021      | ✓          |
| EP231D: (n:2) Fluorotelomer Sulfonic Acids |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QC38A              | 28-Oct-2020 | 04-Nov-2020    | 26-Apr-2021            | ✓          | 04-Nov-2020   | 26-Apr-2021      | ✓          |
| EP231P: PFAS Sums                          |             |                |                        |            |               |                  |            |
| HDPE (no PTFE) (EP231X) QC38A              | 28-Oct-2020 | 04-Nov-2020    | 26-Apr-2021            | ✓          | 04-Nov-2020   | 26-Apr-2021      | <b>✓</b>   |

 Page
 : 3 of 4

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: **x** = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

|                                                      |        |       |         |          |          |            | or main opcomodation, quanty control requesto, main opcomodation |
|------------------------------------------------------|--------|-------|---------|----------|----------|------------|------------------------------------------------------------------|
| Quality Control Sample Type                          |        | Count |         | Rate (%) |          |            | Quality Control Specification                                    |
| Analytical Methods                                   | Method | QC    | Regular | Actual   | Expected | Evaluation |                                                                  |
| Laboratory Duplicates (DUP)                          |        |       |         |          |          |            |                                                                  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 2     | 18      | 11.11    | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard                                   |
| Laboratory Control Samples (LCS)                     |        |       |         |          |          |            |                                                                  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1     | 18      | 5.56     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                   |
| Method Blanks (MB)                                   |        |       |         |          |          |            |                                                                  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1     | 18      | 5.56     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                   |
| Matrix Spikes (MS)                                   |        |       |         |          |          |            |                                                                  |
| Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS | EP231X | 1     | 18      | 5.56     | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard                                   |

 Page
 : 4 of 4

 Work Order
 : ES2038209

 Client
 : GHD PTY LTD

 Project
 : 12516828



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Per- and Polyfluoroalkyl Substances<br>(PFAS) by LCMSMS | EP231X | WATER  | In-house: Analysis of fresh and saline waters by Solid Phase Extraction (SPE) followed by LC-Electrospray-MS-MS, Negative Mode using MRM and internal standard quantitation.  Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures and data quality objectives conform to US DoD QSM 5.3, table B-15 requirements. |
| Preparation Methods                                     | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Solid Phase Extraction (SPE) for PFAS in water          | ORG72  | WATER  | In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.                                                                                                                                                                                                 |



#### ยกงั้เหิดเคย **ENVIROLAB GROUP CHAIN OF CUSTODY FORM - Client** National phone number 1300 424 344 Sydney Lab - Envirolab Services 12 Ashley St, Chatswood, NSW 2067 ② 02 9910 6200 | ⊠ sydney@envirolab.com.au Perth Lab - MPL Laboratories [Copyright and Confidential] 16-18 Hayden Crt, Myaree, WA 6154 © 08 9317 2505 | See lab@mpl.com.au Client Project Name/Number/Site etc (ie report title): Client: GHD Pty Ltd Contact Person: Sean Sparrow Melbourne Lab - Envirolab Services 25 Research Drive, Croydon South, VIC 3136 Project Mgr: Dilara Valiff PO No.: 12516828 © 03 9763 2500 | Z Sampler: Sean Sparrow Envirolab Quote No. : melbourne@envirolab.com.au Date results required: Standard Address: Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067 ② 08 7087 6800 | ⊠ adelaide@envirolab.com.au Level 4, 211 Victoria Square, Adelaide 5000 Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required -Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 (0 07 3266 9532 | 🖂 surcharges apply Additional report format: esdat / equis / Phone: Moh. 0498 260 626 brisbane@envirolab.com.au GHDLabReports@ghd.com Lab Comments: Email: sean.sparrow@ghd.com <u>Darwin Office</u> - Envirolab Services Unit 20/119 Reichardt Road, Winnellie, NT 0820 dilara.valiff@ghd.com Sample information Tests Required Comments Monolith LEAF procedure ASLP Provide as much Envirolab Sample Client Sample ID or Depth Type of sample information about the PFAS/ ID information sampled sample as you can 12516828/Tank7/01a 18/11/2020 Х concrete 18/11/2020 12516828/Tank7/01b х concrete 12516828/Tank7/01c 18/11/2020 Х concrete Send to Xypex NSW 12516828/Tank7/02a 18/11/2020 х concrete 12516828/Tank7/02b 18/11/2020 х concrete 12516828/Tank7/02c 18/11/2020 concrete Х Send to Xypex NSW 12516828/Tank7/03a 18/11/2020 concrete х 12516828/Tank7/03b 18/11/2020 х concrete 12516828/Tank7/03c 18/11/2020 concrete х Send to Xypex NSW HPA1 17/11/2020 Х Х concrete Ø HPA2 17/11/2020 Х Х concrete HPA3 17/11/2020 concrete Х Х 0 HPA4 17/11/2020 concrete Х Х 17/11/2020 HPA5 Х х concrete 12516828/QAa 18/11/2020 х concrete 12516828/QAb 18/11/2020 Х concrete V Х 18/11/2020 water W2 17/11/2020 Х water 10 FD01 18/11/2020 Х <u>water</u> FS01 18/11/2020 water х FB01 17/11/2020 Х water ١۲, **RB01** 17/11/2020 water Х х 18/11/2020 water

Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis DI WA Lab Use Only 1000 Relinquished by (Company): Received by (Company): <u>USOLSS</u> ·MUCON lce / Ice pack / None Print Name: Job number: Print Name: &DO Security spall Intact / Broken / None Date & Time: Date & Time: Temperature: TAT Req - SAME day / 1 / 2 / 3 / 4 / STD Signature: Signature:



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 256235**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Sean Sparrow/Dilara Valiff       |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                           |
|--------------------------------------|---------------------------|
| Your Reference                       | <u>12516828</u>           |
| Number of Samples                    | Concrete Cores and Waters |
| Date samples received                | 20/11/2020                |
| Date completed instructions received | 20/11/2020                |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                        |                                                                                                |
|---------------------------------------|------------------------------------------------------------------------------------------------|
| Date results requested by             | 03/12/2020                                                                                     |
| Date of Issue                         | 12/01/2021                                                                                     |
| Reissue Details                       | This report replaces R00 created on 02/12/2020 due to: revised report with additional results. |
| This document shall not be reproduced | except in full.                                                                                |

**Results Approved By** 

Simon Mills, Group R&D Manager

**Authorised By** 

Nancy Zhang, Laboratory Manager

| PFAS in Concrete Short*                     |       |                        |                        |                        |            |            |
|---------------------------------------------|-------|------------------------|------------------------|------------------------|------------|------------|
| Our Reference                               |       | 256235-2               | 256235-4               | 256235-6               | 256235-7   | 256235-8   |
| Your Reference                              | UNITS | 12516828/Tank7/<br>01b | 12516828/Tank7/<br>02b | 12516828/Tank7/<br>03b | HPA1       | HPA2       |
| Date Sampled                                |       | 18/11/2020             | 18/11/2020             | 18/11/2020             | 17/11/2020 | 17/11/2020 |
| Type of sample                              |       | Solid                  | Solid                  | Solid                  | Solid      | Solid      |
| Date prepared                               | -     | 25/11/2020             | 25/11/2020             | 25/11/2020             | 25/11/2020 | 25/11/2020 |
| Date analysed                               | -     | 25/11/2020             | 25/11/2020             | 25/11/2020             | 01/12/2020 | 01/12/2020 |
| Perfluorohexanesulfonic acid - PFHxS        | μg/kg | <0.1                   | <0.1                   | <0.1                   | 1.9        | <0.1       |
| Perfluorooctanesulfonic acid PFOS           | μg/kg | <0.1                   | <0.1                   | <0.1                   | 2.0        | <0.1       |
| Perfluorooctanoic acid PFOA                 | μg/kg | <0.1                   | <0.1                   | <0.1                   | 0.2        | <0.1       |
| 6:2 FTS                                     | μg/kg | <0.1                   | <0.1                   | <0.1                   | 0.1        | <0.1       |
| 8:2 FTS                                     | μg/kg | <0.2                   | <0.2                   | <0.2                   | <0.2       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 100                    | 102                    | 103                    | 99         | 106        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 99                     | 102                    | 97                     | 102        | 99         |
| Extracted ISTD 18 O <sub>2</sub> PFHxS      | %     | 104                    | 99                     | 92                     | 70         | 78         |
| Extracted ISTD 13 C4 PFOS                   | %     | 95                     | 89                     | 84                     | 59         | 57         |
| Extracted ISTD 13 C4 PFOA                   | %     | 88                     | 87                     | 85                     | 55         | 61         |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS     | %     | 89                     | 80                     | 78                     | 40         | 43         |
| Extracted ISTD 13 C2 8:2FTS                 | %     | 97                     | 103                    | 103                    | 51         | 52         |
| Total Positive PFHxS & PFOS                 | μg/kg | <0.1                   | <0.1                   | <0.1                   | 3.9        | <0.1       |
| Total Positive PFOS & PFOA                  | μg/kg | <0.1                   | <0.1                   | <0.1                   | 2.2        | <0.1       |
| Total Positive PFAS                         | μg/kg | <0.1                   | <0.1                   | <0.1                   | 4.2        | <0.1       |

| PFAS in Concrete Short*                     |       |            |            |            |              |
|---------------------------------------------|-------|------------|------------|------------|--------------|
| Our Reference                               |       | 256235-9   | 256235-10  | 256235-11  | 256235-13    |
| Your Reference                              | UNITS | HPA3       | HPA4       | HPA5       | 12516828/QAb |
| Date Sampled                                |       | 17/11/2020 | 17/11/2020 | 17/11/2020 | 18/11/2020   |
| Type of sample                              |       | Solid      | Solid      | Solid      | Solid        |
| Date prepared                               | -     | 25/11/2020 | 25/11/2020 | 25/11/2020 | 25/11/2020   |
| Date analysed                               | -     | 01/12/2020 | 01/12/2020 | 01/12/2020 | 25/11/2020   |
| Perfluorohexanesulfonic acid - PFHxS        | μg/kg | <0.1       | <0.1       | <0.1       | <0.1         |
| Perfluorooctanesulfonic acid PFOS           | μg/kg | 0.4        | <0.1       | 0.1        | <0.1         |
| Perfluorooctanoic acid PFOA                 | μg/kg | <0.1       | <0.1       | <0.1       | <0.1         |
| 6:2 FTS                                     | μg/kg | <0.2       | <0.2       | 0.9        | <0.1         |
| 8:2 FTS                                     | μg/kg | <0.2       | <0.2       | <0.2       | <0.2         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 103        | 94         | 112        | 98           |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 102        | 97         | 103        | 100          |
| Extracted ISTD 18 O2 PFHxS                  | %     | 63         | 73         | 70         | 96           |
| Extracted ISTD 13 C4 PFOS                   | %     | 49         | 54         | 51         | 74           |
| Extracted ISTD 13 C4 PFOA                   | %     | 45         | 50         | 51         | 83           |
| Extracted ISTD 13 C <sub>2</sub> 6:2FTS     | %     | 28         | 31         | 30         | 85           |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS     | %     | 43         | 40         | 39         | 109          |
| Total Positive PFHxS & PFOS                 | μg/kg | 0.4        | <0.1       | 0.1        | <0.1         |
| Total Positive PFOS & PFOA                  | μg/kg | 0.4        | <0.1       | 0.1        | <0.1         |
| Total Positive PFAS                         | μg/kg | 0.4        | <0.1       | 1          | <0.1         |

| PFAS in Concrete LEAF/ASLP                  |          |                        |                        |                        |            |            |
|---------------------------------------------|----------|------------------------|------------------------|------------------------|------------|------------|
| Our Reference                               |          | 256235-1               | 256235-3               | 256235-5               | 256235-7   | 256235-8   |
| Your Reference                              | UNITS    | 12516828/Tank7/<br>01a | 12516828/Tank7/<br>02a | 12516828/Tank7/<br>03a | HPA1       | HPA2       |
| Date Sampled                                |          | 18/11/2020             | 18/11/2020             | 18/11/2020             | 17/11/2020 | 17/11/2020 |
| Type of sample                              |          | Water                  | Water                  | Water                  | Solid      | Solid      |
| Date prepared                               | -        | 27/11/2020             | 27/11/2020             | 27/11/2020             | 30/11/2020 | 30/11/2020 |
| Date analysed                               | -        | 27/11/2020             | 27/11/2020             | 27/11/2020             | 01/12/2020 | 01/12/2020 |
| pH of final Leachate                        | pH units | [NA]                   | [NA]                   | [NA]                   | 11.8       | 12.1       |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L     | <0.001                 | <0.001                 | <0.001                 | 0.087      | 0.002      |
| Perfluorooctanesulfonic acid PFOS           | μg/L     | <0.001                 | <0.001                 | <0.001                 | 0.071      | 0.003      |
| Perfluorooctanoic acid PFOA                 | μg/L     | <0.001                 | <0.001                 | <0.001                 | 0.0099     | <0.001     |
| 6:2 FTS                                     | μg/L     | <0.001                 | <0.001                 | <0.001                 | 0.011      | 0.005      |
| 8:2 FTS                                     | μg/L     | <0.002                 | <0.002                 | <0.002                 | <0.002     | <0.002     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %        | 106                    | 104                    | 105                    | 100        | 102        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %        | 95                     | 96                     | 96                     | 94         | 98         |
| Total Positive PFHxS & PFOS                 | μg/L     | <0.001                 | <0.001                 | <0.001                 | 0.16       | 0.004      |
| Total Positive PFOA & PFOS                  | μg/L     | <0.001                 | <0.001                 | <0.001                 | 0.081      | 0.003      |
| Total Positive PFAS                         | μg/L     | <0.001                 | <0.001                 | <0.001                 | 0.18       | 0.01       |

| PFAS in Concrete LEAF/ASLP                  |          |            |            |            |              |
|---------------------------------------------|----------|------------|------------|------------|--------------|
| Our Reference                               |          | 256235-9   | 256235-10  | 256235-11  | 256235-12    |
| Your Reference                              | UNITS    | HPA3       | HPA4       | HPA5       | 12516828/QAa |
| Date Sampled                                |          | 17/11/2020 | 17/11/2020 | 17/11/2020 | 18/11/2020   |
| Type of sample                              |          | Solid      | Solid      | Solid      | Water        |
| Date prepared                               | -        | 30/11/2020 | 30/11/2020 | 30/11/2020 | 27/11/2020   |
| Date analysed                               | -        | 01/12/2020 | 01/12/2020 | 01/12/2020 | 27/11/2020   |
| pH of final Leachate                        | pH units | 12.1       | 12.0       | 12.1       | [NA]         |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L     | 0.003      | 0.002      | 0.005      | <0.001       |
| Perfluorooctanesulfonic acid PFOS           | μg/L     | 0.011      | 0.002      | 0.005      | <0.001       |
| Perfluorooctanoic acid PFOA                 | μg/L     | <0.001     | <0.001     | 0.004      | <0.001       |
| 6:2 FTS                                     | μg/L     | 0.005      | 0.006      | 0.063      | <0.001       |
| 8:2 FTS                                     | μg/L     | <0.002     | <0.002     | 0.005      | <0.002       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %        | 100        | 103        | 101        | 104          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %        | 95         | 96         | 91         | 94           |
| Total Positive PFHxS & PFOS                 | μg/L     | 0.015      | 0.004      | 0.010      | <0.001       |
| Total Positive PFOA & PFOS                  | μg/L     | 0.011      | 0.002      | 0.008      | <0.001       |
| Total Positive PFAS                         | μg/L     | 0.019      | 0.01       | 0.082      | <0.001       |

| SW846-1315 LEAF Monolith           |             |                        |                        |                        |                     |
|------------------------------------|-------------|------------------------|------------------------|------------------------|---------------------|
| Our Reference                      |             | 256235-1               | 256235-3               | 256235-5               | 256235-12           |
| Your Reference                     | UNITS       | 12516828/Tank7/<br>01a | 12516828/Tank7/<br>02a | 12516828/Tank7/<br>03a | 12516828/QAa        |
| Date Sampled                       |             | 18/11/2020             | 18/11/2020             | 18/11/2020             | 18/11/2020          |
| Type of sample                     |             | Water                  | Water                  | Water                  | Water               |
| Date prepared                      | -           | 24/11/2020             | 24/11/2020             | 24/11/2020             | 24/11/2020          |
| Material Description               |             | concrete core          | concrete core          | concrete core          | concrete core       |
| Mass Before Static Elution Step    | g           | 2,039                  | 2,669                  | 1,919                  | 474.5               |
| Mass of Sample Static Elution Step | g           | 2,040                  | 2,668                  | 1,921                  | 476.4               |
| Geometry and Dimensions 3D or 1D   | mm D x mm H | 85mm R x 95mm<br>H     | 80mm R x<br>125mm H    | 75mm R x 90mm<br>H     | 75mm R x<br>105mm H |
| Elutriate Liquid Type              |             | UHP water              | UHP water              | UHP water              | UHP water           |
| Elutriate Volume Used              | mL          | 5,950                  | 6,500                  | 4,900                  | 2,450               |
| Date analysed                      | -           | 25/11/2020             | 25/11/2020             | 25/11/2020             | 25/11/2020          |
| Elutriate Final EC                 | μS/cm       | 250                    | 280                    | 290                    | 280                 |
| Elutriate Final pH                 | pH units    | 11.0                   | 11.0                   | 11.0                   | 11.0                |

| PFAS in Water LOW LEVEL Short                      |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 256235-14  | 256235-15  | 256235-16  | 256235-18  | 256235-19  |
| Your Reference                                     | UNITS | W1         | W2         | FD01       | FB01       | RB01       |
| Date Sampled                                       |       | 18/11/2020 | 17/11/2020 | 18/11/2020 | 17/11/2020 | 17/11/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 24/11/2020 | 24/11/2020 | 24/11/2020 | 24/11/2020 | 24/11/2020 |
| Date analysed                                      | -     | 24/11/2020 | 24/11/2020 | 24/11/2020 | 24/11/2020 | 24/11/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |
| 6:2 FTS                                            | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |
| 8:2 FTS                                            | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     | <0.002     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 106        | 109        | 108        | 102        | 99         |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 99         | 98         | 103        | 100        | 97         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 96         | 94         | 96         | 89         | 96         |
| Extracted ISTD 13 C <sub>4</sub> PFOS              | %     | 63         | 73         | 64         | 68         | 85         |
| Extracted ISTD 13 C4 PFOA                          | %     | 105        | 106        | 98         | 99         | 108        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 152        | 125        | 152        | 111        | 127        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 156        | 107        | 165        | 98         | 157        |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |
| Total Positive PFOA & PFOS                         | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |
| Total Positive PFAS                                | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     | <0.001     |

Envirolab Reference: 256235

Revision No: R01

| PFAS in Water LOW LEVEL Short               |       |            |
|---------------------------------------------|-------|------------|
| Our Reference                               |       | 256235-20  |
| Your Reference                              | UNITS | RB02       |
| Date Sampled                                |       | 18/11/2020 |
| Type of sample                              |       | Water      |
| Date prepared                               | -     | 24/11/2020 |
| Date analysed                               | -     | 24/11/2020 |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | <0.001     |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | <0.001     |
| Perfluorooctanoic acid PFOA                 | μg/L  | <0.001     |
| 6:2 FTS                                     | μg/L  | <0.001     |
| 8:2 FTS                                     | μg/L  | <0.002     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 92         |
| Extracted ISTD 18 O2 PFHxS                  | %     | 91         |
| Extracted ISTD 13 C4 PFOS                   | %     | 81         |
| Extracted ISTD 13 C <sub>4</sub> PFOA       | %     | 102        |
| Extracted ISTD 13 C2 6:2FTS                 | %     | 123        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS     | %     | 128        |
| Total Positive PFHxS & PFOS                 | μg/L  | <0.001     |
| Total Positive PFOA & PFOS                  | μg/L  | <0.001     |
| Total Positive PFAS                         | μg/L  | <0.001     |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-001 | pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| INORG-125 | Leaching Environment Assessment Framework (LEAF) methods of leaching using USEPA methods SW846 1313, 1314, 1315 or 1316. All eluates are filtered through 0.45um prior to analysis unless otherwise noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | Please note the 1315 is not currently designed for Organic Analyses, however, we understand that the method is being used for SVOCs in the US at present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.                                                                                                                                                                                                                                                                                                                                                                                 |
|           | Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### Methodology Summary Method ID Org-029A Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3. Analysis is undertaken with LC-MS/MS PFAS results include the sum of branched and linear isomers where applicable. Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

Envirolab Reference: 256235

Revision No: R01

| QUALITY CONTROL: PFAS in Concrete Short*           |       |     |         |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|-------|-----|---------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units | PQL | Method  | Blank      | # | Base       | Dup.       | RPD | LCS-1      | 256235-4   |
| Date prepared                                      | -     |     |         | 25/11/2020 | 2 | 25/11/2020 | 25/11/2020 |     | 25/11/2020 | 25/11/2020 |
| Date analysed                                      | -     |     |         | 01/12/2020 | 2 | 25/11/2020 | 25/11/2020 |     | 25/11/2020 | 25/11/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | µg/kg | 0.1 | Org-029 | <0.1       | 2 | <0.1       | <0.1       | 0   | 95         | 90         |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 0.1 | Org-029 | <0.1       | 2 | <0.1       | <0.1       | 0   | 102        | 102        |
| Perfluorooctanoic acid PFOA                        | μg/kg | 0.1 | Org-029 | <0.1       | 2 | <0.1       | <0.1       | 0   | 109        | 93         |
| 6:2 FTS                                            | µg/kg | 0.1 | Org-029 | <0.1       | 2 | <0.1       | <0.1       | 0   | 104        | 96         |
| 8:2 FTS                                            | μg/kg | 0.2 | Org-029 | <0.2       | 2 | <0.2       | <0.2       | 0   | 102        | 84         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     |     | Org-029 | 101        | 2 | 100        | 95         | 5   | 104        | 105        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     |     | Org-029 | 97         | 2 | 99         | 95         | 4   | 104        | 98         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     |     | Org-029 | 103        | 2 | 104        | 98         | 6   | 101        | 105        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     |     | Org-029 | 91         | 2 | 95         | 96         | 1   | 91         | 87         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     |     | Org-029 | 108        | 2 | 88         | 87         | 1   | 102        | 104        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     |     | Org-029 | 102        | 2 | 89         | 88         | 1   | 109        | 102        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     |     | Org-029 | 131        | 2 | 97         | 108        | 11  | 113        | 121        |

Envirolab Reference: 256235

Revision No: R01

| QUALITY CONT                                | Duplicate |       |          |            | Spike Recovery % |            |            |     |            |            |
|---------------------------------------------|-----------|-------|----------|------------|------------------|------------|------------|-----|------------|------------|
| Test Description                            | Units     | PQL   | Method   | Blank      | #                | Base       | Dup.       | RPD | LCS-W2     | 256235-8   |
| Date prepared                               | -         |       |          | 30/11/2020 | 7                | 30/11/2020 | 30/11/2020 |     | 30/11/2020 | 30/11/2020 |
| Date analysed                               | -         |       |          | 01/12/2020 | 7                | 01/12/2020 | 01/12/2020 |     | 01/12/2020 | 01/12/2020 |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L      | 0.001 | Org-029  | <0.001     | 7                | 0.087      | 0.093      | 7   | 110        | 102        |
| Perfluorooctanesulfonic acid PFOS           | μg/L      | 0.001 | Org-029  | <0.001     | 7                | 0.071      | 0.072      | 1   | 110        | 101        |
| Perfluorooctanoic acid PFOA                 | μg/L      | 0.001 | Org-029  | <0.001     | 7                | 0.0099     | 0.011      | 11  | 103        | 102        |
| 6:2 FTS                                     | μg/L      | 0.001 | Org-029  | <0.001     | 7                | 0.011      | 0.011      | 0   | 119        | 107        |
| 8:2 FTS                                     | μg/L      | 0.002 | Org-029  | <0.002     | 7                | <0.002     | <0.002     | 0   | 102        | 108        |
| Surrogate 13 C <sub>8</sub> PFOS            | %         |       | Org-029A | 101        | 7                | 100        | 102        | 2   | 102        | 100        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %         |       | Org-029A | 97         | 7                | 94         | 98         | 4   | 98         | 98         |

| QUALITY CONTROL: SW846-1315 LEAF Monolith |       |     |        |            |      | Duplicate |      |      |      | Spike Recovery % |  |  |
|-------------------------------------------|-------|-----|--------|------------|------|-----------|------|------|------|------------------|--|--|
| Test Description                          | Units | PQL | Method | Blank      | #    | Base      | Dup. | RPD  | [NT] | [NT]             |  |  |
| Date prepared                             | -     |     |        | 24/11/2020 | [NT] |           | [NT] | [NT] | [NT] | [NT]             |  |  |
| Date analysed                             | -     |     |        | 25/11/2020 | [NT] |           | [NT] | [NT] | [NT] | [NT]             |  |  |

Envirolab Reference: 256235

Revision No: R01

| QUALITY CONTR                                      | OL: PFAS in | Water L0 | OW LEVEL Short |            |    | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|-------------|----------|----------------|------------|----|------------|------------|-----|------------|------------|
| Test Description                                   | Units       | PQL      | Method         | Blank      | #  | Base       | Dup.       | RPD | LCS-W1     | 256235-15  |
| Date prepared                                      | -           |          |                | 24/11/2020 | 14 | 24/11/2020 | 24/11/2020 |     | 24/11/2020 | 24/11/2020 |
| Date analysed                                      | -           |          |                | 24/11/2020 | 14 | 24/11/2020 | 24/11/2020 |     | 24/11/2020 | 24/11/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L        | 0.001    | Org-029        | <0.001     | 14 | <0.001     | <0.001     | 0   | 79         | 63         |
| Perfluorooctanesulfonic acid PFOS                  | μg/L        | 0.001    | Org-029        | <0.001     | 14 | <0.001     | <0.001     | 0   | 86         | 73         |
| Perfluorooctanoic acid PFOA                        | μg/L        | 0.001    | Org-029        | <0.001     | 14 | <0.001     | <0.001     | 0   | 85         | 72         |
| 6:2 FTS                                            | μg/L        | 0.001    | Org-029        | <0.001     | 14 | <0.001     | <0.001     | 0   | 86         | 66         |
| 8:2 FTS                                            | μg/L        | 0.002    | Org-029        | <0.002     | 14 | <0.002     | <0.002     | 0   | 84         | 69         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %           |          | Org-029        | 104        | 14 | 106        | 102        | 4   | 100        | 107        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %           |          | Org-029        | 98         | 14 | 99         | 101        | 2   | 98         | 98         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %           |          | Org-029        | 90         | 14 | 96         | 95         | 1   | 86         | 90         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %           |          | Org-029        | 68         | 14 | 63         | 67         | 6   | 68         | 66         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %           |          | Org-029        | 97         | 14 | 105        | 98         | 7   | 92         | 97         |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %           |          | Org-029        | 109        | 14 | 152        | 149        | 2   | 106        | 122        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %           |          | Org-029        | 96         | 14 | 156        | 169        | 8   | 94         | 97         |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 256235

Revision No: R01

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 256235

Revision No: R01

Page | 15 of 16

#### **Report Comments**

Core descriptions:-

(R=approximate radius, H=approximate height)

256235-1: 1 x 1/2 Core (85mm R x 95mm H), approximate surface area = 642cm2

256235-3: 1 x 1/2 Core (80mm R x 125mm H), approximate surface area = 715cm2

256235-5: 1 x 1/2 Core (75mm R x 90mm H), approximate surface area = 524cm2

256235-12: 1 x 1/8 Core (75mm R x 105mm H), approximate surface area = 475cm2

All measurements are approximates as the cores where not perfect 1/2 or 1/8 cores.

The LEAF process was a modified process i.e. one single 24 hr static elution.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

PFAS in Concrete Short: PQLs raised for 6:2FTS for samples 9 and 10 due to matrix interferences.

| ENVIROLAB              | ENVÎ <u>RO</u> LAB<br>E <u>mp</u> l                                    | CHA          | AIN C           | F CUS           | ТО                                               | 'O                         | Y F                  | :OI                       | RM           | -                                                | Cli                                              | en           | t                                                |          | Nati<br><u>Syd</u><br>12 #<br>○ 0: | ional p<br>ney La<br>Ishley<br>2 9910 | -                               | umber<br>irolab∜<br>tswooi<br>∽l sydn | 1300 4:<br>Service<br>d, NSW<br>ley@en           | 24 344<br>es                                                  |
|------------------------|------------------------------------------------------------------------|--------------|-----------------|-----------------|--------------------------------------------------|----------------------------|----------------------|---------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|----------|------------------------------------|---------------------------------------|---------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
| Client: GHD Pty Ltd    |                                                                        |              |                 |                 | lau4                                             | DI                         | 4.81                 | :/Numb                    | 1014-        | -4- 41-                                          |                                                  | V41 - 1 -    |                                                  |          | Peri<br>16-1                       | th Lab<br>8 Hayo                      | - MPL L<br>ien Crt,<br>2505   [ | .aborat<br>Myare                      | ories<br>e, WA                                   | 6154                                                          |
| Contact Person: Se     |                                                                        |              |                 | <del></del>     | Cilent                                           | Projec                     | r Mattie             | 2/NUMD                    |              | ett (18<br>16828                                 | report                                           | uuej.        |                                                  |          |                                    |                                       |                                 |                                       |                                                  |                                                               |
| Project Mgr: Dilara    |                                                                        |              |                 |                 | PO No                                            | o.: 1251                   | 6828                 |                           | 120          |                                                  |                                                  |              |                                                  |          | Mel<br>25 F                        | boume<br>Resear                       | Lab - E                         | Envirol                               | ab Ser<br>don Sc                                 | vices<br>outh, VIC 3136                                       |
| Sampler: Sean Spa      |                                                                        |              |                 |                 | t                                                | olab Qu                    |                      | h. :                      |              |                                                  |                                                  |              |                                                  |          | Q: 0:                              | 3 9763                                | 2500                            | -) mell                               | oume                                             | @envirolab.com.au                                             |
| Address:               | Level 4, 211 Victoria Squ                                              | are, Adelaid | de 5000         |                 | Or cho                                           |                            | standar<br>lab in ad | ed:<br>rd / san<br>dvance |              |                                                  | / 2 day                                          |              |                                                  |          | 7a 7                               | he Pai<br>8 7087                      |                                 | -iadel                                | I, SA 50<br>aide@                                | 067<br>envirolab.com.au                                       |
| Phone:                 |                                                                        | Mob:         | 0498 260 62     | 6               | Additi                                           | onal re                    | port fo              | rmat: e                   | esdat /      | equis /                                          |                                                  |              |                                                  |          | 20a                                | 7 3266                                | Depot :<br>9532   8             | St, Ban<br>⊴) brisl                   | уо, QL<br>baпе@                                  | vices<br>D 4014<br>envirolab.com.au                           |
| Email:                 | GHDLabReports@ghd.com<br>sean.sparrow@ghd.com<br>dilara.valiff@ghd.com | <u>n</u>     |                 |                 | Lab C                                            | ommer                      | nts:                 |                           |              | -                                                | - <del>-</del>                                   |              |                                                  |          | Dan                                | win Off                               | ice - Er                        | virolal                               | b Servi                                          |                                                               |
|                        | Sample Infor                                                           | mation       |                 |                 |                                                  |                            |                      |                           |              | •                                                | Tes                                              | ts Req       | uired                                            |          |                                    |                                       |                                 |                                       |                                                  | Comments                                                      |
| Envirolab Sample<br>ID | Client Sample ID or<br>Information                                     | Depth        | Date<br>sampled | Type of sample  | PFAS short suite<br>(LC/MS/MS)                   | Monotith LEAF<br>procedure | PFAS ASLP            | Hold                      |              |                                                  |                                                  |              |                                                  |          |                                    |                                       |                                 |                                       |                                                  | Provide as much<br>Information about the<br>sample as you can |
| · ·                    | 12516828/Tank4/01a                                                     |              | 24/11/2020      | <u>concrete</u> |                                                  | ×                          |                      |                           |              |                                                  |                                                  |              |                                                  |          |                                    |                                       |                                 |                                       |                                                  |                                                               |
| 2                      | 12516828/Tank4/01b                                                     |              | 24/11/2020      | concrete        | Х                                                |                            |                      |                           |              |                                                  |                                                  |              | Ī                                                |          |                                    |                                       |                                 |                                       |                                                  |                                                               |
| NR.                    | 12516828/Tank4/01c                                                     |              | 24/11/2020      | concrete        |                                                  |                            | Ι                    | Х                         |              |                                                  |                                                  |              |                                                  |          |                                    |                                       |                                 |                                       |                                                  | Send to Xypex NSW                                             |
| 3'                     | 12516828/Tank4/02a                                                     |              | 24/11/2020      | concrete        |                                                  | Х                          |                      |                           |              |                                                  |                                                  |              |                                                  |          |                                    |                                       |                                 |                                       |                                                  |                                                               |
| 4                      | 12516828/Tank4/02b                                                     |              | 24/11/2020      | concrete        | Х                                                |                            |                      |                           |              |                                                  |                                                  |              |                                                  |          |                                    |                                       |                                 |                                       |                                                  |                                                               |
| NR                     | 12516828/Tank4/02c                                                     |              | 24/11/2020      | concrete        |                                                  |                            |                      | X                         |              |                                                  |                                                  |              |                                                  |          |                                    |                                       |                                 |                                       |                                                  | Send to Xypex NSW                                             |
| 5                      | 12516828/Tank4/03a                                                     |              | 24/11/2020      | concrete        |                                                  | х                          |                      |                           |              |                                                  |                                                  |              |                                                  |          |                                    |                                       |                                 |                                       |                                                  |                                                               |
| 6_                     | 12516828/Tank4/03b                                                     |              | 24/11/2020      | concrete        | X                                                |                            |                      |                           |              |                                                  |                                                  |              |                                                  |          |                                    |                                       | <u> </u>                        |                                       | L                                                |                                                               |
| NK                     | 12516828/Tank4/03c                                                     |              | 24/11/2020      | concrete        | L.                                               |                            |                      | X                         | <u> </u>     |                                                  |                                                  | <u> </u>     |                                                  |          |                                    | L                                     |                                 |                                       |                                                  | Send to Xypex NSW                                             |
| 7                      | 12516828/Tank1/01a                                                     | ļ            | 24/11/2020      | concrete        | <u> </u>                                         | X                          | ļ                    | ļ                         | ļ            | ļ                                                |                                                  | <u> </u>     | L_                                               |          |                                    |                                       |                                 |                                       |                                                  | ļ                                                             |
| (22) AN-               | 12516828/Tank1/01b                                                     |              | 24/11/2020      | concrete        | х                                                |                            | ļ                    | 1                         |              |                                                  |                                                  |              |                                                  |          |                                    |                                       | <u> </u>                        |                                       |                                                  |                                                               |
| NE                     | 12516828/Tank1/01c                                                     |              | 24/11/2020      | <u>concrete</u> | ┡                                                |                            | <u> </u>             | X                         | _            |                                                  |                                                  |              |                                                  |          |                                    | <b> </b>                              | <u> </u>                        |                                       |                                                  | Send to Xypex NSW                                             |
| - 3                    | 12516828/Tank1/02a                                                     |              | 24/11/2020      | concrete        | <u> </u>                                         | ×                          | <del> </del>         | ļ                         | ļ            | <u> </u>                                         | ļ                                                | <u> </u>     | <u> </u>                                         |          |                                    |                                       | L_                              |                                       | <u> </u>                                         |                                                               |
| <u> </u>               | 12516828/Tank1/02b                                                     |              | 24/11/2020      | <u>concrete</u> | X                                                |                            | ₩                    | ļ.,                       | <u> </u>     | -                                                |                                                  | -            | <u> </u>                                         | 1        |                                    |                                       |                                 |                                       | <u> </u>                                         |                                                               |
| NR                     | 12516828/Tank1/02c                                                     | <u> </u>     | 24/11/2020      | concrete        | <b> </b> -                                       | <del></del>                | ļ                    | X                         | ļ            |                                                  | <b>-</b> -                                       | <u> </u>     | <u> </u>                                         |          |                                    |                                       | ├                               |                                       | _                                                | Send to Xypex NSW                                             |
| <u> </u>               | 12516828/Tank1/03a                                                     | -            | 24/11/2020      | concrete        | ٠.                                               | Х                          |                      |                           |              | -                                                | 1                                                |              | -                                                | _        |                                    | -                                     | ļ                               |                                       | <b>├</b> ─                                       |                                                               |
| 11                     | 12516828/Tank1/03b                                                     | <b></b>      | 24/11/2020      | concrete        | ×                                                | -                          | <del> </del>         | -:-                       | <b>-</b>     |                                                  | ļ                                                | -            |                                                  |          | _                                  |                                       | -                               |                                       | -                                                |                                                               |
| NR.                    | 12516828/Tank1/03c                                                     |              | 24/11/2020      | concrete        | <del> </del> -                                   | -                          | <del>  ,,</del>      | X                         |              | ├                                                | -                                                | -            |                                                  | -        | <u> </u>                           |                                       | ├                               | <u> </u>                              | ├                                                | Send to Xypex NSW                                             |
| 17.                    | HPB1                                                                   |              | 24/11/2020      | paver           | X                                                |                            | X                    | -                         | <u> </u>     | -                                                |                                                  | -            | -                                                |          | _                                  | -                                     |                                 | -                                     | <b>├</b> ─                                       |                                                               |
| 13                     | HPB2                                                                   | -            | 24/11/2020      | paver           | -                                                | -                          |                      | -                         | <u> </u>     | -                                                |                                                  | ├            |                                                  | <b>-</b> | <u> </u>                           | -                                     | ļ                               | -                                     | ₩                                                |                                                               |
| 14                     | HPB3                                                                   | -            | 24/11/2020      | paver           | X                                                | -                          | X                    | <del> </del>              | ₩            | -                                                | <b>!</b>                                         | ├            | ļ                                                | ├        |                                    | <del> </del>                          | -                               | -                                     | <del>                                     </del> | <del>                                     </del>              |
| 15                     | HPB4<br>HPB5                                                           | <u> </u>     | 24/11/2020      | paver           | ×                                                | -                          | ×                    | ├                         | <del> </del> | <del>                                     </del> | <b> </b>                                         | ├            | ļ                                                |          |                                    | ₩                                     | -                               | <del> </del> -                        | <del> </del>                                     | <del> </del>                                                  |
| 16                     | HPB/QA                                                                 | <del></del>  | 24/11/2020      | paver           | l ×                                              |                            | X X                  | <u> </u>                  | ├            |                                                  | <b> </b>                                         | $\vdash$     |                                                  |          |                                    |                                       | -                               | -                                     | $\vdash$                                         | <del></del>                                                   |
| 17                     | HPB/QA<br>W3                                                           | -            | 24/11/2020      | paver           | X                                                | ├—                         | <del>  ^</del>       | +-                        | $\vdash$     | —                                                | <del></del> -                                    | <del> </del> | -                                                | <u> </u> | <u> — </u>                         |                                       | ├                               | <del> </del> —                        | <u> </u>                                         | <del>                                     </del>              |
| 13                     | FD02                                                                   | <del></del>  |                 | , <u>water</u>  | X                                                | -                          | ├-                   | $\vdash$                  | $\vdash$     | $\vdash$                                         | -                                                | $\vdash$     |                                                  |          |                                    | -                                     |                                 | -                                     | <b>├</b> —                                       |                                                               |
| 19                     | FS02 -                                                                 |              | 24/11/2020      | water           | <del>                                     </del> | $\vdash$                   | <del> </del>         | - <u>-</u>                | ├            | _                                                | <del>                                     </del> | $\vdash$     | <del>                                     </del> |          | -                                  | ├                                     | -                               | -                                     | -                                                | <del></del>                                                   |
| 10                     | FB02 (03)                                                              | <b></b>      | 24/11/2020      | water           | ۳                                                | -                          | -                    | <del>  ^-</del>           | -            | -                                                | -                                                | <del></del>  |                                                  |          | -                                  | <b>⊢</b> −                            | ├                               |                                       | $\vdash$                                         |                                                               |
| 2.1                    | 1 FB02 CO 31                                                           | I            | 24/11/2020      | <u>water</u>    | х                                                | 1                          | 1                    | 1                         | 1            | I                                                | 1                                                | ı            | l                                                | ı        |                                    | ı                                     | J.                              | 1                                     | I                                                |                                                               |

Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis

Received by (Company):

Received by (Company):

Print Name:

Print Name:

Print Name:

Date & Time:

Date & Time:

Signature:

Please tick the box if observed settled sediment present in water samples is to be included in the extraction and/or analysis

Lab Use Only

Coolling: ice / cc pack / None

Temperature: 2 6 7 7 7 Security seak intacts Broken / None

Signature:

TAT Req - SAME day / 1 / 2 / 3 / 4 / STD

24/11/2020

Issue date: 7 October 2019

Loncette temp 23.6° water souple 9.7° temp



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 256750**

| Client Details |                                  |  |
|----------------|----------------------------------|--|
| Client         | GHD Pty Ltd                      |  |
| Attention      | Sean Sparrow/Dilara Valiff       |  |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |  |

| Sample Details                       |                                   |
|--------------------------------------|-----------------------------------|
| Your Reference                       | <u>12516828</u>                   |
| Number of Samples                    | Concrete Cores, pavers and Waters |
| Date samples received                | 26/11/2020                        |
| Date completed instructions received | 02/12/2020                        |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                     |                                                                                                |
|------------------------------------|------------------------------------------------------------------------------------------------|
| Date results requested by          | 18/12/2020                                                                                     |
| Date of Issue                      | 12/01/2021                                                                                     |
| Reissue Details                    | This report replaces R00 created on 18/12/2020 due to: revised report with additional results. |
| This document shall not be reprodu | uced except in full.                                                                           |

**Results Approved By** 

Simon Mills, Group R&D Manager

**Authorised By** 

Nancy Zhang, Laboratory Manager

| PFAS in Concrete Short*                            |       |                        |                        |                        |                        |                       |
|----------------------------------------------------|-------|------------------------|------------------------|------------------------|------------------------|-----------------------|
| Our Reference                                      |       | 256750-2               | 256750-4               | 256750-6               | 256750-9               | 256750-11             |
| Your Reference                                     | UNITS | 12516828/Tank4/<br>01b | 12516828/Tank4/<br>02b | 12516828/Tank4/<br>03b | 12516828/Tank1/<br>02b | 12516828/Tank1<br>03b |
| Date Sampled                                       |       | 24/11/2020             | 24/11/2020             | 24/11/2020             | 24/11/2020             | 24/11/2020            |
| Type of sample                                     |       | Solid                  | Solid                  | Solid                  | Solid                  | Solid                 |
| Date prepared                                      | -     | 10/12/2020             | 10/12/2020             | 10/12/2020             | 10/12/2020             | 10/12/2020            |
| Date analysed                                      | -     | 10/12/2020             | 10/12/2020             | 10/12/2020             | 10/12/2020             | 10/12/2020            |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 3.4                    | 2.5                    | <0.1                   | 2.0                    | 0.7                   |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 28                     | 38                     | 0.2                    | 9.3                    | 0.5                   |
| Perfluorooctanoic acid PFOA                        | μg/kg | 0.8                    | 0.7                    | <0.1                   | 0.4                    | <0.1                  |
| 6:2 FTS                                            | μg/kg | 1.3                    | 1.1                    | <0.1                   | 2.2                    | <0.1                  |
| 8:2 FTS                                            | μg/kg | 1                      | 2.5                    | <0.2                   | 2                      | <0.2                  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 92                     | 98                     | 98                     | 98                     | 96                    |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 107                    | 101                    | 101                    | 103                    | 105                   |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 62                     | 63                     | 71                     | 64                     | 73                    |
| Extracted ISTD 13 C <sub>4</sub> PFOS              | %     | 62                     | 57                     | 66                     | 57                     | 70                    |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %     | 51                     | 54                     | 58                     | 54                     | 59                    |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 47                     | 48                     | 50                     | 49                     | 57                    |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 43                     | 46                     | 48                     | 48                     | 54                    |
| Total Positive PFHxS & PFOS                        | μg/kg | 32                     | 41                     | 0.2                    | 11                     | 1.2                   |
| Total Positive PFOS & PFOA                         | μg/kg | 29                     | 39                     | 0.2                    | 9.7                    | 0.5                   |
| Total Positive PFAS                                | μg/kg | 35                     | 45                     | 0.2                    | 15                     | 1.2                   |

| PFAS in Concrete Short*                            |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 256750-12  | 256750-13  | 256750-14  | 256750-15  | 256750-16  |
| Your Reference                                     | UNITS | HPB1       | HPB2       | HPB3       | HPB4       | HPB5       |
| Date Sampled                                       |       | 24/11/2020 | 24/11/2020 | 24/11/2020 | 24/11/2020 | 24/11/2020 |
| Type of sample                                     |       | Solid      | Solid      | Solid      | Solid      | Solid      |
| Date prepared                                      | -     | 11/12/2020 | 11/12/2020 | 11/12/2020 | 11/12/2020 | 11/12/2020 |
| Date analysed                                      | -     | 11/12/2020 | 11/12/2020 | 11/12/2020 | 11/12/2020 | 11/12/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 44         | 71         | 55         | 23         | 0.2        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 140        | 190        | 150        | 65         | 3.7        |
| Perfluorooctanoic acid PFOA                        | μg/kg | 4.8        | 12         | 7.6        | 2.7        | 0.1        |
| 6:2 FTS                                            | μg/kg | 1.6        | 1.1        | 2.1        | 7.3        | 3.8        |
| 8:2 FTS                                            | μg/kg | 2.0        | 2.0        | 1          | 2.0        | 1          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 105        | 109        | 102        | 105        | 104        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 105        | 108        | 107        | 103        | 101        |
| Extracted ISTD 18 O2 PFHxS                         | %     | 77         | 109        | 108        | 71         | 105        |
| Extracted ISTD 13 C4 PFOS                          | %     | 94         | 91         | 96         | 92         | 99         |
| Extracted ISTD 13 C4 PFOA                          | %     | 70         | 64         | 62         | 60         | 103        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 69         | 61         | 62         | 53         | 123        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 97         | 85         | 88         | 64         | 120        |
| Total Positive PFHxS & PFOS                        | μg/kg | 180        | 260        | 200        | 88         | 4.0        |
| Total Positive PFOS & PFOA                         | μg/kg | 140        | 200        | 160        | 68         | 3.9        |
| Total Positive PFAS                                | μg/kg | 190        | 280        | 220        | 100        | 9.4        |

| PFAS in Concrete Short*                            |       |            |                        |
|----------------------------------------------------|-------|------------|------------------------|
| Our Reference                                      |       | 256750-17  | 256750-23              |
| Your Reference                                     | UNITS | HPB/QA     | 12516828/Tank1/<br>01b |
| Date Sampled                                       |       | 24/11/2020 | 24/11/2020             |
| Type of sample                                     |       | Solid      | Solid                  |
| Date prepared                                      | -     | 11/12/2020 | 10/12/2020             |
| Date analysed                                      | -     | 11/12/2020 | 10/12/2020             |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 7.8        | 1.9                    |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 16         | 18                     |
| Perfluorooctanoic acid PFOA                        | μg/kg | 1.0        | 0.3                    |
| 6:2 FTS                                            | μg/kg | 1          | 2.2                    |
| 8:2 FTS                                            | μg/kg | 0.5        | 0.8                    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 102        | 100                    |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 105        | 104                    |
| Extracted ISTD 18 O <sub>2</sub> PFHxS             | %     | 87         | 58                     |
| Extracted ISTD 13 C4 PFOS                          | %     | 77         | 51                     |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 77         | 47                     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 82         | 42                     |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 92         | 45                     |
| Total Positive PFHxS & PFOS                        | μg/kg | 24         | 20                     |
| Total Positive PFOS & PFOA                         | μg/kg | 18         | 18                     |
| Total Positive PFAS                                | μg/kg | 27         | 23                     |

| PFAS in Concrete LEAF/ASLP                  |       |                        |                        |                        |                        |                        |
|---------------------------------------------|-------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Our Reference                               |       | 256750-1               | 256750-3               | 256750-5               | 256750-7               | 256750-8               |
| Your Reference                              | UNITS | 12516828/Tank4/<br>01a | 12516828/Tank4/<br>02a | 12516828/Tank4/<br>03a | 12516828/Tank1/<br>01a | 12516828/Tank1/<br>02a |
| Date Sampled                                |       | 24/11/2020             | 24/11/2020             | 24/11/2020             | 24/11/2020             | 24/11/2020             |
| Type of sample                              |       | Solid                  | Solid                  | Solid                  | Solid                  | Solid                  |
| Date prepared                               | -     | 11/12/2020             | 11/12/2020             | 11/12/2020             | 11/12/2020             | 11/12/2020             |
| Date analysed                               | -     | 11/12/2020             | 11/12/2020             | 11/12/2020             | 11/12/2020             | 11/12/2020             |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L  | 0.75                   | 0.064                  | 0.024                  | 0.032                  | 0.024                  |
| Perfluorooctanesulfonic acid PFOS           | μg/L  | 0.56                   | 0.66                   | 0.13                   | 0.16                   | 0.069                  |
| Perfluorooctanoic acid PFOA                 | μg/L  | 0.065                  | 0.015                  | 0.006                  | 0.007                  | 0.005                  |
| 6:2 FTS                                     | μg/L  | 0.057                  | 0.026                  | 0.005                  | 0.018                  | 0.007                  |
| 8:2 FTS                                     | μg/L  | 0.083                  | 0.027                  | 0.01                   | 0.01                   | 0.01                   |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %     | 92                     | 98                     | 102                    | 98                     | 100                    |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %     | 92                     | 92                     | 93                     | 94                     | 101                    |
| Total Positive PFHxS & PFOS                 | μg/L  | 1.3                    | 0.72                   | 0.15                   | 0.19                   | 0.093                  |
| Total Positive PFOA & PFOS                  | μg/L  | 0.63                   | 0.68                   | 0.13                   | 0.16                   | 0.074                  |
| Total Positive PFAS                         | μg/L  | 1.5                    | 0.79                   | 0.17                   | 0.23                   | 0.12                   |

| PFAS in Concrete LEAF/ASLP                  |          |                        |            |            |            |            |
|---------------------------------------------|----------|------------------------|------------|------------|------------|------------|
| Our Reference                               |          | 256750-10              | 256750-12  | 256750-13  | 256750-14  | 256750-15  |
| Your Reference                              | UNITS    | 12516828/Tank1/<br>03a | HPB1       | HPB2       | HPB3       | HPB4       |
| Date Sampled                                |          | 24/11/2020             | 24/11/2020 | 24/11/2020 | 24/11/2020 | 24/11/2020 |
| Type of sample                              |          | Solid                  | Solid      | Solid      | Solid      | Solid      |
| Date prepared                               | -        | 11/12/2020             | 11/12/2020 | 11/12/2020 | 11/12/2020 | 11/12/2020 |
| Date analysed                               | -        | 11/12/2020             | 11/12/2020 | 11/12/2020 | 11/12/2020 | 11/12/2020 |
| pH of final Leachate                        | pH units | [NA]                   | 11.5       | 11.7       | 11.4       | 11.7       |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L     | 0.042                  | 2.1        | 3.7        | 2.6        | 0.90       |
| Perfluorooctanesulfonic acid PFOS           | μg/L     | 0.16                   | 5.0        | 3.8        | 4.5        | 1.6        |
| Perfluorooctanoic acid PFOA                 | μg/L     | 0.009                  | 0.18       | 0.32       | 0.23       | 0.090      |
| 6:2 FTS                                     | μg/L     | 0.025                  | 0.058      | 0.032      | 0.056      | 0.21       |
| 8:2 FTS                                     | μg/L     | 0.034                  | 0.039      | 0.02       | 0.023      | 0.02       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %        | 98                     | 109        | 100        | 115        | 103        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %        | 95                     | 101        | 100        | 106        | 102        |
| Total Positive PFHxS & PFOS                 | μg/L     | 0.21                   | 7.0        | 7.5        | 7.1        | 2.5        |
| Total Positive PFOA & PFOS                  | μg/L     | 0.17                   | 5.1        | 4.1        | 4.7        | 1.7        |
| Total Positive PFAS                         | μg/L     | 0.27                   | 7.3        | 7.9        | 7.4        | 2.8        |

| PFAS in Concrete LEAF/ASLP                  |          |            |            |
|---------------------------------------------|----------|------------|------------|
| Our Reference                               |          | 256750-16  | 256750-17  |
| Your Reference                              | UNITS    | HPB5       | HPB/QA     |
| Date Sampled                                |          | 24/11/2020 | 24/11/2020 |
| Type of sample                              |          | Solid      | Solid      |
| Date prepared                               | -        | 11/12/2020 | 11/12/2020 |
| Date analysed                               | -        | 11/12/2020 | 11/12/2020 |
| pH of final Leachate                        | pH units | 9.6        | 11.5       |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L     | 0.011      | 0.22       |
| Perfluorooctanesulfonic acid PFOS           | μg/L     | 0.064      | 0.24       |
| Perfluorooctanoic acid PFOA                 | μg/L     | 0.006      | 0.024      |
| 6:2 FTS                                     | μg/L     | 0.11       | 0.020      |
| 8:2 FTS                                     | μg/L     | 0.02       | 0.005      |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS | %        | 96         | 109        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %        | 102        | 104        |
| Total Positive PFHxS & PFOS                 | μg/L     | 0.075      | 0.46       |
| Total Positive PFOA & PFOS                  | μg/L     | 0.069      | 0.26       |
| Total Positive PFAS                         | μg/L     | 0.20       | 0.51       |

| SW846-1315 LEAF Monolith           |             |                        |                        |                         |                        |                        |
|------------------------------------|-------------|------------------------|------------------------|-------------------------|------------------------|------------------------|
| Our Reference                      |             | 256750-1               | 256750-3               | 256750-5                | 256750-7               | 256750-8               |
| Your Reference                     | UNITS       | 12516828/Tank4/<br>01a | 12516828/Tank4/<br>02a | 12516828/Tank4/<br>03a  | 12516828/Tank1/<br>01a | 12516828/Tank1/<br>02a |
| Date Sampled                       |             | 24/11/2020             | 24/11/2020             | 24/11/2020              | 24/11/2020             | 24/11/2020             |
| Type of sample                     |             | Solid                  | Solid                  | Solid                   | Solid                  | Solid                  |
| Date prepared                      | -           | 09/12/2020             | 09/12/2020             | 09/12/2020              | 09/12/2020             | 09/12/2020             |
| Material Description               |             | half cores             | half cores             | half cores              | half cores             | half cores             |
| Mass Before Static Elution Step    | g           | 1,849                  | 1,242                  | 1,972                   | 1,084                  | 1,318                  |
| Mass of Sample Static Elution Step | g           | 1,905                  | 1,246                  | 1,982                   | 1,088                  | 1,325                  |
| Geometry and Dimensions 3D or 1D   | mm D x mm H | 70mm (R) x<br>93mm (H) | 70mm (R) x<br>60mm (H) | 75mm (R) x<br>100mm (H) | 70mm (R) x<br>60mm (H) | 75mm (R) x<br>60mm (H) |
| Elutriate Liquid Type              |             | UHP water              | UHP water              | UHP water               | UHP water              | UHP water              |
| Elutriate Volume Used              | mL          | 4,400                  | 3,330                  | 4,950                   | 3,330                  | 3,670                  |
| Date analysed                      | -           | 10/12/2020             | 10/12/2020             | 10/12/2020              | 10/12/2020             | 10/12/2020             |
| Elutriate Final EC                 | μS/cm       | 270                    | 360                    | 450                     | 430                    | 390                    |
| Elutriate Final pH                 | pH units    | 10.9                   | 11.2                   | 11.3                    | 11.3                   | 11.3                   |

| SW846-1315 LEAF Monolith           |             |                        |
|------------------------------------|-------------|------------------------|
| Our Reference                      |             | 256750-10              |
| Your Reference                     | UNITS       | 12516828/Tank1/<br>03a |
| Date Sampled                       |             | 24/11/2020             |
| Type of sample                     |             | Solid                  |
| Date prepared                      | -           | 09/12/2020             |
| Material Description               |             | half cores             |
| Mass Before Static Elution Step    | g           | 1,260                  |
| Mass of Sample Static Elution Step | g           | 1,265                  |
| Geometry and Dimensions 3D or 1D   | mm D x mm H | 70mm (R) x<br>70mm (H) |
| Elutriate Liquid Type              |             | UHP water              |
| Elutriate Volume Used              | mL          | 3,650                  |
| Date analysed                      | -           | 10/12/2020             |
| Elutriate Final EC                 | μS/cm       | 380                    |
| Elutriate Final pH                 | pH units    | 11.3                   |

| PFAS in Water LOW LEVEL Short                      |       |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|
| Our Reference                                      |       | 256750-18  | 256750-19  | 256750-21  | 256750-22  |
| Your Reference                                     | UNITS | W3         | FD02       | FB02       | RB03       |
| Date Sampled                                       |       | 24/11/2020 | 24/11/2020 | 24/11/2020 | 24/11/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 11/12/2020 | 11/12/2020 | 11/12/2020 | 11/12/2020 |
| Date analysed                                      | -     | 11/12/2020 | 11/12/2020 | 11/12/2020 | 11/12/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     |
| Perfluorooctanoic acid PFOA                        | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     |
| 6:2 FTS                                            | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     |
| 8:2 FTS                                            | μg/L  | <0.002     | <0.002     | <0.002     | <0.002     |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 100        | 100        | 100        | 102        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 85         | 82         | 92         | 93         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 93         | 87         | 95         | 103        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 83         | 80         | 82         | 94         |
| Extracted ISTD 13 C4 PFOA                          | %     | 109        | 107        | 103        | 108        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | 136        | 129        | 113        | 122        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 131        | 119        | 122        | 140        |
| Total Positive PFHxS & PFOS                        | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     |
| Total Positive PFOA & PFOS                         | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     |
| Total Positive PFAS                                | μg/L  | <0.001     | <0.001     | <0.001     | <0.001     |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-001 | pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| INORG-125 | Leaching Environment Assessment Framework (LEAF) methods of leaching using USEPA methods SW846 1313, 1314, 1315 or 1316. All eluates are filtered through 0.45um prior to analysis unless otherwise noted.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | Please note the 1315 is not currently designed for Organic Analyses, however, we understand that the method is being used for SVOCs in the US at present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.                                                                                                                                                                                                                                                                                                                                                                                 |
|           | Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 256750

Revision No: R01

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-029A  | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.                                                                                                                                                                                                                                                                                                                                                                                 |
|           | Analysis is undertaken with LC-MS/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| QUALITY CO                                         | NTROL: PF | AS in Con | crete Short* |            |   | Du         | plicate    |     | Spike Recovery % |            |  |
|----------------------------------------------------|-----------|-----------|--------------|------------|---|------------|------------|-----|------------------|------------|--|
| Test Description                                   | Units     | PQL       | Method       | Blank      | # | Base       | Dup.       | RPD | LCS-1            | 256750-4   |  |
| Date prepared                                      | -         |           |              | 11/12/2020 | 2 | 10/12/2020 | 10/12/2020 |     | 10/12/2020       | 10/12/2020 |  |
| Date analysed                                      | -         |           |              | 11/12/2020 | 2 | 10/12/2020 | 10/12/2020 |     | 10/12/2020       | 10/12/2020 |  |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg     | 0.1       | Org-029      | <0.1       | 2 | 3.4        | 2.8        | 19  | 100              | 108        |  |
| Perfluorooctanesulfonic acid PFOS                  | µg/kg     | 0.1       | Org-029      | <0.1       | 2 | 28         | 26         | 7   | 109              | ##         |  |
| Perfluorooctanoic acid PFOA                        | μg/kg     | 0.1       | Org-029      | <0.1       | 2 | 0.8        | 0.7        | 13  | 99               | 107        |  |
| 6:2 FTS                                            | μg/kg     | 0.1       | Org-029      | <0.1       | 2 | 1.3        | 1.2        | 8   | 115              | 126        |  |
| 8:2 FTS                                            | μg/kg     | 0.2       | Org-029      | <0.2       | 2 | 1          | 1          | 0   | 93               | 91         |  |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %         |           | Org-029      | 95         | 2 | 92         | 102        | 10  | 107              | 105        |  |
| Surrogate 13 C <sub>2</sub> PFOA                   | %         |           | Org-029      | 103        | 2 | 107        | 102        | 5   | 96               | 104        |  |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %         |           | Org-029      | 103        | 2 | 62         | 59         | 5   | 101              | 59         |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %         |           | Org-029      | 103        | 2 | 62         | 52         | 18  | 94               | 48         |  |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %         |           | Org-029      | 103        | 2 | 51         | 52         | 2   | 104              | 49         |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %         |           | Org-029      | 117        | 2 | 47         | 47         | 0   | 112              | 43         |  |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %         |           | Org-029      | 108        | 2 | 43         | 42         | 2   | 113              | 42         |  |

| QUALITY CO                                        | NTROL: PF | AS in Cor | crete Short* |       |    | Du         |            | Spike Recovery % |      |      |
|---------------------------------------------------|-----------|-----------|--------------|-------|----|------------|------------|------------------|------|------|
| Test Description                                  | Units     | PQL       | Method       | Blank | #  | Base       | Dup.       | RPD              | [NT] | [NT] |
| Date prepared                                     | -         |           |              | [NT]  | 17 | 11/12/2020 | 11/12/2020 |                  |      | [NT] |
| Date analysed                                     | -         |           |              | [NT]  | 17 | 11/12/2020 | 11/12/2020 |                  |      | [NT] |
| Perfluorohexanesulfonic acid - PFHxS              | μg/kg     | 0.1       | Org-029      | [NT]  | 17 | 7.8        | 7.4        | 5                |      | [NT] |
| Perfluorooctanesulfonic acid PFOS                 | μg/kg     | 0.1       | Org-029      | [NT]  | 17 | 16         | 18         | 12               |      | [NT] |
| Perfluorooctanoic acid PFOA                       | μg/kg     | 0.1       | Org-029      | [NT]  | 17 | 1.0        | 0.9        | 11               |      | [NT] |
| 6:2 FTS                                           | μg/kg     | 0.1       | Org-029      | [NT]  | 17 | 1          | 1.0        | 0                |      | [NT] |
| 8:2 FTS                                           | μg/kg     | 0.2       | Org-029      | [NT]  | 17 | 0.5        | 0.5        | 0                |      | [NT] |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS       | %         |           | Org-029      | [NT]  | 17 | 102        | 106        | 4                |      | [NT] |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA       | %         |           | Org-029      | [NT]  | 17 | 105        | 102        | 3                |      | [NT] |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS | %         |           | Org-029      | [NT]  | 17 | 87         | 89         | 2                |      | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS  | %         |           | Org-029      | [NT]  | 17 | 77         | 76         | 1                |      | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA  | %         |           | Org-029      | [NT]  | 17 | 77         | 79         | 3                | [NT] | [NT] |

| QUALITY CO                                         | NTROL: PF/ | AS in Cor | crete Short* |       | Duplicate |      |      |     | Spike Recovery % |      |
|----------------------------------------------------|------------|-----------|--------------|-------|-----------|------|------|-----|------------------|------|
| Test Description                                   | Units      | PQL       | Method       | Blank | #         | Base | Dup. | RPD | [NT]             | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029      | [NT]  | 17        | 82   | 87   | 6   |                  | [NT] |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |           | Org-029      | [NT]  | 17        | 92   | 100  | 8   |                  | [NT] |

Envirolab Reference: 256750

Revision No: R01

| QUALITY CONT                                | ROL: PFAS | in Concre | ete LEAF/ASLP |            |    | Du         | plicate    |     | Spike Re   | covery %   |
|---------------------------------------------|-----------|-----------|---------------|------------|----|------------|------------|-----|------------|------------|
| Test Description                            | Units     | PQL       | Method        | Blank      | #  | Base       | Dup.       | RPD | LCS-W1     | 256750-13  |
| Date prepared                               | -         |           |               | 11/12/2020 | 12 | 11/12/2020 | 11/12/2020 |     | 11/12/2020 | 11/12/2020 |
| Date analysed                               | -         |           |               | 11/12/2020 | 12 | 11/12/2020 | 11/12/2020 |     | 11/12/2020 | 11/12/2020 |
| Perfluorohexanesulfonic acid - PFHxS        | μg/L      | 0.001     | Org-029       | <0.001     | 12 | 2.1        | 1.9        | 10  | 105        | 44         |
| Perfluorooctanesulfonic acid PFOS           | μg/L      | 0.001     | Org-029       | <0.001     | 12 | 5.0        | 4.7        | 6   | 108        | 139        |
| Perfluorooctanoic acid PFOA                 | μg/L      | 0.001     | Org-029       | <0.001     | 12 | 0.18       | 0.18       | 0   | 105        | 107        |
| 6:2 FTS                                     | μg/L      | 0.001     | Org-029       | <0.001     | 12 | 0.058      | 0.051      | 13  | 109        | 100        |
| 8:2 FTS                                     | μg/L      | 0.002     | Org-029       | <0.002     | 12 | 0.039      | 0.035      | 11  | 99         | 95         |
| Surrogate 13 C <sub>8</sub> PFOS            | %         |           | Org-029A      | 106        | 12 | 109        | 105        | 4   | 107        | 108        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA | %         |           | Org-029A      | 100        | 12 | 101        | 101        | 0   | 101        | 105        |

| QUALITY CON      | TROL: SW84 | 46-1315 L | EAF Monolith |            | Duplicate |      |      |      | Spike Recovery % |      |
|------------------|------------|-----------|--------------|------------|-----------|------|------|------|------------------|------|
| Test Description | Units      | PQL       | Method       | Blank      | #         | Base | Dup. | RPD  | LCS-W1           | [NT] |
| Date prepared    | -          |           |              | 09/12/2020 | [NT]      | [NT] | [NT] | [NT] | 09/12/2020       | [NT] |
| Date analysed    | -          |           |              | 10/12/2020 | [NT]      | [NT] | [NT] | [NT] | 10/12/2020       | [NT] |

Envirolab Reference: 256750

Revision No: R01

| QUALITY CONTR                                      | OL: PFAS in | Water L0 | OW LEVEL Short |            |    | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|-------------|----------|----------------|------------|----|------------|------------|-----|------------|------------|
| Test Description                                   | Units       | PQL      | Method         | Blank      | #  | Base       | Dup.       | RPD | LCS-W1     | 256750-19  |
| Date prepared                                      | -           |          |                | 11/12/2020 | 18 | 11/12/2020 | 11/12/2020 |     | 11/12/2020 | 11/12/2020 |
| Date analysed                                      | -           |          |                | 11/12/2020 | 18 | 11/12/2020 | 11/12/2020 |     | 11/12/2020 | 11/12/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L        | 0.001    | Org-029        | <0.001     | 18 | <0.001     | <0.001     | 0   | 98         | 90         |
| Perfluorooctanesulfonic acid PFOS                  | μg/L        | 0.001    | Org-029        | <0.001     | 18 | <0.001     | <0.001     | 0   | 95         | 83         |
| Perfluorooctanoic acid PFOA                        | μg/L        | 0.001    | Org-029        | <0.001     | 18 | <0.001     | <0.001     | 0   | 94         | 79         |
| 6:2 FTS                                            | μg/L        | 0.001    | Org-029        | <0.001     | 18 | <0.001     | <0.001     | 0   | 93         | 77         |
| 8:2 FTS                                            | μg/L        | 0.002    | Org-029        | <0.002     | 18 | <0.002     | <0.002     | 0   | 96         | 82         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %           |          | Org-029        | 99         | 18 | 100        | 101        | 1   | 97         | 103        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %           |          | Org-029        | 102        | 18 | 85         | 84         | 1   | 97         | 83         |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %           |          | Org-029        | 96         | 18 | 93         | 90         | 3   | 94         | 86         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %           |          | Org-029        | 75         | 18 | 83         | 78         | 6   | 79         | 87         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %           |          | Org-029        | 98         | 18 | 109        | 108        | 1   | 101        | 111        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %           |          | Org-029        | 110        | 18 | 136        | 133        | 2   | 99         | 128        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %           |          | Org-029        | 136        | 18 | 131        | 125        | 5   | 137        | 132        |

| Result Definitions |                                           |
|--------------------|-------------------------------------------|
| NT                 | Not tested                                |
| NA                 | Test not required                         |
| INS                | Insufficient sample for this test         |
| PQL                | Practical Quantitation Limit              |
| <                  | Less than                                 |
| >                  | Greater than                              |
| RPD                | Relative Percent Difference               |
| LCS                | Laboratory Control Sample                 |
| NS                 | Not specified                             |
| NEPM               | National Environmental Protection Measure |
| NR                 | Not Reported                              |

| Quality Control Definitions        |                                                                                                                                                                                                                                  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 256750 Page | 17 of 18

Revision No: R01

#### **Report Comments**

PFAS in Soil Short - Please note that the analysis of PFAS in concrete and paver is not covered by NATA accreditation.

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

PFAS S SHORT ## Percent recovery is not possible to report due to the high concentration of the analyte in the sample. However an acceptable recovery was obtained for the LCS.

#### Core descriptions:-

(R=approximate radius, H=approximate height)

256750-1: 1 x 1/2 Core (70mm R x 93mm H), approximate surface area = 488cm2

256750-3: 1 x 1/2 Core (70mm R x 60mm H), approximate surface area = 370cm2

256750-5: 1 x 1/2 Core (75mm R x 100mm H), approximate surface area = 562cm2

256750-7: 1 x 1/2 Core (70mm R x 60mm H), approximate surface area = 370cm2

256750-8: 1 x 1/2 Core (75mm R x 60mm H), approximate surface area = 408cm2

256750-10: 1 x 1/2 Core (70mm R x 70mm H), approximate surface area = 406cm2

All measurements are approximates as the cores where not perfect 1/2 cores.

The LEAF process was a modified process i.e. one single 24 hr static elution.

Envirolab Reference: 256750 R01

Revision No:

# **Appendix L** – Photo Log

#### Photograph **Details**



**Date:** May 2020

#### Description:

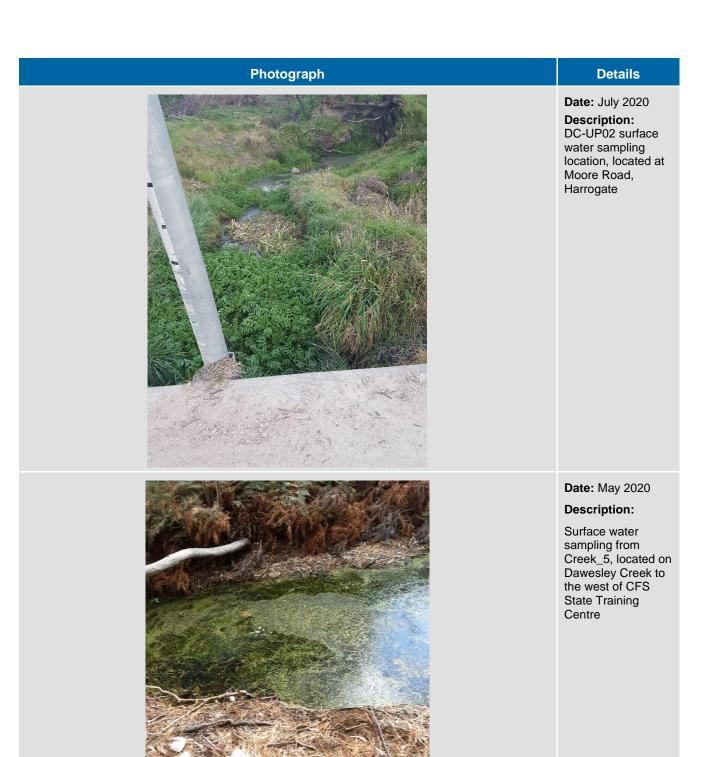
Image 1: Hotpad B covered with concrete pavers. Concrete paved Hotpad A in background.

Image 2: close up of Hotpad B



**Date:** May 2020

#### Description:


Concrete core and borehole SB05 on Hotpad A

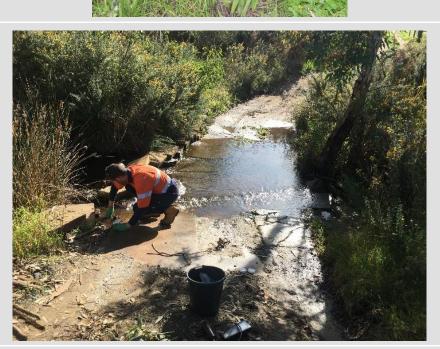


**Date:** May 2020

#### Description:

Soil from bore SB07, located between Dawesley Creek and the CFS
State Training Centre




# **Photograph**



Date: August 2020

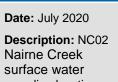
**Description:** 

Creek surface water creek surface water and sediment sampling at DC02A located at 294 Pyrites Rd, Brukunga, south of the CFS site



**Date:** May 2020


**Description:** 


Creek surface water and sediment sampling at DC06A located at 16 Hawthorn St, Dawesley



Date: July 2020

**Description:**Dawesley Creek surface water and sediment sampling at DC10 located at 483 Ironstone Range Rd, Petwood





**Details** 

sampling location, located at Ironstone Range Road, Petwood



Date: July 2020

Description:
MBC02 Mt Barker
Creek surface
water sampling
location, situated off
of Blue Wren Lane,

Wistow

Photograph **Details** 



Description: DC16 Dawesley Creek surface water sampling, located in road easement off of Éclair Mine Road south of the South Eastern Freeway

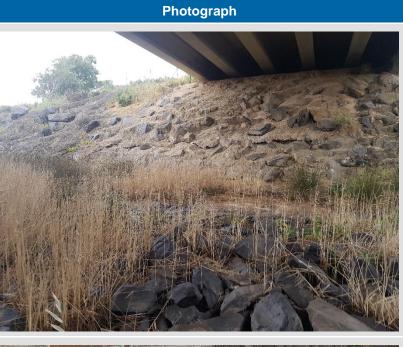
Date: July 2020



Date: August 2020

Description:
DC17A Dawesley
Creek surface water
sampling location,
on 430D Callington
Road south of the South Eastern Freeway

#### Photograph **Details**




Description:
Bremer River
surface water
sampling locations
BR01 (left) and
BR02 (right)



Date: September 2020

Description: Bremer River surface water sampling location BR02\_1C



#### **Details**

Date:

September 2020

**Description:** Bremer River surface water sampling location BR02\_2A



#### Date:

September 2020

**Description:**Bremer River surface water

sampling location BR03\_1A



#### Date:

September 2020

**Description:** Bremer River surface water sampling location BR03\_2C



Photograph


#### Details

Date:

September 2020

Description:

Mt Barker Creek surface water sampling location MBC02\_2A



Date: July 2020

**Description:** 

Bremer River surface water sampling location DC18, located beneath Callington-Strathalbyn Road bridge across Bremer River.

### Photograph



#### Details

Date: June 2020

#### Description:

Installation of groundwater well GW07 on road verge at 260 Pyrites Rd, Brukunga; well finished with gatic cover.



## Date: June 2020

**Description:** 

Installation of groundwater monitoring well C04a on private land at Lot 54 Pyrites Rd, Brukunga; well finished with standpipe

### Photograph Details



# Date: June 2020

Description:

Private groundwater bore located at 16 Hawthorne St, Dawesley, sample Hawthorn1



#### Date: June 2020

#### **Description:**

Private
Groundwater bore
KAN26 located at
203 Peggy Buxton
Rd, Brukunga. Well
was covered with
top soil and was
found using metal
detector.

## Photograph



#### Details

Date: August 2020

#### **Description:**

Private bore 6627-5944 located on 296 Pyrites Rd, Brukunga



#### Date:

September 2020

#### Description:

Private bore 6627-5944 located on 296 Pyrites Rd, Brukunga



#### Date:

September 2020

#### Description:

Soil sampling from disused vegetable garden located on 296 Pyrites Rd, Brukunga





Date:

September 2020

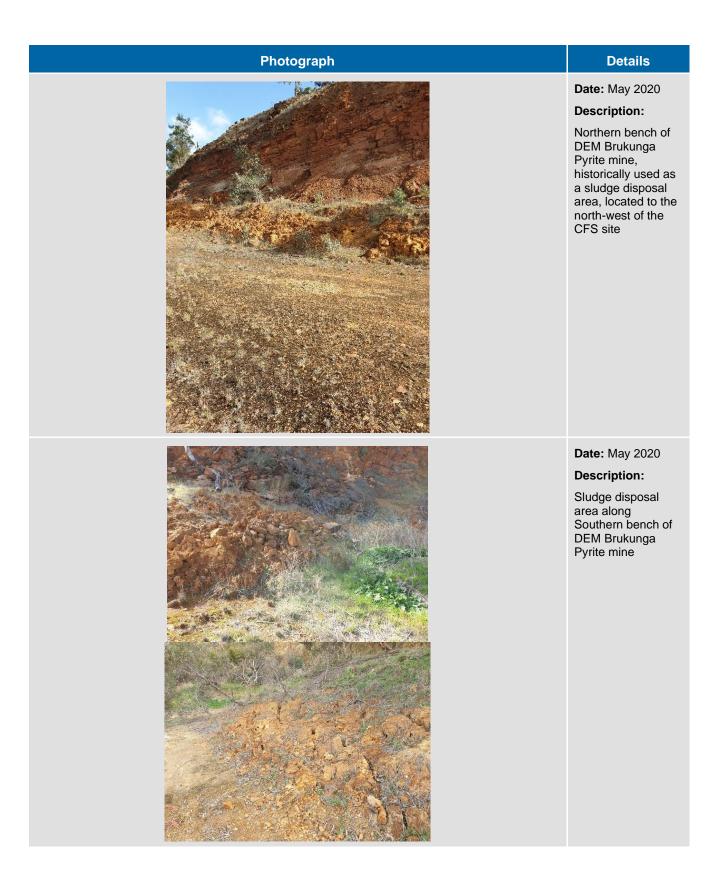
**Description:**Private bore
6627-11131 located
on 483 Ironstone

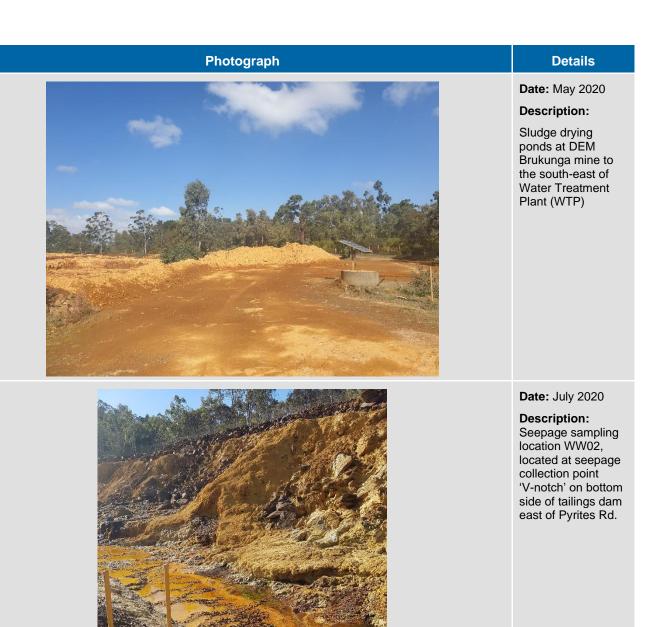
Range Rd, Petwood

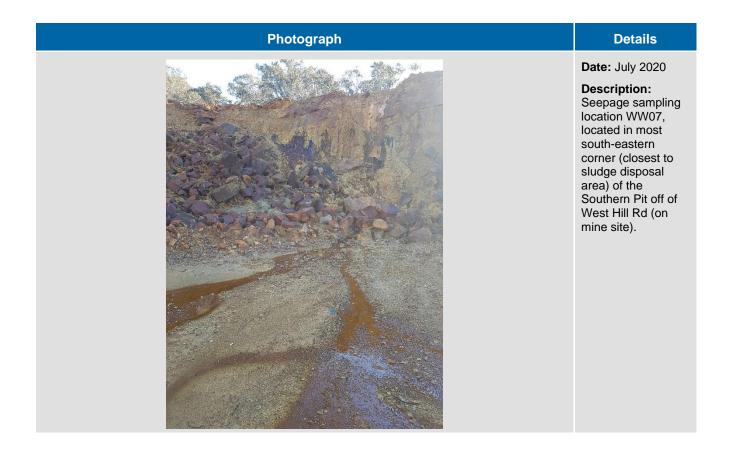


**Date:** May 2020

#### **Description:**


Sludge disposal area on DEM Brukunga Pyrite mine (elevated shelf near centre of mine site), located to the south-west of the CFS site





**Date:** May 2020

## **Description:**

Soil core from borehole SW03, located in the sludge disposal area







# **Appendix M** – Climate Data

# Daily Maximum Temperature (degrees Celsius)

#### MOUNT BARKER

Station Number: 023733 · State: SA · Opened: 1861 · Status: Open · Latitude: 35.07°S · Longitude: 138.85°E · Elevation: 359 m

| 2020          | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct  | Nov  | Dec  |
|---------------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1st           | 28.8 |      | 28.6 | 17.9 | 14.4 | 12.0 | 18.2 | 18.5 | 17.2 | 24.0 | 23.4 | 20.0 |
| 2nd           | 32.8 | 23.3 | 19.4 | 24.1 | 17.2 | 14.9 | 11.9 | 20.1 | 18.0 |      |      | 21.4 |
| 3rd           | 38.2 | 18.9 | 18.3 | 24.0 | 13.5 | 12.3 | 12.0 |      | 15.9 | 27.8 | 32.1 | 26.8 |
| 4th           |      | 22.6 | 24.9 | 17.6 | 16.9 | 15.5 | 15.1 | 12.1 | 16.0 | 25.0 | 16.7 | 29.8 |
| 5th           |      | 24.5 | 18.1 | 17.2 | 18.7 | 16.2 | 15.9 | 11.8 | 18.7 | 15.0 | 15.6 | 19.8 |
| 6th           |      | 27.9 | 23.4 | 17.4 | 19.2 | 14.5 | 11.0 | 10.2 | 22.2 | 15.2 | 18.3 | 20.0 |
| 7th           |      | 25.7 | 22.3 | 17.7 | 19.0 | 12.2 | 10.6 | 7.3  | 25.5 | 10.7 | 19.8 | 17.2 |
| 8th           |      | 31.0 | 22.6 | 18.7 | 15.4 | 11.9 | 13.6 | 9.2  | 16.2 | 14.0 | 25.1 | 21.6 |
| 9th           |      | 29.7 | 22.8 | 21.8 | 14.1 | 14.0 | 14.8 | 12.6 | 18.6 | 19.5 | 30.0 | 27.0 |
| 10th          |      | 30.9 | 28.5 | 20.9 | 16.2 | 15.9 | 14.8 | 15.0 | 21.5 | 22.6 | 33.8 | 22.4 |
| 11th          |      | 24.7 | 32.4 | 18.9 | 16.2 | 16.3 | 10.6 | 12.0 | 25.7 | 22.8 | 22.4 | 27.0 |
| 12th          | 27.7 | 19.1 | 31.7 | 17.4 | 17.0 | 17.7 | 12.6 | 13.3 | 21.6 | 27.4 | 16.0 | 32.5 |
| 13th          | 35.4 | 30.7 | 19.9 | 24.0 | 12.7 | 13.4 | 16.1 | 13.4 | 13.4 | 24.1 | 16.2 | 28.9 |
| 14th          | 34.5 | 24.7 | 19.2 | 28.3 | 12.1 | 12.6 | 15.4 | 14.8 | 17.6 | 29.0 | 27.3 | 33.4 |
| 15th          | 28.3 | 18.2 | 21.5 | 26.1 | 14.4 | 15.5 | 15.8 | 16.2 | 19.5 | 26.1 | 33.8 | 25.0 |
| 16th          | 21.3 | 22.4 | 26.5 | 19.1 | 17.4 | 15.3 | 16.1 | 15.9 | 22.4 | 19.2 | 20.5 | 26.2 |
| 17th          | 22.4 | 32.2 | 31.0 | 17.1 | 18.8 | 13.4 | 18.1 | 15.8 | 15.0 | 17.2 | 24.9 |      |
| 18th          | 28.9 | 23.0 | 30.0 | 17.7 | 19.4 | 16.6 | 15.2 | 12.3 |      | 16.5 | 31.6 |      |
| 19th          | 21.0 | 20.6 | 30.8 | 20.5 | 19.4 | 15.7 | 13.7 | 13.5 | 21.8 | 19.5 | 32.6 |      |
| 20th          |      | 19.4 | 23.2 | 19.3 | 13.4 | 11.8 | 14.1 | 13.0 | 23.9 | 23.0 | 25.0 |      |
| 21st          | 25.4 | 21.9 | 25.6 | 22.0 | 12.2 | 14.4 | 11.6 | 11.7 | 16.5 | 23.4 | 34.0 |      |
| 22nd          | 24.3 | 25.8 | 20.0 | 21.4 | 13.8 | 12.7 | 10.6 | 11.9 | 14.2 | 21.4 | 29.7 |      |
| 23rd          | 19.9 | 32.3 | 21.0 | 20.4 | 14.4 | 14.6 | 14.2 | 13.5 |      | 17.3 | 21.0 |      |
| 24th          | 22.4 | 33.4 | 19.7 | 21.2 | 11.8 | 11.6 | 16.5 | 12.4 |      | 14.8 | 26.2 |      |
| 25th          | 26.8 | 28.6 | 19.2 | 23.8 | 13.6 | 16.0 | 17.8 | 14.3 | 11.8 | 13.4 | 31.4 |      |
| 26th          | 27.4 | 20.9 | 22.6 | 20.7 | 15.1 | 14.9 | 18.1 | 18.5 | 13.3 | 16.3 | 30.4 |      |
| 27th          | 28.4 | 21.6 | 27.3 | 18.0 | 14.9 | 15.7 | 13.7 | 17.6 | 13.8 | 17.5 | 37.9 |      |
| 28th          | 31.2 | 24.4 | 29.7 | 19.0 | 15.8 | 15.9 | 14.4 | 19.4 | 19.0 | 22.9 | 29.7 |      |
| 29th          | 36.7 | 23.4 | 24.4 | 15.4 | 17.2 | 13.0 | 17.3 | 21.9 | 17.2 | 18.8 | 21.6 |      |
| 30th          | 41.0 |      | 22.7 | 12.9 | 19.7 | 14.5 | 16.3 | 13.4 | 15.3 | 14.0 | 29.8 |      |
| 31st          | 34.6 |      | 24.9 |      | 12.4 |      | 17.6 | 13.3 |      | 15.0 |      |      |
| Highest daily | 41.0 | 33.4 | 32.4 | 28.3 | 19.7 | 17.7 | 18.2 | 21.9 | 25.7 | 29.0 | 37.9 | 33.4 |
| Lowest daily  | 19.9 | 18.2 | 18.1 | 12.9 | 11.8 | 11.6 | 10.6 | 7.3  | 11.8 | 10.7 | 15.6 | 17.2 |
| Monthly mean  | 29.0 | 25.1 | 24.3 | 20.0 | 15.7 | 14.4 | 14.6 | 14.2 | 18.2 | 19.8 | 26.1 |      |

Quality control: 12.3 Done & acceptable, 12.3 Not quality controlled or uncertain, 12.3 Precise date unknown



Product code: IDCJAC0010 reference: 69847740

http://www.bom.gov.au/other/copyright.shtml

## Daily Maximum Temperature (degrees Celsius)

#### MOUNT BARKER

Station Number: 023733 · State: SA · Opened: 1861 · Status: Open · Latitude: 35.07°S · Longitude: 138.85°E · Elevation: 359 m

## Statistics for this station calculated over all years of data

|                       | Jan          | Feb         | Mar          | Apr          | May          | Jun         | Jul          | Aug          | Sep          | Oct          | Nov          | Dec          |
|-----------------------|--------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Mean                  | 27.3         | 26.8        | 24.7         | 20.5         | 16.6         | 13.8        | 12.9         | 14.2         | 16.6         | 19.6         | 22.7         | 25.2         |
| Highest monthly mean  | 32.1         | 31.7        | 30.1         | 25.4         | 20.2         | 18.3        | 15.5         | 20.6         | 19.8         | 25.5         | 28.5         | 30.5         |
| Lowest monthly mean   | 23.2         | 22.0        | 20.8         | 16.4         | 13.5         | 11.7        | 10.8         | 11.4         | 3.4          | 15.7         | 19.3         | 20.2         |
| Highest daily         | 44.5         | 43.0        | 40.7         | 36.0         | 28.9         | 24.2        | 23.8         | 27.2         | 31.1         | 35.3         | 40.6         | 42.5         |
| Date of highest daily | 24th<br>2019 | 2nd<br>2014 | 6th<br>1986  | 10th<br>2018 | 8th<br>2013  | 8th<br>2005 | 29th<br>1975 | 30th<br>2007 | 26th<br>1987 | 21st<br>2014 | 30th<br>1962 | 20th<br>2019 |
| Lowest daily          | 14.4         | 15.5        | 13.7         | 9.8          | 8.6          | 6.9         | 6.8          | 6.7          | 7.8          | 9.0          | 10.0         | 11.7         |
| Date of lowest daily  | 3rd<br>1970  | 3rd<br>2005 | 21st<br>2001 | 26th<br>1982 | 27th<br>2000 | 1st<br>1989 | 28th<br>1998 | 11th<br>1960 | 26th<br>1970 | 2nd<br>1967  | 1st<br>1994  | 1st<br>1966  |

#### 1) Calculation of statistics

Summary statistics, other than the Highest and Lowest values, are only calculated if there are at least 10 years of data available.

#### 2) Gaps and missing data

Gaps may be caused by a damaged instrument, a temporary change to the site operation, or due to the absence or illness of an observer.

#### 3) Further information

http://www.bom.gov.au/climate/cdo/about/about-airtemp-data.shtml.



# Daily Minimum Temperature (degrees Celsius)

## **MOUNT BARKER**

Station Number: 023733 · State: SA · Opened: 1861 · Status: Open · Latitude: 35.07°S · Longitude: 138.85°E · Elevation: 359 m

| 2020          | Jan  | Feb  | Mar  | Apr  | May  | Jun  | Jul | Aug  | Sep  | Oct  | Nov  | Dec  |
|---------------|------|------|------|------|------|------|-----|------|------|------|------|------|
| 1st           | 8.0  | 14.6 | 12.1 | 10.0 | 6.5  | 5.2  | 7.2 | 7.7  | 2.3  | 4.0  | 8.2  | 14.1 |
| 2nd           | 9.0  | 11.0 | 10.9 | 7.6  | 9.5  | 6.5  | 6.0 | 6.5  | 11.4 | 15.0 | 8.7  | 9.7  |
| 3rd           | 11.0 | 12.3 | 8.5  | 10.5 | 8.5  | 8.9  | 7.0 | 8.4  | 9.4  |      |      | 5.5  |
| 4th           | 17.0 | 6.6  | 10.1 | 9.5  | 9.1  | 2.0  | 5.4 | 3.0  | 8.0  | 15.5 | 12.0 | 7.5  |
| 5th           |      | 9.0  | 13.7 | 9.8  | 4.8  | 1.0  | 7.5 | -1.2 | 9.0  | 6.9  | 6.4  | 16.9 |
| 6th           |      | 11.4 | 12.5 | 8.8  | 7.3  | 4.5  | 6.9 | 0    | 4.9  | 6.0  | 5.5  | 11.0 |
| 7th           |      | 14.3 | 10.2 | 11.7 | 13.2 | 4.8  | 7.4 | 4.1  | 13.3 | 5.2  | 7.6  | 9.0  |
| 8th           |      | 15.7 | 8.7  | 7.7  | 11.3 | 0    | 0.3 | 4.6  | 13.1 | 6.5  | 5.8  | 8.5  |
| 9th           |      | 15.2 | 10.0 | 6.0  | 6.5  | 0    | 3.0 | 5.3  | 7.0  | 8.0  | 7.6  | 6.3  |
| 10th          |      | 16.0 | 8.3  | 7.0  | 4.0  | -0.3 | 6.0 | 2.5  | 4.0  | 7.2  | 14.9 | 11.1 |
| 11th          |      | 13.9 | 11.4 | 11.4 | 5.0  | -0.6 | 5.8 | 5.8  | 11.8 | 4.4  | 11.6 | 7.6  |
| 12th          |      | 14.5 | 15.5 | 9.2  | 6.4  | 3.1  | 6.0 | 9.5  | 11.0 | 9.2  | 12.0 | 11.6 |
| 13th          | 10.5 | 15.5 | 16.7 | 3.7  | 5.2  | 8.8  | 6.0 | 10.1 | 7.4  | 10.1 | 8.2  | 19.4 |
| 14th          | 12.4 | 16.6 | 8.6  | 8.4  | 7.1  | 7.7  | 3.1 | 8.8  | 6.8  | 10.0 | 8.0  | 21.4 |
| 15th          | 14.2 | 14.6 | 7.4  | 13.4 | 1.0  | 9.6  | 0.8 | 8.2  | 2.6  | 15.5 | 13.5 | 16.2 |
| 16th          | 13.7 | 13.6 | 5.6  | 12.0 | 2.0  | 11.1 | 3.5 | 7.2  | 8.6  | 10.1 | 12.0 | 13.5 |
| 17th          | 9.0  | 11.1 | 12.5 | 8.3  | 2.5  | 7.5  | 2.2 | 4.1  | 10.9 | 9.0  | 5.5  | 13.1 |
| 18th          | 12.0 | 12.8 | 18.5 | 8.5  | 4.7  | 6.1  | 8.0 | 8.5  | 10.5 | 7.7  | 8.4  |      |
| 19th          | 13.5 | 12.4 | 19.6 | 7.3  | 8.9  | 9.5  | 9.5 | 6.9  |      | 3.5  | 16.0 |      |
| 20th          | 13.0 | 9.6  | 13.5 | 12.0 | 5.0  | 8.4  | 4.5 | 7.0  | 13.2 | 4.5  | 11.9 |      |
| 21st          |      | 11.6 | 12.4 | 8.4  | 5.0  | 7.2  | 4.1 | 6.2  | 8.9  | 7.9  | 11.9 |      |
| 22nd          | 14.0 | 8.5  | 11.4 | 9.0  | 7.8  | 7.7  | 6.4 | 3.7  | 8.5  | 10.0 | 15.4 |      |
| 23rd          | 12.0 | 7.8  | 8.0  | 9.0  | 6.8  | 7.6  | 3.4 | 4.3  | 7.5  | 12.9 | 13.0 |      |
| 24th          | 10.5 | 13.0 | 10.8 | 11.7 | 8.6  | 8.0  | 5.0 | 0.6  |      | 9.0  | 9.9  |      |
| 25th          | 13.4 | 12.2 | 8.0  | 9.4  | 6.0  | 4.6  | 3.9 | -1.0 |      | 6.5  | 10.2 |      |
| 26th          | 15.2 | 12.7 | 5.3  | 13.6 | 5.1  | 5.1  | 3.2 | 1.5  | 3.6  | 5.9  | 12.3 |      |
| 27th          | 14.5 | 6.5  | 6.4  | 6.5  | 9.5  | 3.2  | 2.6 | 10.6 | 2.2  | 8.9  | 13.6 |      |
| 28th          | 9.4  | 12.6 | 8.4  | 8.8  | 9.1  | 1.9  | 0.6 | 3.3  | 2.8  | 5.0  | 15.8 |      |
| 29th          | 9.6  | 12.2 | 16.1 | 10.1 | 4.0  | 3.4  | 2.7 | 6.8  | 4.2  | 8.3  | 10.7 |      |
| 30th          | 17.7 |      | 10.9 | 5.4  | 8.3  | 6.0  | 5.8 | 10.5 | 9.9  | 10.0 | 9.0  |      |
| 31st          | 27.0 |      | 8.0  |      | 8.8  |      | 2.8 | 5.3  |      | 9.7  |      |      |
| Highest daily | 27.0 | 16.6 | 19.6 | 13.6 | 13.2 | 11.1 | 9.5 | 10.6 | 13.3 | 15.5 | 16.0 | 21.4 |
| Lowest daily  | 8.0  | 6.5  | 5.3  | 3.7  | 1.0  | -0.6 | 0.3 | -1.2 | 2.2  | 3.5  | 5.5  | 5.5  |
| Monthly mean  | 13.0 | 12.3 | 11.0 | 9.2  | 6.7  | 5.3  | 4.7 | 5.4  | 7.9  | 8.4  | 10.5 |      |

Quality control: 12.3 Done & acceptable, 12.3 Not quality controlled or uncertain, 12.3 Precise date unknown



Product code: IDCJAC0011 reference: 69847809

http://www.bom.gov.au/other/copyright.shtml

## Daily Minimum Temperature (degrees Celsius)

#### MOUNT BARKER

Station Number: 023733 · State: SA · Opened: 1861 · Status: Open · Latitude: 35.07°S · Longitude: 138.85°E · Elevation: 359 m

## Statistics for this station calculated over all years of data

|                       | Jan          | Feb          | Mar         | Apr          | May          | Jun          | Jul          | Aug          | Sep          | Oct          | Nov          | Dec         |
|-----------------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|
| Mean                  | 11.9         | 12.0         | 10.5        | 8.4          | 6.8          | 5.2          | 4.6          | 5.0          | 5.9          | 7.3          | 9.0          | 10.5        |
| Highest monthly mean  | 14.9         | 15.2         | 13.8        | 11.4         | 10.1         | 8.7          | 7.4          | 7.2          | 9.5          | 10.3         | 12.6         | 13.4        |
| Lowest monthly mean   | 8.9          | 9.1          | 7.4         | 4.9          | 3.9          | 1.7          | 1.9          | 2.3          | 2.8          | 4.7          | 6.5          | 5.4         |
| Highest daily         | 28.0         | 28.6         | 25.9        | 23.4         | 17.6         | 15.6         | 15.2         | 15.0         | 18.4         | 21.5         | 25.6         | 26.0        |
| Date of highest daily | 29th<br>2009 | 12th<br>1977 | 4th<br>2004 | 17th<br>2019 | 11th<br>1987 | 9th<br>1995  | 28th<br>1985 | 16th<br>2001 | 28th<br>2014 | 10th<br>1997 | 26th<br>1997 | 7th<br>2015 |
| Lowest daily          | 2.6          | 3.3          | 1.7         | -1.1         | -3.7         | -4.4         | -5.6         | -3.6         | -1.8         | -1.2         | -1.1         | 1.7         |
| Date of lowest daily  | 31st<br>1992 | 1st<br>1961  | 3rd<br>1964 | 16th<br>1963 | 19th<br>1973 | 15th<br>1959 | 10th<br>1959 | 8th<br>1963  | 26th<br>1976 | 15th<br>1970 | 2nd<br>1960  | 7th<br>1961 |

#### 1) Calculation of statistics

Summary statistics, other than the Highest and Lowest values, are only calculated if there are at least 10 years of data available.

#### 2) Gaps and missing data

Gaps may be caused by a damaged instrument, a temporary change to the site operation, or due to the absence or illness of an observer.

#### 3) Further information

http://www.bom.gov.au/climate/cdo/about/about-airtemp-data.shtml.



# Daily Rainfall (millimetres)

#### **NAIRNE**

Station Number: 023739 · State: SA · Opened: 1884 · Status: Open · Latitude: 35.04°S · Longitude: 138.91°E · Elevation: 370 m

| 2020                 | Jan          | Feb          | Mar | Apr          | May          | Jun          | Jul          | Aug          | Sep          | Oct          | Nov          | Dec          |
|----------------------|--------------|--------------|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 1st                  | 0            | 38.4         | 0   | 0            | 5.0          | 21.0         | 0            | 0            | 0            | 1.0          | 0            | 4.4          |
| 2nd                  | 0            | $\downarrow$ | 3.0 | 8.6          | 7.4          | 1.8          | $\downarrow$ | 0            | 0            | 0            | 0            | 0            |
| 3rd                  | 0            | 6.6          | 0   | 0            | $\downarrow$ | 2.6          | 28.8         | 0            | 1.0          | 0            | 0            | 0            |
| 4th                  | 0            | 0            | 1.8 | 10.2         | 0.6          | 0            | 2.6          | 1.4          | 0            | $\downarrow$ | 0            | 0            |
| 5th                  | $\downarrow$ | 0            | 0.6 | 0            | 0            | 0            | 0            | 0            | 0            | $\downarrow$ | 1.6          | 0            |
| 6th                  | 5.2          | 0            | 0.8 | 7.0          | 0            | 0            | 0            | 0            | 0            | 29.2         | 0            | $\downarrow$ |
| 7th                  | 0            | 0            | 0   | 0            | 0            | 0            | 0            | 0.8          | 0            | 3.6          | 0.8          | 7.8          |
| 8th                  | 0            | 2.6          | 0   | 0            | 4.4          | 0            | 0            | 39.0         | 0            | 17.2         | 0            |              |
| 9th                  | 0            | 0            | 0   | 0            | 20.0         | 0            | 0            | $\downarrow$ | 0            | 0            | 0            |              |
| 10th                 | 0            | 0            | 0   | 0            | $\downarrow$ | 0            | 0.4          | 5.8          | 0            | 0            | 0            |              |
| 11th                 | 2.6          | 0            | 0   | 0            | 2.4          | 0            | 0.4          | 0            | 0            | 0            | 5.0          |              |
| 12th                 | 0            | 1.2          | 0   | 0            | 0            | 0            | $\downarrow$ | 3.6          | 0            | 0            | 1.4          |              |
| 13th                 | 0            | 1.0          | 1.2 | 0            | 4.6          | 1.2          | 11.2         | $\downarrow$ | 0            | 0            | 2.6          |              |
| 14th                 | 0            | 0            | 0   | 0            | 1.0          | $\downarrow$ | 0            | 4.8          | 0            | 0            | 0            |              |
| 15th                 | 0            | 5.2          | 0   | 0            | 0            | 26.2         | 0            | 0.4          | 9.0          | 0            | $\downarrow$ |              |
| 16th                 | 0            | 0            | 0   | 0.4          | 0            | 0            | 0            | $\downarrow$ | 0            | $\downarrow$ | 0.6          |              |
| 17th                 | 0            | 1.8          | 0   | 0            | 0            | 2.2          | 0            | 0.8          | 0            | 4.4          | 0            |              |
| 18th                 | 0            | 0            | 0   | 0            | 0            | 0            | 0            | 2.2          | 4.2          | 0            | 0            |              |
| 19th                 | $\downarrow$ | 0            | 0   | $\downarrow$ | 0            | 0            | $\downarrow$ | 17.8         | 0            | 0            | 0            |              |
| 20th                 | 24.2         | 0            | 0   | 3.0          | 6.6          | 0            | 2.4          | 4.6          | $\downarrow$ | 0            | 0            |              |
| 21st                 | 5.0          | 0            | 0   | 0            | $\downarrow$ | $\downarrow$ | 0            | 15.8         | 10.4         | 0            | 0.2          |              |
| 22nd                 | 0            | 0            | 0   | 0            | 6.4          | 26.2         | 0            | 3.8          | 3.0          | 0            | $\downarrow$ |              |
| 23rd                 | 8.0          | 0            | 0.6 | 0            | 8.0          | 4.0          | 0            | $\downarrow$ | 11.6         | 3.2          | 4.8          |              |
| 24th                 | 0            | 0            | 0.4 | 4.2          | 0            | 0.4          | 0            | 3.0          | 0            | 0.6          | 0            |              |
| 25th                 | 0            | 0            | 0   | 0            | $\downarrow$ | 0            | 0            | 0            | 14.0         | 0            | 0            |              |
| 26th                 | 0            | 0            | 0   | $\downarrow$ | 3.4          | 0.6          | $\downarrow$ | 0            | 4.4          | 3.2          | 0            |              |
| 27th                 | 0            | 0.8          | 0   | 20.8         | 0            | 0            | 1.0          | 0            | $\downarrow$ | 4.2          | 0            |              |
| 28th                 | 0            | 0            | 0   | 0            | 0            | 0            | 0            | 0            | 0.2          | 1.2          | 1.4          |              |
| 29th                 | 0            | 0            | 0   | 7.0          | 0.8          | 0            | 0            | 0            | 0            | 0            | 0            |              |
| 30th                 | 0            |              | 0   | 10.4         | 0            | 0            | 0            | $\downarrow$ | 9.8          | 28.0         | 0            |              |
| 31st                 | 0            |              | 0   |              | $\downarrow$ |              | 0            | 1.2          |              | 2.4          |              |              |
| Highest daily        | 8.0          | 38.4         | 3.0 | 10.4         | 20.0         | 4.0          | 2.6          | 39.0         | 14.0         | 28.0         | 5.0          | 4.4          |
| <b>Monthly Total</b> | 45.0         | 57.6         | 8.4 | 71.6         | 70.6         | 86.2         | 46.8         | 105.0        | 67.6         | 98.2         | 18.4         |              |

 $\downarrow$  This day is part of an accumulated total Quality control: 12.3 Done & acceptable,  $\ref{12.3}$  Not completed or unknown



Product code: IDCJAC0009 reference: 69847480

http://www.bom.gov.au/other/copyright.shtml

## Daily Rainfall (millimetres)

#### **NAIRNE**

Station Number: 023739 · State: SA · Opened: 1884 · Status: Open · Latitude: 35.04°S · Longitude: 138.91°E · Elevation: 370 m

## Statistics for this station calculated over all years of data

|                       | Jan          | Feb          | Mar  | Apr          | May          | Jun         | Jul          | Aug          | Sep          | Oct          | Nov          | Dec          |
|-----------------------|--------------|--------------|------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Mean                  | 25.4         | 25.8         | 28.1 | 51.6         | 73.3         | 87.5        | 93.5         | 89.2         | 75.5         | 57.2         | 37.1         | 32.2         |
| Median                | 18.6         | 15.3         | 19.2 | 42.6         | 65.6         | 84.2        | 89.2         | 86.9         | 70.0         | 53.4         | 32.8         | 25.3         |
| Highest daily         | 120.7        | 134.9        | 86.4 | 73.4         | 62.2         | 61.8        | 81.8         | 54.6         | 58.6         | 64.8         | 64.5         | 58.8         |
| Date of highest daily | 25th<br>1941 | 18th<br>1946 |      | 18th<br>1938 | 10th<br>1911 | 7th<br>1994 | 13th<br>1918 | 26th<br>1963 | 29th<br>2016 | 31st<br>1997 | 18th<br>1964 | 18th<br>1992 |

#### 1) Calculation of statistics

Summary statistics, other than the Highest and Lowest values, are only calculated if there are at least 20 years of data available.

#### 2) Gaps and missing data

Gaps may be caused by a damaged instrument, a temporary change to the site operation, or due to the absence or illness of an observer.

#### 3) Further information

http://www.bom.gov.au/climate/cdo/about/about-rain-data.shtml.



#### **NAIRNE**

Station Number: 023739 · State: SA · Opened: 1884 · Status: Open · Latitude: 35.04°S · Longitude: 138.91°E · Elevation: 370 m

| Year         | Jan         | Feb        | Mar        | Apr          | May          | Jun            | Jul           | Aug            | Sep           | Oct          | Nov          | Dec   | Annual          |
|--------------|-------------|------------|------------|--------------|--------------|----------------|---------------|----------------|---------------|--------------|--------------|-------|-----------------|
| 1884         | 36.3        | 4.3        | 70.1       | 31.8         | 247.2        | 127.5          | 13.8          | 92.7           | 93.7          | 57.9         | 9.3          | 40.4  | 825.0           |
| 1885         | 5.1         | 46.1       | 14.8       | 48.3         | 48.2         | 113.2          | 68.8          | 102.9          | 56.6          | 49.3         | 13.4         | 34.0  | 600.7           |
| 1886         | 41.9        | 15.8       | 5.1        | 37.9         | 31.2         | 24.4           | 145.3         | 133.1          | 96.4          | 76.7         | 16.6         | 4.8   | 629.2           |
| 1887         | 15.7        | 32.0       | 13.3       | 41.4         | 75.7         | 166.8          | 142.2         | 47.5           | 101.5         | 68.5         | 98.4         | 30.2  | 833.2           |
| 1888         | 20.3        | 2.3        | 16.9       | 5.1          | 67.8         | 152.7          | 130.6         | 74.8           | 43.1          | 12.5         | 14.3         | 25.3  | 565.7           |
| 1889         | 105.5       | 20.0       | 13.2       | 187.4        | 105.2        | 190.0          | 46.2          | 160.7          | 75.7          | 84.9         | 46.3         | 10.2  | 1045.3          |
| 1890         | 42.4        | 32.4       | 16.9       | 17.6         | 35.7         | 171.3          | 160.1         | 157.0          | 64.8          | 118.3        | 71.0         | 14.7  | 902.2           |
| 1891         | 21.8        | 2.1        | 23.1       | 46.0         | 11.5         | 53.9           | 98.2          | 68.9           | 50.5          | 107.9        | 46.2         | 67.4  | 597.5           |
| 1892         | 38.4        | 2.5        | 24.5       | 33.3         | 60.5         | 84.8           | 96.2          | 112.3          | 126.1         | 115.7        | 26.3         | 46.5  | 767.1           |
| 1893         | 6.2         | 0.5        | 19.4       | 84.1         | 173.8        | 119.6          | 83.6          | 78.6           | 145.9         | 54.6         | 64.2         | 18.3  | 848.8           |
| 1894         | 28.0        | 3.2        | 80.9       | 53.2         | 42.0         | 107.1          | 98.4          | 101.9          | 69.8          | 83.5         | 3.4          | 76.7  | 748.1           |
| 1895         | 15.7        | 2.3        | 42.9       | 111.7        | 25.5         | 101.7          | 156.6         | 100.3          | 86.1          | 33.2         | 3.3          | 15.0  | 694.3           |
| 1896         | 37.5        | 27.6       | 11.4       | 142.7        | 57.6         | 95.5           | 82.4          | 61.0           | 42.1          | 35.8         | 12.2         | 32.5  | 638.3           |
| 1897         | 12.6        | 51.2       | 14.1       | 16.7         | 105.2        | 72.8           | 67.6          | 139.9          | 84.4          | 16.0         | 7.4          | 0.5   | 588.4           |
| 1898         | 0.0         | 57.5       | 15.2       | 65.8         | 89.9         | 176.6          | 121.7         | 52.0           | 41.4          | 93.7         | 52.5         | 14.0  | 780.3           |
| 1899         | 38.6        | 25.6       | 31.8       | 46.8         | 62.0         | 138.9          | 35.2          | 54.3           | 62.7          | 37.3         | 51.6         | 12.7  | 597.5           |
| 1900         | 19.7        | 1.0        | 82.2       | 95.2         | 74.6         | 134.5          | 44.5          | 174.0          | 69.4          | 35.1         | 24.1         | 4.6   | 758.9           |
| 1901         | 34.2        | 5.1        | 12.2       | 39.4         | 34.5         | 180.3          | 74.6          | 48.2           | 83.4          | 82.4         | 22.9         | 16.0  | 633.2           |
| 1902         | 16.8        | 33.0       | 63.6       | 13.7         | 34.3         | 138.3          | 66.5          | 60.2           | 54.0          | 66.0         | 15.0         | 77.5  | 638.9           |
| 1903         | 19.3        | 28.1       | 50.3       | 96.6         | 57.2         | 97.4           | 106.6         | 83.9           | 147.7         | 28.8         | 87.0         | 24.1  | 827.0           |
| 1904         | 98.8        | 26.9       | 15.5       | 61.5         | 67.5         | 90.6           | 75.4          | 71.6           | 23.3          | 46.6         | 24.0         | 0.5   | 602.2           |
| 1905         | 45.3        | 9.4        | 4.1        | 156.0        | 67.4         | 111.4          | 117.5         | 53.4           | 106.4         | 111.7        | 13.3         | 0.6   | 796.5           |
| 1906         | 1.5         | 2.8        | 84.3       | 25.4         | 71.4         | 134.5          | 120.2         | 124.1          | 106.5         | 75.5         | 87.9         | 43.7  | 877.8           |
| 1907         | 2.6         | 12.2       | 21.9       | 48.9         | 67.5         | 72.5           | 76.2          | 98.8           | 58.5          | 39.5         | 71.4         | 17.6  | 587.6           |
| 1908         | 7.7         | 11.0       | 61.6       | 33.5         | 134.0        | 105.8          | 62.7          | 72.0           | 120.6         | 64.2         | 9.9          | 7.4   | 690.4           |
| 1909         | 20.5        | 21.6       | 20.9       | 143.6        | 130.5        | 110.6          | 125.5         | 171.3          | 65.9          | 96.3         | 79.8         | 17.3  | 1003.8          |
| 1910         | 5.1         | 0.6        | 200.6      | 20.3         | 111.8        | 91.6           | 131.1         | 74.2           | 79.0          | 76.7         | 39.9         | 58.4  | 889.3           |
| 1911         | 13.9        | 105.5      | 24.9       | 18.5         | 143.5        | 85.2           | 83.0          | 43.6           | 76.8          | 31.6         | 9.7          | 28.3  | 664.5           |
| 1912         | 3.8         | 21.6       | 27.0       | 17.7         | 15.1         | 67.7           | 103.3         | 62.2           | 172.9         | 28.4         | 51.7         | 33.7  | 605.1           |
| 1913         | 5.1         | 53.1       | 65.5       | 34.0         | 30.9         | 13.4           | 52.6          | 86.9           | 85.9          | 66.5         | 29.0         | 46.7  | 569.6           |
| 1914         | 22.2        | 29.5       | 13.4       | 75.7         | 60.5         | 18.2           | 51.2          | 13.9           | 24.0          | 9.4          | 41.0         | 20.1  | 379.1           |
| 1915         | 9.7<br>14.0 | 1.3<br>7.9 | 6.1<br>9.4 | 53.6<br>50.7 | 77.3<br>24.7 | 223.9<br>180.5 | 78.4<br>111.0 | 128.6          | 148.5<br>96.5 | 24.7<br>65.6 | 15.7<br>74.8 | 29.9  | 769.1           |
| 1916<br>1917 | 13.3        | 51.5       | 69.6       | 28.6         | 153.8        | 116.1          | 217.8         | 117.2<br>112.2 | 157.0         | 98.6         | 34.4         | 34.8  | 782.2<br>1087.7 |
| 1917         | 10.6        | 9.7        | 23.7       | 41.6         | 73.0         | 88.4           | 158.8         | 76.2           | 26.9          | 64.4         | 7.6          | 12.2  | 593.1           |
| 1918         | 7.4         | 68.8       | 18.9       | 2.3          | 73.0         | 53.6           | 69.6          | 78.0           | 107.2         | 62.3         | 6.4          | 41.4  | 588.8           |
| 1919         | 6.3         | 4.6        | 24.9       | 20.8         | 72.7         | 145.9          | 69.1          | 126.0          | 61.1          | 82.7         | 65.5         | 40.2  | 719.8           |
| 1921         | 48.8        | 17.1       | 76.1       | 26.0         | 85.6         | 59.2           | 77.2          | 53.1           | 114.6         | 53.7         | 80.7         | 21.8  | 713.9           |
| 1921         | 78.0        | 4.3        | 8.4        | 59.4         | 74.0         | 92.5           | 130.6         | 90.5           | 42.0          | 73.1         | 4.9          | 85.2  | 742.9           |
| 1923         | 8.1         | 2.1        | 0.0        | 0.0          | 213.9        | 192.1          | 106.3         | 82.4           | 151.1         | 62.1         | 20.3         | 82.3  | 920.7           |
| 1924         | 35.1        | 44.6       | 42.8       | 31.8         | 80.1         | 112.1          | 18.4          | 67.9           | 102.0         | 96.9         | 42.0         | 4.6   | 678.3           |
| 1925         | 11.7        | 34.8       | 11.2       | 35.1         | 117.7        | 40.8           | 45.3          | 58.3           | 132.1         | 22.8         | 34.8         | 1.3   | 545.9           |
| 1926         | 2.1         | 20.9       | 2.0        | 70.7         | 124.0        | 47.9           | 83.6          | 116.5          | 67.1          | 80.4         | 12.6         | 41.4  | 669.2           |
| 1927         | 17.3        | 56.7       | 17.7       | 16.6         | 123.3        | 57.4           | 83.5          | 169.7          | 29.5          | 23.6         | 67.2         | 40.8  | 703.3           |
| 1928         | 27.0        | 60.2       | 40.1       | 21.1         | 50.3         | 126.9          | 111.7         | 18.8           | 57.5          | 113.5        | 12.0         | 4.6   | 643.7           |
| 1929         | 21.3        | 6.6        | 14.4       | 17.4         | 41.3         | 125.3          | 72.2          | 58.0           | 79.3          | 33.4         | 50.2         | 118.0 | 637.4           |
| 1930         | 3.1         | 22.3       | 4.7        | 43.8         | 19.6         | 45.1           | 118.0         | 135.6          | 89.8          | 92.8         | 29.2         | 15.2  | 619.2           |
| 1931         | 35.0        | 5.1        | 26.7       | 36.3         | 82.5         | 107.4          | 125.6         | 78.0           | 115.3         | 24.7         | 20.7         | 7.1   | 664.4           |

Quality control: 12.3 Done & acceptable, 12.3 Not completed or unknown



#### **NAIRNE**

Station Number: 023739 · State: SA · Opened: 1884 · Status: Open · Latitude: 35.04°S · Longitude: 138.91°E · Elevation: 370 m

| 1932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Year | Jan   | Feb   | Mar  | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec  | Annual         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|----------------|
| 1934   22.4   8.9   19.5   63.3   2.1   39.6   36.8   104.0   100.6   77.3   83.9   32.8   57.9     1936   47.3   21.8   13.3   60.9   56.0   66.4   80.0   99.3   30.7   90.5   44.8   45.0   73.8     1937   84.9   9.9   19.5   44.1   60.0   42.1   51.0   123.0   87.6   32.5   36.0   561.6     1938   20.1   44.1   44.4   12.97   11.1   71.3   66.3   92.6   31.2   23.9   28.7   8.7     1940   36.5   10.1   15.8   99.5   40.3   26.3   102.6   34.6   49.9   23.1   32.4   31.2   57.9     1941   198.8   11.0   42.2   40.2   26.9   33.8   78.2   40.8   141.7   39.3   10.0   18.6   68.1     1942   35.9   8.2   2.2   79.1   151.4   117.4   89.1   117.6   113.2   34.3   52.7   161.1   81.1     1943   35.6   44.1   6.9   61.5   30.7   66.1   99.3   114.2   75.1   36.8   30.4   21.2   61.9     1944   36.5   15.8   49.9   44.3   128.5   14.0   88.4   15.0   18.6   69.5     1945   30.9   44.6   6.2   13.9   52.6   47.0   34.5   10.46   92.5   87.9   56.2   45.2   61.9     1946   38.9   15.0   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81.9     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   17.5   81.3   98.5   41.3   43.1   43.1   83.1     1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   10.8   18.3   10.0   79.0   42.3   61.9     1950   2.6   28.1   45.7   27.1   95.7   44.4   50.3   71.1   55.1   68.6   16.8   12.7   51.9     1951   27.2   24.0   21.5   56.2   159.9   75.0   188.3   13.1   20.7   11.7   17.2   42.2   57.0   84.5     1951   27.2   24.0   21.5   56.2   159.9   75.0   188.3   13.1   20.7   17.7   42.2   57.0   84.5     1951   27.2   24.0   21.5   56.2   159.9   75.0   188.3   13.1   20.7   17.7   42.2   57.0   84.5     1952   20.2   74.1   15.7   57.5   12.8   13.7   57.0   48.8   83.7   99.0   48.8   47.7   57.0   84.5     1953   24.9   14.7   21.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.0   70.1   70.5     1953   24.9   14.7   21.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.0   70.1   70.5     1953   24.9   44.7   21.1   34.5   5 | 1932 | 1.8   | 41.5  | 33.3 | -     | 44.5  | 146.8 |       | 116.6 | 1     | 62.4  | 15.4  | 9.9  | 808.1          |
| 1935   340   9.5   43.5   73.9   38.5   104.0   109.7   110.4   112.2   62.9   24.3   16.0   7.5     1936   47.3   21.8   13.3   60.9   56.0   66.4   80.0   59.3   30.7   90.5   14.8   45.0   59.1     1937   84.9   9.9   19.5   44.1   60.0   42.1   51.0   123.0   87.6   32.5   30.0   56.1   66.1     1938   20.1   44.1   4.4   129.7   11.1   71.3   66.3   92.6   31.2   23.9   28.7   8.7   57.5     1939   38.9   91.5   24.0   42.5   64.2   120.0   53.9   147.7   22.5   38.2   110.4   88.7     1940   36.5   10.1   15.8   99.5   40.3   26.3   102.6   34.6   49.9   23.1   32.4   31.2   59.1     1941   195.8   11.0   42.2   40.2   26.9   33.8   78.2   40.8   141.7   39.3   10.0   18.6   68.1     1942   35.9   8.2   2.2   79.1   151.4   117.4   89.1   117.6   113.2   34.3   52.7   161.8     1943   35.6   41.1   60.6   61.5   30.7   66.1   95.3   114.2   75.1   36.8   30.4   21.2   61.2     1944   3.6   15.8   49.   44.3   128.5   14.0   88.4   15.0   18.6   59.2   62.1   32.5   49.1     1945   30.9   43.6   62.   13.9   52.6   47.9   34.5   10.6   69.2   58.7   56.2   45.2   61.1     1946   38.9   156.9   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81.1     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   99.5   43.3   43.1   8.1     1947   5.2   28.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   99.5   43.3   43.1   8.1     1949   6.9   73.5   3.6   13.0   58.8   45.8   77.5   38.0   27.6   145.4   63.0   46.5   57.9     1950   2.6   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   68.6   68.8   12.7   51.1     1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   131.1   20.7   177.2   44.6   63.0   46.5   55.3   175.5   183.3   131.1   20.7   177.2   44.9   47.7   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5 |      | 85.9  | 3.1   | 28.3 | 68.2  | 179.4 | 35.8  | 58.6  | 92.7  | 149.2 | 30.8  | 13.4  | 34.3 | 779.7          |
| 1938   34.0   9.5   43.5   73.9   38.5   104.0   109.7   1104   112.2   62.0   24.3   14.6   77.     1937   84.9   9.9   19.5   44.1   60.0   42.1   51.0   123.0   87.6   32.5   36.0   56.1   66.     1938   20.1   44.1   4.4   129.7   11.1   71.3   66.3   92.6   31.2   23.9   28.7   8.7   52.5     1939   38.9   91.5   24.0   42.5   64.2   120.0   53.9   147.7   22.5   38.2   110.4   86.7   76.5     1941   195.8   11.0   42.2   40.2   26.9   33.8   78.2   40.8   141.7   33.3   16.0   18.6   69.1     1942   35.9   8.2   2.2   79.1   151.4   117.4   89.1   117.6   113.2   34.3   52.7   16.1   81.5     1943   33.6   41.1   6.9   61.5   30.7   66.1   95.3   114.2   75.1   36.8   30.4   21.2   61.1     1944   3.6   15.8   49.4   44.3   128.5   14.0   88.4   15.0   18.6   59.2   62.1   32.5   48.1     1945   38.9   156.9   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81.9     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   89.4   78.3   89.5   41.3   43.1   81.8     1949   6.9   73.5   3.6   13.0   58.8   45.8   77.5   38.0   27.6   145.4   63.0   46.5     1950   2.6   28.1   45.7   27.1   55.7   41.4   50.3   71.1   55.1   68.6   66.8     1950   2.6   28.1   45.7   27.1   55.7   41.4   50.3   71.1   55.1   68.6   66.5   65.5   31.0     1950   2.6   28.1   45.7   27.1   55.7   41.4   50.3   71.1   55.1   68.6   68.6   68.1     1951   27.2   24.0   21.1   56.2   159.9   75.0   183.3   131.1   20.7   117.2   41.2   57.0     1951   27.2   24.0   24.7   24.7   27.1   55.3   71.5   71.5   88.6   65.5   31.0   88.5     1952   50.2   74.4   15.5   67.8   13.3   58.8   45.8   77.5   38.0   27.6   145.4   63.0   46.6   55.5     1953   24.9   44.7   24.1   34.5   55.3   71.5   91.3   73.8   84.0   41.4   36.6   70.1   70.1     1954   49.4   93.1   44.7   57.5   58.5   77.5   88.3   77.5   38.0   27.6   45.5   59.5   55.5   31.0   88.5     1953   24.9   44.7   24.1   34.5   55.3   71.5   91.3   73.8   84.0   41.4   36.6   57.5   31.0   81.5     1954   49.4   93.1   44.7   57.5   58.5   57.7    | 1934 | 22.4  | 8.9   | 19.5 | 63.3  | 2.1   | 39.6  | 36.8  | 104.0 | 100.6 | 77.3  | 83.9  | 32.8 | 591.2          |
| 1937   84.9   9.9   19.5   44.1   60.0   42.1   51.0   123.0   87.6   32.5   36.0   56.1   60.0     1938   20.1   44.1   4.4   129.7   11.1   71.3   66.3   92.6   31.2   23.9   28.7   8.7   8.7     1940   36.5   10.1   15.8   99.5   40.3   26.3   102.6   34.6   49.9   23.1   32.4   31.2   56.0     1941   1958   11.0   42.2   40.2   26.9   33.8   78.2   40.8   41.7   39.3   16.0   18.6   69.0     1942   35.9   8.2   2.2   79.1   151.4   117.4   89.1   117.6   11.2   34.3   52.7   16.1   81.1     1943   35.6   41.1   6.9   61.5   30.7   66.1   95.3   114.2   75.1   36.8   30.4   21.2   61.1     1944   3.6   15.8   4.9   44.3   128.5   14.0   88.4   15.0   18.6   69.2   62.1   32.5   41.1     1945   30.9   43.6   6.2   13.9   52.6   47.9   34.5   104.6   92.5   87.9   66.2   45.2   61.1     1946   38.9   156.9   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   98.5   41.3   43.1   83.1     1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   10.8   81.3   199.0   79.0   42.3   61.1     1950   2.0   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   66.6   68.6   61.8   127.7     1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   31.1   20.7   117.2   14.2   57.0   88.1     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   44.4   36.6   127.7     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   44.4   36.6   127.7     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   44.4   36.6   127.7     1954   19.4   9.3   14.7   95.4   42.7   73.4   49.2   37.2   37.3   66.2   39.3   29.6   51.1     1955   2.5   2.7   7.4   1.5   67.8   123.7   68.2   78.9   66.6   88.5   62.5   94.5   22.9   77.0     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   44.4   36.6   70.1   79.5     1955   3.8   73.9   14.0   61.3   188.6   159.6   49.9   178.9   36.6   88.5   62.5   94.5   22.9   77.0   88.0   79.5   79.5   79.5   79.9   44.8   88.5   79.9    |      | 34.0  | 9.5   | 43.5 | 73.9  | 38.5  | 104.0 | 109.7 | 110.4 | 112.2 | 62.9  | 24.3  | 16.0 | 738.9          |
| 1938   20.1   44.1   4.4   129.7   11.1   71.3   66.3   92.6   31.2   23.9   28.7   8.7   55.5     1939   38.9   91.5   24.0   42.5   64.2   120.0   53.9   147.7   22.5   38.2   110.4   86.6   77     1940   36.5   10.1   15.8   99.5   40.3   26.3   102.6   34.6   49.9   23.1   32.4   31.2   55.5     1941   195.8   11.0   42.2   40.2   26.9   33.8   78.2   40.8   141.7   39.3   16.0   18.6   69.5     1942   35.9   8.2   2.2   79.1   151.4   117.4   89.1   117.6   113.2   34.3   52.7   16.1   88.1     1943   35.6   41.1   6.9   61.5   30.7   66.1   95.5   114.2   75.1   36.8   30.4   21.2   61.5     1944   3.6   15.8   4.9   44.3   128.5   144.0   88.4   15.0   18.6   59.2   62.1   32.5   44.5     1945   30.9   43.6   6.2   13.9   52.6   47.9   34.5   104.6   92.5   87.9   56.2   45.2   61.5     1946   38.9   156.9   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81.9     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   98.5   41.3   43.1   83.5     1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   103.8   18.3   109.0   79.0   42.3   63.5     1950   2.6   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   68.6   16.8   12.7   51.9     1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   131.1   20.7   117.2   14.2   57.0   89.5     1952   25.2   44.7   24.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   70.5     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   70.5     1955   37.4   38.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   48.5   10.5     1956   12.7   92   42.7   90.7   100.1   179.3   114.8   110.2   78.9   53.4   25.7   92.8   32.5     1957   00.0   1.3   8.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   45.5   10.5     1956   48.8   00.0   92.2   42.6   70.5   48.8   52.9   67.7   50.8   22.1   57.5   20.3   44.5     1966   75.5   23.1   35.8   37.7   60.7   34.8   52.9   67.7   50.8   22.1   57.5   20.3   44.5     1967   48.8   00.0   92.2   42.6   70.5   48.8   52.9  |      | 47.3  | 21.8  | 13.3 | 60.9  | 56.0  | 66.4  | 80.0  | 59.3  | 30.7  | 90.5  | 14.8  | 45.0 | 586.0          |
| 1939   38.9   91.5   24.0   42.5   64.2   120.0   53.9   147.7   22.5   38.2   110.4   8.6   76.     1940   36.5   10.1   15.8   99.5   40.3   26.3   102.6   34.6   49.9   23.1   32.4   32.1   32.4     1941   195.8   11.0   42.2   40.2   26.9   33.8   78.2   40.8   41.7   39.3   16.0   18.6   68.     1942   35.9   8.2   2.2   79.1   151.4   117.4   89.1   117.6   113.2   34.3   52.7   16.1   81.1     1943   36.6   41.1   6.9   61.5   30.7   66.1   95.3   114.2   75.1   36.8   30.4   21.2   61.1     1944   36.6   41.1   6.9   61.5   30.7   66.1   95.3   114.2   75.1   36.8   30.4   21.2   61.1     1945   30.9   43.6   6.2   13.9   52.6   47.9   34.5   104.6   92.5   87.9   56.2   45.2   61.1     1946   38.9   156.9   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81.1     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   98.5   41.3   43.1   83.1     1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   103.8   18.3   109.0   79.0   42.3   65.1     1949   6.9   77.5   3.6   13.0   58.8   45.8   77.5   38.0   27.6   145.4   63.0   40.5     1950   2.6   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   68.6   16.8   12.7   51.1     1951   27.2   24.0   2.1   56.2   19.99   75.0   183.3   131.1   20.7   117.2   14.2   57.0   88.1     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   44.4   36.6   70.1     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   44.4   36.6   70.1     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   44.4   36.6   70.1     1954   19.4   9.3   14.0   61.3   158.6   159.6   49.9   17.9   36.6   58.5   62.5   94.5   22.9   77.0     1955   3.8   73.9   14.0   61.3   158.6   159.6   49.9   17.9   36.6   58.5   62.5   94.5   22.9   77.0     1957   0.0   1.3   8.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   48.5   10.5   47.1     1966   7.5   23.1   38.8   37.7   62.7   60.2   113.0   58.9   10.2   33.1   22.9   13.7   50.6     1966   7.5   23.1   38.8   37.7   62.7   60.2   113 | 1937 | 84.9  | 9.9   | 19.5 | 44.1  | 60.0  | 42.1  | 51.0  | 123.0 | 87.6  | 32.5  | 36.0  | 56.1 | 646.7          |
| 1940   36.5   10.1   15.8   99.5   40.3   26.3   102.6   34.6   49.9   23.1   32.4   31.2   56.     1941   195.8   11.0   42.2   40.2   26.9   33.8   78.2   40.8   141.7   39.3   16.0   18.6   68.     1942   35.5   8.2   2.2   79.1   151.4   117.4   89.1   117.6   113.2   34.3   52.7   16.16   18.     1943   35.6   41.1   6.9   61.5   30.7   66.1   95.3   114.2   75.1   36.8   30.4   21.2   61.     1944   3.6   15.8   4.9   44.3   128.5   140.8   88.4   15.0   18.6   59.2   62.1   32.5   48.1     1945   30.9   43.6   62.5   13.9   52.6   47.9   34.5   104.6   92.5   87.9   62.2   452.2   61.     1946   38.9   156.9   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81.     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   98.5   41.3   43.1   83.1     1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   103.8   18.3   190.9   79.0   42.3   63.     1949   6.9   73.5   3.6   13.0   58.8   45.8   77.5   38.0   27.6   145.4   63.0   4.6   55.     1950   2.6   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   68.6   16.8   12.7   51.     1951   27.2   24.0   2.1   56.2   15.9   75.0   183.3   131.1   20.7   117.2   14.2   57.0   88.1     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   71.9     1954   1944   9.3   14.7   95.4   42.7   73.4   49.2   37.3   36.6   58.5   65.5   31.0   81.5     1955   3.8   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   65.5   31.0   81.5     1954   19.4   9.3   14.7   95.4   42.7   73.4   49.2   37.2   37.3   66.2   39.3   29.6   51.     1955   3.8   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   65.5   31.0   81.5     1956   12.7   9.2   42.7   90.7   100.1   179.3   114.8   110.2   78.9   53.4   25.7   92.8   81.5     1957   0.0   1.3   8.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   48.5   10.5   42.5     1956   3.8   73.9   14.0   61.3   158.6   159.6   47.9   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   47.5   4 | 1938 | 20.1  | 44.1  | 4.4  | 129.7 | 11.1  | 71.3  | 66.3  | 92.6  | 31.2  | 23.9  | 28.7  | 8.7  | 532.1          |
| 1941   195.8   11.0   42.2   40.2   26.9   33.8   78.2   40.8   141.7   39.3   16.0   18.6   68   1942   35.9   8.2   2.2   79.1   151.4   117.4   89.1   117.6   113.2   34.3   52.7   161.8   1943   35.6   41.1   6.9   61.5   30.7   66.1   95.3   114.2   75.1   36.8   30.4   21.2   61   1944   3.6   15.8   4.9   44.3   128.5   14.0   88.4   15.0   18.6   59.2   62.1   32.5   48   1945   30.9   43.6   62.2   13.9   52.6   47.9   34.5   104.6   92.5   87.9   56.2   45.2   61   1946   38.9   156.9   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81   1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   98.5   41.3   43.1   82   1948   62   17.8   10.2   96.6   54.7   29.1   89.1   103.8   18.3   109.0   79.0   42.3   66   1949   6.9   73.5   3.6   13.0   58.8   45.8   77.5   38.0   27.6   145.4   63.0   4.6   52   1950   2.6   28.1   457   27.1   95.7   41.4   50.3   71.1   55.1   68.6   16.8   12.7   51   1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   13.1   20.7   117.2   14.2   57.0   86   195.2   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   71.7   195.1   195.3   38.7   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   62.5   94.5   22.9   77.1   195.5   38.7   73.3   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   65.5   31.0   88   195.5   38.8   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   65.5   31.0   88   195.5   38.8   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   65.5   31.0   88   195.5   38.8   73.9   44.8   45.5   57.9   28.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44.5   44 | 1939 | 38.9  | 91.5  | 24.0 | 42.5  | 64.2  | 120.0 | 53.9  | 147.7 | 22.5  | 38.2  | 110.4 | 8.6  | 762.4          |
| 1942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1940 | 36.5  | 10.1  | 15.8 | 99.5  | 40.3  | 26.3  | 102.6 | 34.6  | 49.9  | 23.1  | 32.4  | 31.2 | 502.3          |
| 1943   35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1941 | 195.8 | 11.0  | 42.2 | 40.2  | 26.9  | 33.8  | 78.2  | 40.8  | 141.7 | 39.3  | 16.0  | 18.6 | 684.5          |
| 1944   3.6   15.8   4.9   44.3   128.5   14.0   88.4   15.0   18.6   59.2   62.1   32.5   48.5     1945   30.9   43.6   6.2   13.9   52.6   47.9   34.5   104.6   92.5   87.9   56.2   45.2   61.1     1946   38.9   15.6   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81.1     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   98.5   41.3   43.1   83.1     1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   103.8   18.3   109.0   79.0   42.3   65.1     1949   6.9   73.5   3.6   13.0   58.8   45.8   77.5   38.0   27.6   145.4   63.0   4.6   55.1     1950   2.6   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   68.6   16.8   12.7   51.1     1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   131.1   20.7   117.2   14.2   57.0   88.1     1952   50.2   7.4   1.5   67.8   123.7   68.2   78.9   66.6   58.5   62.5   94.5   22.9   77.1     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   70.1     1954   19.4   9.3   14.7   95.4   42.7   73.4   49.2   37.2   37.3   36.6   2.3   32.2   29.6   51.1     1955   3.8   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   65.5   31.0   88.1     1956   12.7   9.2   42.7   90.7   100.1   179.3   114.8   110.2   78.9   53.4   25.7   9.2   8.1     1957   0.0   1.3   8.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   48.5   10.5   42.1     1958   6.6   2.5   26.9   14.7   151.2   17.2   98.2   98.3   113.7   90.7   9.2   15.7   66.1     1959   9.2   26.9   47.8   4.8   25.2   12.8   46.8   81.8   53.6   43.3   22.9   48.8   42.1     1960   11.2   66.2   10.2   88.5   215.2   49.4   79.2   38.4   97.3   21.1   51.8   15.5   77.1     1961   4.4   0.1   7.6   61.   71.5   28.3   106.7   21.3   68.8   87.8   83.7   90.0   19.5   80.1     1963   56.7   6.8   3.3   85.4   77.3   96.3   119.9   114.1   77.5   10.0   10.8   0.3   60.2   19.6   19.6   10.1   122.5   73.5   43.7   77.6   44.2   125.0   17.1   64.9   66.1     1963   56.7   6.8   3.3   85.4   77.3   96.3   119.9 | 1942 | 35.9  | 8.2   | 2.2  | 79.1  | 151.4 | 117.4 | 89.1  | 117.6 | 113.2 | 34.3  | 52.7  | 16.1 | 817.2          |
| 1945   30.9   43.6   6.2   13.9   52.6   47.9   34.5   104.6   92.5   87.9   56.2   45.2   61     1946   38.9   156.9   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81.9     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   98.5   41.3   43.1   83.1     1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   103.8   18.3   109.0   79.0   42.3   66.1     1949   6.9   73.5   3.6   13.0   58.8   45.8   77.5   38.0   27.6   145.4   63.0   46.6   55.1     1950   2.6   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   68.6   16.8   12.7   51.5     1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   131.1   20.7   117.2   14.2   57.0   88.1     1952   50.2   7.4   1.5   67.8   123.7   68.2   78.9   66.6   58.5   62.5   94.5   22.9   70.1     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   70.1     1954   19.4   9.3   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   66.5   31.0   88.1     1956   12.7   9.2   42.7   90.7   100.1   179.3   114.8   110.2   78.9   53.4   25.7   92.2   83.1     1957   0.0   1.3   8.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   48.5   10.5   44.8     1960   11.2   66.2   10.2   88.5   215.2   49.4   79.2   38.4   97.3   21.1   51.8   15.5   7.1     1961   84   15.3   10.4   102.7   30.1   52.4   95.7   73.8   46.7   12.2   39.2   13.7   50.6     1963   56.7   6.8   3.3   85.4   77.3   96.3   11.9   114.1   77.5   10.0   10.8   0.3   6.5     1964   10.1   7.6   6.1   71.5   28.3   106.7   213.9   68.8   87.8   83.7   99.0   19.5   88.6   19.6   77.5   23.1   35.8   13.7   66.7   60.2   13.9   68.8   87.8   83.7   99.0   19.5   88.6   19.6   77.5   23.1   35.8   13.7   66.7   60.2   13.9   68.9   10.2   33.1   25.7   78.9   61.9     1966   7.5   23.1   35.8   13.7   66.7   60.2   13.9   68.9   10.2   33.1   25.7   78.9   61.9     1967   14.9   27.6   5.0   6.5   18.7   16.4   97.4   67.0   43.8   28.6   15.1   18.7   30.0     1970   100.3   0.0   36.3   143.6   49.7   99.5   68 | 1943 | 35.6  | 41.1  | 6.9  | 61.5  | 30.7  | 66.1  | 95.3  | 114.2 | 75.1  | 36.8  | 30.4  | 21.2 | 614.9          |
| 1946   38.9   156.9   62.5   35.9   67.8   67.2   136.9   58.9   46.6   32.4   50.2   62.5   81     1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   98.5   41.3   43.1   83     1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   103.8   18.3   109.0   79.0   42.3   65     1949   6.9   73.5   3.6   13.0   58.8   45.8   77.5   38.0   27.6   145.4   63.0   4.6   55     1950   2.6   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   68.6   16.8   12.7   51     1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   131.1   20.7   117.2   14.2   57.0   88     1952   50.2   7.4   1.5   67.8   123.7   68.2   78.9   66.6   58.5   62.5   94.5   22.9   76.1     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   70     1954   19.4   9.3   14.7   95.4   42.7   73.4   49.2   37.2   37.3   66.2   39.3   29.6   51     1955   3.8   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   65.5   31.0   88     1956   12.7   9.2   42.7   90.7   100.1   179.3   114.8   110.2   78.9   34.2   25.7   9.2   157.7   6.6     1958   6.6   2.5   26.9   14.7   151.2   17.2   98.2   98.3   113.7   90.7   9.2   15.7   6.6     1959   9.2   26.9   47.8   4.8   25.2   12.8   46.8   81.8   53.6   43.3   22.9   48.8   42.1     1960   11.2   66.2   10.2   88.5   215.2   49.4   79.2   38.4   40.7   12.1   51.8   15.5     1961   8.4   15.3   10.4   10.2   30.1   52.4   95.7   73.8   46.7   12.2   39.2   13.7   5.6     1962   24.4   20.4   26.9   10.1   12.2   57.3   96.3   119.9   114.1   77.5   10.0   10.8   0.3   6.6     1963   56.7   6.8   3.3   85.4   77.3   96.3   119.9   114.1   77.5   10.0   10.8   0.3   6.6     1964   7.5   23.1   35.8   13.7   62.7   60.2   113.0   58.9   102.4   33.1   25.7   78.9   6.1     1965   4.8   0.0   9.2   42.6   70.5   48.8   52.9   67.7   50.8   22.1   57.5   20.3   44.1     1966   7.5   23.1   35.8   13.7   62.7   60.2   113.0   58.9   102.4   33.1   25.7   78.9   6.1     1967   14.9   27.6   5.0   6.5   18.7   16.4   97.4   67.0   | 1944 | 3.6   | 15.8  | 4.9  | 44.3  | 128.5 | 14.0  | 88.4  | 15.0  | 18.6  | 59.2  | 62.1  | 32.5 | 486.9          |
| 1947   5.2   80.0   87.6   70.1   28.8   50.7   148.8   98.4   78.3   98.5   41.3   43.1   83.     1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   103.8   18.3   109.0   79.0   42.3   65.     1949   6.9   73.5   3.6   13.0   58.8   45.8   77.5   38.0   27.6   145.4   63.0   44.6   52.5     1950   2.6   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   68.6   16.8   12.7   51.     1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   131.1   20.7   117.2   14.2   57.0   86.     1952   50.2   7.4   1.5   67.8   123.7   68.2   78.9   66.6   58.5   62.5   94.5   22.9   77.     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   70.1     1954   19.4   9.3   14.7   59.4   42.7   73.4   49.2   37.2   37.3   66.2   39.3   29.6   51.     1955   3.8   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   66.5   31.0   88.     1956   12.7   9.2   42.7   90.7   100.1   179.3   114.8   110.2   78.9   53.4   25.7   9.2   83.     1957   0.0   1.3   8.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   48.5   10.5   42.     1958   6.6   2.5   26.9   47.8   4.8   25.2   12.8   46.8   81.8   53.6   43.3   22.9   48.8   42.     1960   11.2   66.2   10.2   88.5   215.2   49.4   79.2   38.4   97.3   21.1   51.8   15.5   74.     1961   8.4   15.3   10.4   10.2   30.1   52.4   95.7   73.8   46.7   12.2   39.2   13.7   50.     1963   4.8   0.0   9.2   42.6   70.5   48.8   52.2   12.8   46.8   81.8   53.6   43.3   22.9   48.8   42.     1960   11.2   66.2   10.2   88.5   215.2   49.4   79.2   38.4   97.3   21.1   51.8   15.5   74.     1961   8.4   15.3   10.4   10.2   30.1   52.4   95.7   73.8   46.7   12.2   39.2   13.7   50.     1963   56.7   6.8   3.3   85.4   77.3   96.3   119.9   114.1   77.5   10.0   10.8   03.3   60.     1964   10.1   7.6   6.1   71.5   28.3   106.7   213.9   68.8   87.8   83.7   99.0   19.5   80.     1965   4.8   0.0   9.2   42.6   70.5   48.8   52.9   67.7   50.8   22.1   57.5   20.3   44.     1966   7.5   23.1   35.8   13.7   62.7   60.2   1 | 1945 | 30.9  | 43.6  | 6.2  | 13.9  | 52.6  | 47.9  | 34.5  | 104.6 | 92.5  | 87.9  | 56.2  | 45.2 | 616.0          |
| 1948   6.2   17.8   10.2   96.6   54.7   29.1   89.1   103.8   18.3   109.0   79.0   42.3   63.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1946 | 38.9  | 156.9 | 62.5 | 35.9  | 67.8  | 67.2  | 136.9 | 58.9  | 46.6  | 32.4  | 50.2  | 62.5 | 816.7          |
| 1949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1947 | 5.2   | 80.0  | 87.6 | 70.1  | 28.8  | 50.7  | 148.8 | 98.4  | 78.3  | 98.5  | 41.3  | 43.1 | 830.8          |
| 1950   2.6   28.1   45.7   27.1   95.7   41.4   50.3   71.1   55.1   68.6   16.8   12.7   51.     1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   131.1   20.7   117.2   14.2   57.0   88.     1952   50.2   7.4   1.5   67.8   123.7   68.2   78.9   66.6   58.5   62.5   94.5   22.9   70.     1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   77.     1954   19.4   9.3   14.7   95.4   42.7   73.4   49.2   37.2   37.3   66.2   39.3   29.6   51.     1955   3.8   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   65.5   31.0   88.     1956   12.7   9.2   42.7   90.7   100.1   179.3   114.8   110.2   78.9   53.4   25.7   9.2   82.     1957   0.0   1.3   8.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   48.5   10.5   42.     1958   6.6   2.5   26.9   14.7   151.2   17.2   98.2   98.3   113.7   90.7   9.2   15.7   66.     1959   9.2   26.9   47.8   4.8   25.2   12.8   46.8   81.8   53.6   43.3   22.9   48.8   42.     1960   11.2   66.2   10.2   88.5   215.2   49.4   79.2   38.4   97.3   21.1   51.8   15.5   74.     1961   8.4   15.3   10.4   102.7   30.1   52.4   95.7   73.8   46.7   12.2   39.2   13.7   50.     1962   24.4   20.4   26.9   10.1   122.5   73.5   43.7   77.6   44.2   125.0   17.1   64.9   66.     1963   56.7   6.8   3.3   85.4   77.3   96.3   119.9   114.1   77.5   10.0   10.8   0.3   66.     1964   10.1   7.6   6.1   71.5   28.3   106.7   213.9   68.8   87.8   83.7   99.0   19.5   80.     1965   4.8   0.0   9.2   42.6   70.5   48.8   52.9   67.7   58.8   22.1   57.5   20.3   44.     1966   7.5   23.1   35.8   13.7   62.7   60.2   113.0   58.9   102.4   33.1   25.7   78.9   61.     1967   14.9   27.6   5.0   6.5   18.7   16.4   97.4   67.0   43.8   28.6   1.5   18.7   39.6   196.0   12.5   175.2   26.6   40.4   67.1   22.2   88.2   58.3   66.9   91.1   37.0   39.9   61.     1970   10.3   0.0   36.3   143.6   49.7   99.5   68.9   147.0   97.3   31.8   37.7   53.0   36.1   38.8   197.0   10.3   10.3   30.5   33.8   61.6   10.9.7   113.4   4 | 1948 | 6.2   | 17.8  | 10.2 | 96.6  | 54.7  | 29.1  | 89.1  | 103.8 | 18.3  | 109.0 | 79.0  | 42.3 | 656.1          |
| 1951   27.2   24.0   2.1   56.2   159.9   75.0   183.3   131.1   20.7   117.2   14.2   57.0   88   1952   50.2   7.4   1.5   67.8   123.7   68.2   78.9   66.6   58.5   62.5   94.5   22.9   76   77   78   78   78   78   78   78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1949 | 6.9   | 73.5  | 3.6  | 13.0  | 58.8  | 45.8  | 77.5  | 38.0  | 27.6  | 145.4 | 63.0  | 4.6  | 557.7          |
| 1952   50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1950 | 2.6   | 28.1  | 45.7 | 27.1  | 95.7  | 41.4  | 50.3  | 71.1  | 55.1  | 68.6  | 16.8  | 12.7 | 515.2          |
| 1953   24.9   14.7   2.1   34.5   55.3   171.5   91.3   73.8   84.0   41.4   36.6   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1   70.1    | 1951 | 27.2  | 24.0  | 2.1  | 56.2  | 159.9 | 75.0  | 183.3 | 131.1 | 20.7  | 117.2 | 14.2  | 57.0 | 867.9          |
| 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1952 | 50.2  |       | 1.5  | 67.8  | 123.7 | 68.2  | 78.9  | 66.6  | 58.5  | 62.5  | 94.5  | 22.9 | 702.7          |
| 1955   3.8   73.9   14.0   61.3   158.6   159.6   49.9   178.9   36.6   58.5   65.5   31.0   88     1956   12.7   9.2   42.7   90.7   100.1   179.3   114.8   110.2   78.9   53.4   25.7   9.2   82     1957   0.0   1.3   8.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   48.5   10.5   42     1958   6.6   2.5   26.9   14.7   151.2   17.2   98.2   98.3   113.7   90.7   9.2   15.7   66     1959   9.2   26.9   47.8   4.8   25.2   12.8   46.8   81.8   53.6   43.3   22.9   48.8   42     1960   11.2   66.2   10.2   88.5   215.2   49.4   79.2   38.4   97.3   21.1   51.8   15.5   74     1961   8.4   15.3   10.4   102.7   30.1   52.4   95.7   73.8   46.7   12.2   39.2   13.7   56     1962   24.4   20.4   26.9   10.1   122.5   73.5   43.7   77.6   44.2   125.0   17.1   64.9   65     1963   56.7   6.8   3.3   85.4   77.3   96.3   119.9   114.1   77.5   10.0   10.8   0.3   65     1964   10.1   7.6   6.1   71.5   28.3   106.7   213.9   68.8   87.8   83.7   99.0   19.5   88     1965   4.8   0.0   9.2   42.6   70.5   48.8   52.9   67.7   50.8   22.1   57.5   20.3   44     1966   7.5   23.1   35.8   13.7   62.7   60.2   113.0   58.9   102.4   33.1   25.7   78.9   61     1967   14.9   27.6   5.0   6.5   18.7   16.4   97.4   67.0   43.8   28.6   1.5   18.7   3.4     1968   71.4   30.7   45.3   79.4   142.5   114.0   100.4   142.5   45.4   109.2   73.9   41.0   99.1     1969   12.5   175.2   26.6   40.4   67.1   22.2   88.2   58.3   66.9   9.1   37.0   39.9   66     1970   100.3   0.0   36.3   143.6   49.7   99.5   68.9   147.0   97.3   13.8   37.7   53.0   84     1971   7.3   10.9   45.0   180.3   88.9   53.0   34.6   142.6   102.5   63.5   60.2   36.1   82     1973   17.3   70.1   28.5   59.8   65.6   103.7   79.8   102.6   74.6   137.0   25.3   10.2   74     1975   29.2   3.8   57.2   32.2   119.0   23.7   112.4   82.6   74.6   137.0   25.3   10.2   74     1976   20.2   68.0   6.8   24.0   28.9   57.2   32.8   57.4   54.2   132.4   43.0   33.5   55     1977   61.9   13.0   40.6   29.6   79.6   86.1   47.6   45.8   64.9   40 | 1953 | 24.9  | 14.7  | 2.1  | 34.5  | 55.3  | 171.5 | 91.3  | 73.8  | 84.0  | 41.4  | 36.6  | 70.1 | 700.2          |
| 1956   12.7   9.2   42.7   90.7   100.1   179.3   114.8   110.2   78.9   53.4   25.7   9.2   82   1957   0.0   1.3   8.9   40.4   28.0   34.2   94.6   57.0   59.0   44.8   48.5   10.5   42   1958   6.6   2.5   26.9   14.7   151.2   17.2   98.2   98.3   113.7   90.7   9.2   15.7   6.6   1959   9.2   26.9   47.8   4.8   25.2   12.8   46.8   81.8   53.6   43.3   22.9   48.8   42   42.4   1960   11.2   66.2   10.2   88.5   215.2   49.4   79.2   38.4   97.3   21.1   51.8   15.5   7.6   1961   8.4   15.3   10.4   102.7   30.1   52.4   95.7   73.8   46.7   12.2   39.2   13.7   50.6   1962   24.4   20.4   26.9   10.1   122.5   73.5   43.7   77.6   44.2   125.0   17.1   64.9   65   1963   56.7   6.8   3.3   85.4   77.3   96.3   119.9   114.1   77.5   10.0   10.8   0.3   65   1964   10.1   7.6   6.1   71.5   28.3   106.7   213.9   68.8   87.8   83.7   99.0   19.5   88   1965   4.8   0.0   9.2   42.6   70.5   48.8   52.9   67.7   50.8   22.1   57.5   20.3   44   1966   7.5   23.1   35.8   13.7   62.7   60.2   113.0   58.9   102.4   33.1   25.7   78.9   61   1967   14.9   27.6   5.0   6.5   18.7   16.4   97.4   67.0   43.8   28.6   1.5   18.7   34   1968   71.4   30.7   45.3   79.4   142.5   114.0   100.4   142.5   45.4   109.2   73.9   41.0   99.1   1969   12.5   175.2   26.6   40.4   67.1   22.2   88.2   58.3   66.9   9.1   37.0   39.9   64   1970   100.3   0.0   36.3   143.6   49.7   99.5   68.9   147.0   97.3   13.8   37.7   53.0   82   1971   73   10.9   45.0   180.3   88.9   53.0   34.6   142.6   102.5   63.5   60.2   36.1   82   1972   60.6   31.6   2.8   30.5   33.8   61.6   109.7   113.4   47.5   47.6   18.0   37.1   59.1   1973   17.3   70.1   28.5   59.8   65.6   103.7   79.8   102.6   110.2   90.1   33.1   79.2   88   1974   82.4   80.6   14.6   108.6   92.0   45.6   168.8   69.8   144.6   126.8   10.3   21.3   99.1   1975   29.2   3.8   57.2   32.2   119.0   23.7   112.4   82.6   74.6   137.0   25.3   10.2   70.1   1976   20.2   68.0   6.8   24.0   28.9   57.2   32.8   57.4   54.2   132.4   43.0   33.5   55. | 1954 | 19.4  | 9.3   | 14.7 | 95.4  | 42.7  | 73.4  | 49.2  | 37.2  | 37.3  | 66.2  | 39.3  | 29.6 | 513.7          |
| 1957   0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |       | 14.0 |       | 158.6 |       | 49.9  | 178.9 |       | 58.5  |       |      | 891.6          |
| 1958   6.6   2.5   26.9   14.7   151.2   17.2   98.2   98.3   113.7   90.7   9.2   15.7   66     1959   9.2   26.9   47.8   4.8   25.2   12.8   46.8   81.8   53.6   43.3   22.9   48.8   42     1960   11.2   66.2   10.2   88.5   215.2   49.4   79.2   38.4   97.3   21.1   51.8   15.5   74     1961   8.4   15.3   10.4   102.7   30.1   52.4   95.7   73.8   46.7   12.2   39.2   13.7   50     1962   24.4   20.4   26.9   10.1   122.5   73.5   43.7   77.6   44.2   125.0   17.1   64.9   65     1963   56.7   6.8   3.3   85.4   77.3   96.3   119.9   114.1   77.5   10.0   10.8   0.3   65     1964   10.1   7.6   6.1   71.5   28.3   106.7   213.9   68.8   87.8   83.7   99.0   19.5   80     1965   4.8   0.0   9.2   42.6   70.5   48.8   52.9   67.7   50.8   22.1   57.5   20.3   44     1966   7.5   23.1   35.8   13.7   62.7   60.2   113.0   58.9   102.4   33.1   25.7   78.9   61     1967   14.9   27.6   5.0   6.5   18.7   16.4   97.4   67.0   43.8   28.6   1.5   18.7   34     1968   71.4   30.7   45.3   79.4   142.5   114.0   100.4   142.5   45.4   109.2   73.9   41.0   99     1969   12.5   175.2   26.6   40.4   67.1   22.2   88.2   58.3   66.9   9.1   37.0   39.9   64     1970   100.3   0.0   36.3   143.6   49.7   99.5   68.9   147.0   97.3   13.8   37.7   53.0   84     1971   7.3   10.9   45.0   180.3   88.9   53.0   34.6   142.6   102.5   63.5   60.2   36.1   82     1972   60.6   31.6   2.8   30.5   33.8   61.6   109.7   113.4   47.5   47.6   18.0   37.1   55     1973   17.3   70.1   28.5   59.8   65.6   103.7   79.8   102.6   110.2   90.1   33.1   79.2   84     1974   82.4   80.6   14.6   108.6   92.0   45.6   168.8   69.8   144.6   126.8   10.3   21.3   96     1975   29.2   3.8   57.2   32.2   119.0   23.7   112.4   82.6   74.6   137.0   25.3   10.2   76     1976   20.2   68.0   6.8   24.0   28.9   57.2   32.8   57.4   54.2   132.4   43.0   33.5   55     1977   61.9   13.0   40.6   29.6   79.6   86.1   47.6   45.8   64.9   40.8   46.8   13.6   57     1977   61.9   13.0   40.6   29.6   79.6   86.1   47.6   45.8   64.9   4 |      |       |       |      |       |       |       |       |       |       |       |       | 9.2  | 826.9          |
| 1959   9.2   26.9   47.8   4.8   25.2   12.8   46.8   81.8   53.6   43.3   22.9   48.8   42.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |      |       |       |       |       |       |       |       |       |      | 427.2          |
| 1960         11.2         66.2         10.2         88.5         215.2         49.4         79.2         38.4         97.3         21.1         51.8         15.5         77           1961         8.4         15.3         10.4         102.7         30.1         52.4         95.7         73.8         46.7         12.2         39.2         13.7         56           1962         24.4         20.4         26.9         10.1         122.5         73.5         43.7         77.6         44.2         125.0         17.1         64.9         65           1963         56.7         6.8         3.3         85.4         77.3         96.3         119.9         114.1         77.5         10.0         10.8         0.3         65           1964         10.1         7.6         6.1         71.5         28.3         106.7         213.9         68.8         87.8         83.7         99.0         19.5         80           1965         4.8         0.0         9.2         42.6         70.5         48.8         52.9         67.7         50.8         22.1         57.5         20.3         44           1966         7.5         23.1         35.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |      |       |       |       |       |       |       |       |       |      | 644.9          |
| 1961         8.4         15.3         10.4         102.7         30.1         52.4         95.7         73.8         46.7         12.2         39.2         13.7         56           1962         24.4         20.4         26.9         10.1         122.5         73.5         43.7         77.6         44.2         125.0         17.1         64.9         65           1963         56.7         6.8         3.3         85.4         77.3         96.3         119.9         114.1         77.5         10.0         10.8         0.3         65           1964         10.1         7.6         6.1         71.5         28.3         106.7         213.9         68.8         87.8         83.7         99.0         19.5         80           1965         4.8         0.0         9.2         42.6         70.5         48.8         52.9         67.7         50.8         22.1         57.5         20.3         44           1966         7.5         23.1         35.8         13.7         62.7         60.2         113.0         58.9         102.4         33.1         25.7         78.9         61           1967         14.9         27.6         5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |      |       |       |       |       |       |       |       |       |      | 423.9          |
| 1962         24.4         20.4         26.9         10.1         122.5         73.5         43.7         77.6         44.2         125.0         17.1         64.9         65           1963         56.7         6.8         3.3         85.4         77.3         96.3         119.9         114.1         77.5         10.0         10.8         0.3         65           1964         10.1         7.6         6.1         71.5         28.3         106.7         213.9         68.8         87.8         83.7         99.0         19.5         8           1965         4.8         0.0         9.2         42.6         70.5         48.8         52.9         67.7         50.8         22.1         57.5         20.3         44           1966         7.5         23.1         35.8         13.7         62.7         60.2         113.0         58.9         102.4         33.1         25.7         78.9         61           1967         14.9         27.6         5.0         6.5         18.7         16.4         97.4         67.0         43.8         28.6         1.5         18.7         34           1968         71.4         30.7         45.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |       |      |       |       |       |       |       |       |       |       |      | 744.0          |
| 1963         56.7         6.8         3.3         85.4         77.3         96.3         119.9         114.1         77.5         10.0         10.8         0.3         65.1           1964         10.1         7.6         6.1         71.5         28.3         106.7         213.9         68.8         87.8         83.7         99.0         19.5         80.1           1965         4.8         0.0         9.2         42.6         70.5         48.8         52.9         67.7         50.8         22.1         57.5         20.3         44.1           1966         7.5         23.1         35.8         13.7         62.7         60.2         113.0         58.9         102.4         33.1         25.7         78.9         61.1           1967         14.9         27.6         5.0         6.5         18.7         16.4         97.4         67.0         43.8         28.6         1.5         18.7         34.1         19.4         97.4         67.0         43.8         28.6         1.5         18.7         19.0         19.0         19.2         73.9         41.0         99.1         37.0         39.9         64.2         19.0         19.0         19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |      |       |       |       |       |       |       |       |       |      | 500.6          |
| 1964         10.1         7.6         6.1         71.5         28.3         106.7         213.9         68.8         87.8         83.7         99.0         19.5         80           1965         4.8         0.0         9.2         42.6         70.5         48.8         52.9         67.7         50.8         22.1         57.5         20.3         44           1966         7.5         23.1         35.8         13.7         62.7         60.2         113.0         58.9         102.4         33.1         25.7         78.9         61           1967         14.9         27.6         5.0         6.5         18.7         16.4         97.4         67.0         43.8         28.6         1.5         18.7         32           1968         71.4         30.7         45.3         79.4         142.5         114.0         100.4         142.5         45.4         109.2         73.9         41.0         99.           1969         12.5         175.2         26.6         40.4         67.1         22.2         88.2         58.3         66.9         9.1         37.0         39.9         62.           1970         100.3         0.0         36.3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |       |      |       |       |       |       |       |       |       |       |      | 650.3          |
| 1965         4.8         0.0         9.2         42.6         70.5         48.8         52.9         67.7         50.8         22.1         57.5         20.3         44           1966         7.5         23.1         35.8         13.7         62.7         60.2         113.0         58.9         102.4         33.1         25.7         78.9         61           1967         14.9         27.6         5.0         6.5         18.7         16.4         97.4         67.0         43.8         28.6         1.5         18.7         32           1968         71.4         30.7         45.3         79.4         142.5         114.0         100.4         142.5         45.4         109.2         73.9         41.0         95           1969         12.5         175.2         26.6         40.4         67.1         22.2         88.2         58.3         66.9         9.1         37.0         39.9         64           1970         100.3         0.0         36.3         143.6         49.7         99.5         68.9         147.0         97.3         13.8         37.7         53.0         84           1971         7.3         10.9         45.0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>658.4</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       |       |      |       |       |       |       |       |       |       |       |      | 658.4          |
| 1966         7.5         23.1         35.8         13.7         62.7         60.2         113.0         58.9         102.4         33.1         25.7         78.9         61           1967         14.9         27.6         5.0         6.5         18.7         16.4         97.4         67.0         43.8         28.6         1.5         18.7         32           1968         71.4         30.7         45.3         79.4         142.5         114.0         100.4         142.5         45.4         109.2         73.9         41.0         96           1969         12.5         175.2         26.6         40.4         67.1         22.2         88.2         58.3         66.9         9.1         37.0         39.9         62           1970         100.3         0.0         36.3         143.6         49.7         99.5         68.9         147.0         97.3         13.8         37.7         53.0         84           1971         7.3         10.9         45.0         180.3         88.9         53.0         34.6         142.6         102.5         63.5         60.2         36.1         82           1972         60.6         31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |       |      |       |       |       |       |       |       |       |       |      | 803.0          |
| 1967         14.9         27.6         5.0         6.5         18.7         16.4         97.4         67.0         43.8         28.6         1.5         18.7         34           1968         71.4         30.7         45.3         79.4         142.5         114.0         100.4         142.5         45.4         109.2         73.9         41.0         95           1969         12.5         175.2         26.6         40.4         67.1         22.2         88.2         58.3         66.9         9.1         37.0         39.9         62           1970         100.3         0.0         36.3         143.6         49.7         99.5         68.9         147.0         97.3         13.8         37.7         53.0         84           1971         7.3         10.9         45.0         180.3         88.9         53.0         34.6         142.6         102.5         63.5         60.2         36.1         82           1972         60.6         31.6         2.8         30.5         33.8         61.6         109.7         113.4         47.5         47.6         18.0         37.1         59           1973         17.3         70.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |       |      |       |       |       |       |       |       |       |       |      | 447.2          |
| 1968         71.4         30.7         45.3         79.4         142.5         114.0         100.4         142.5         45.4         109.2         73.9         41.0         99.5           1969         12.5         175.2         26.6         40.4         67.1         22.2         88.2         58.3         66.9         9.1         37.0         39.9         62.0           1970         100.3         0.0         36.3         143.6         49.7         99.5         68.9         147.0         97.3         13.8         37.7         53.0         84.0           1971         7.3         10.9         45.0         180.3         88.9         53.0         34.6         142.6         102.5         63.5         60.2         36.1         82.0           1972         60.6         31.6         2.8         30.5         33.8         61.6         109.7         113.4         47.5         47.6         18.0         37.1         59.0           1973         17.3         70.1         28.5         59.8         65.6         103.7         79.8         102.6         110.2         90.1         33.1         79.2         82.0           1974         82.4         80.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |       |      |       |       |       |       |       |       |       |       |      | 615.0          |
| 1969         12.5         175.2         26.6         40.4         67.1         22.2         88.2         58.3         66.9         9.1         37.0         39.9         64           1970         100.3         0.0         36.3         143.6         49.7         99.5         68.9         147.0         97.3         13.8         37.7         53.0         84           1971         7.3         10.9         45.0         180.3         88.9         53.0         34.6         142.6         102.5         63.5         60.2         36.1         82           1972         60.6         31.6         2.8         30.5         33.8         61.6         109.7         113.4         47.5         47.6         18.0         37.1         59           1973         17.3         70.1         28.5         59.8         65.6         103.7         79.8         102.6         110.2         90.1         33.1         79.2         84           1974         82.4         80.6         14.6         108.6         92.0         45.6         168.8         69.8         144.6         126.8         10.3         21.3         96           1975         29.2         3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |       |      |       |       |       |       |       |       |       |       |      | 346.1<br>995.7 |
| 1970         100.3         0.0         36.3         143.6         49.7         99.5         68.9         147.0         97.3         13.8         37.7         53.0         84           1971         7.3         10.9         45.0         180.3         88.9         53.0         34.6         142.6         102.5         63.5         60.2         36.1         82           1972         60.6         31.6         2.8         30.5         33.8         61.6         109.7         113.4         47.5         47.6         18.0         37.1         59           1973         17.3         70.1         28.5         59.8         65.6         103.7         79.8         102.6         110.2         90.1         33.1         79.2         84           1974         82.4         80.6         14.6         108.6         92.0         45.6         168.8         69.8         144.6         126.8         10.3         21.3         96           1975         29.2         3.8         57.2         32.2         119.0         23.7         112.4         82.6         74.6         137.0         25.3         10.2         70           1976         20.2         68.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |       |      |       |       |       |       |       |       |       |       |      | 643.4          |
| 1971         7.3         10.9         45.0         180.3         88.9         53.0         34.6         142.6         102.5         63.5         60.2         36.1         82           1972         60.6         31.6         2.8         30.5         33.8         61.6         109.7         113.4         47.5         47.6         18.0         37.1         59           1973         17.3         70.1         28.5         59.8         65.6         103.7         79.8         102.6         110.2         90.1         33.1         79.2         82           1974         82.4         80.6         14.6         108.6         92.0         45.6         168.8         69.8         144.6         126.8         10.3         21.3         96           1975         29.2         3.8         57.2         32.2         119.0         23.7         112.4         82.6         74.6         137.0         25.3         10.2         70           1976         20.2         68.0         6.8         24.0         28.9         57.2         32.8         57.4         54.2         132.4         43.0         33.5         55           1977         61.9         13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |       |       |      |       |       |       |       |       |       |       |       |      | 847.1          |
| 1972         60.6         31.6         2.8         30.5         33.8         61.6         109.7         113.4         47.5         47.6         18.0         37.1         59.8           1973         17.3         70.1         28.5         59.8         65.6         103.7         79.8         102.6         110.2         90.1         33.1         79.2         84.2           1974         82.4         80.6         14.6         108.6         92.0         45.6         168.8         69.8         144.6         126.8         10.3         21.3         96.2           1975         29.2         3.8         57.2         32.2         119.0         23.7         112.4         82.6         74.6         137.0         25.3         10.2         70.2           1976         20.2         68.0         6.8         24.0         28.9         57.2         32.8         57.4         54.2         132.4         43.0         33.5         55.2           1977         61.9         13.0         40.6         29.6         79.6         86.1         47.6         45.8         64.9         40.8         46.8         13.6         57.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |       |      |       |       |       |       |       |       |       |       |      | 824.9          |
| 1973         17.3         70.1         28.5         59.8         65.6         103.7         79.8         102.6         110.2         90.1         33.1         79.2         84           1974         82.4         80.6         14.6         108.6         92.0         45.6         168.8         69.8         144.6         126.8         10.3         21.3         96           1975         29.2         3.8         57.2         32.2         119.0         23.7         112.4         82.6         74.6         137.0         25.3         10.2         70           1976         20.2         68.0         6.8         24.0         28.9         57.2         32.8         57.4         54.2         132.4         43.0         33.5         55           1977         61.9         13.0         40.6         29.6         79.6         86.1         47.6         45.8         64.9         40.8         46.8         13.6         57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |       |      |       |       |       |       |       |       |       |       |      | 594.2          |
| 1974         82.4         80.6         14.6         108.6         92.0         45.6         168.8         69.8         144.6         126.8         10.3         21.3         96           1975         29.2         3.8         57.2         32.2         119.0         23.7         112.4         82.6         74.6         137.0         25.3         10.2         70           1976         20.2         68.0         6.8         24.0         28.9         57.2         32.8         57.4         54.2         132.4         43.0         33.5         55           1977         61.9         13.0         40.6         29.6         79.6         86.1         47.6         45.8         64.9         40.8         46.8         13.6         57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |       |      |       |       |       |       |       |       |       |       |      | 840.0          |
| 1975         29.2         3.8         57.2         32.2         119.0         23.7         112.4         82.6         74.6         137.0         25.3         10.2         70           1976         20.2         68.0         6.8         24.0         28.9         57.2         32.8         57.4         54.2         132.4         43.0         33.5         55           1977         61.9         13.0         40.6         29.6         79.6         86.1         47.6         45.8         64.9         40.8         46.8         13.6         57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |       |      |       |       |       |       |       |       |       |       |      | 965.4          |
| 1976         20.2         68.0         6.8         24.0         28.9         57.2         32.8         57.4         54.2         132.4         43.0         33.5         55           1977         61.9         13.0         40.6         29.6         79.6         86.1         47.6         45.8         64.9         40.8         46.8         13.6         57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |       |       |      |       |       |       |       |       |       |       |       |      | 707.2          |
| <b>1977</b> 61.9 13.0 40.6 29.6 79.6 86.1 47.6 45.8 64.9 40.8 46.8 13.6 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |       |      |       |       |       |       |       |       |       |       |      | 558.4          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |       |      |       |       |       |       |       |       |       |       |      | 570.3          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |       |      |       |       |       |       |       |       |       |       |      | 722.4          |
| <b>1979</b> 30.7 50.0 27.2 74.4 63.6 16.7 75.9 98.1 161.6 86.4 42.2 22.2 74.4 63.6 16.7 75.9 98.1 161.6 86.4 42.2 22.2 74.4 63.6 16.7 75.9 98.1 161.6 86.4 42.2 22.2 74.4 63.6 16.7 75.9 98.1 161.6 86.4 42.2 22.2 74.4 63.6 16.7 75.9 98.1 161.6 86.4 42.2 22.2 74.4 63.6 16.7 75.9 98.1 161.6 86.4 42.2 22.2 74.4 63.6 16.7 75.9 98.1 161.6 86.4 42.2 22.2 74.4 63.6 16.7 75.9 98.1 161.6 86.4 42.2 22.2 74.4 63.6 16.7 75.9 98.1 161.6 86.4 42.2 22.2 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 63.6 16.7 75.9 98.1 74.4 74.2 74.4 74.4 74.2 74.4 74.4 74.2 74.4 74.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |       |      |       |       |       |       |       |       |       |       |      | 749.0          |

Quality control: 12.3 Done & acceptable, 12.3 Not completed or unknown



## **NAIRNE**

Station Number: 023739 · State: SA · Opened: 1884 · Status: Open · Latitude: 35.04°S · Longitude: 138.91°E · Elevation: 370 m

| Year | Jan  | Feb   | Mar   | Apr  | May   | Jun     | Jul   | Aug   | Sep   | Oct   | Nov  | Dec   | Annual |
|------|------|-------|-------|------|-------|---------|-------|-------|-------|-------|------|-------|--------|
| 1980 | 5.5  | 1.2   | 1.9   | 54.6 | 57.8  | 114.4   | 77.2  | 43.6  | 50.4  | 99.4  | 44.8 | 25.3  | 576.1  |
| 1981 | 44.3 | 15.6  | 59.8  | 1.8  | 63.6  | 197.4   | 179.0 | 179.9 | 32.8  | 26.8  | 39.5 | 17.0  | 857.5  |
| 1982 | 14.6 | 3.2   | 48.4  | 69.8 | 49.3  | 50.1    | 28.5  | 21.2  | 43.0  | 27.4  | 6.4  | 9.2   | 371.1  |
| 1983 | 14.6 | 0.0   | 104.0 | 97.6 | 88.8  | 31.8    | 120.2 | 88.4  | 77.8  | 61.4  | 30.4 | 24.8  | 739.8  |
| 1984 | 48.2 | 4.6   | 71.6  | 41.4 | 45.4  | 25.6    | 123.4 | 184.2 | 62.8  | 19.0  | 41.8 | 5.6   | 673.6  |
| 1985 | 9.4  | 7.2   | 84.2  | 66.0 | 81.0  | 68.2    | 54.8  | 97.4  | 88.8  | 33.2  | 20.2 | 19.6  | 630.0  |
| 1986 | 5.6  | 0.4   | 0.6   | 80.6 | 60.4  | 33.6    | 139.8 | 107.8 | 76.0  | 87.2  | 10.8 | 100.4 | 703.2  |
| 1987 | 25.2 | 35.6  | 18.8  | 20.0 | 111.6 | 118.6   | 96.2  | 78.4  | 23.4  | 63.2  | 6.4  | 68.6  | 666.0  |
| 1988 | 17.0 | 20.0  | 15.2  | 16.6 | 137.6 | 85.8    | 89.2  | 52.4  | 68.4  | 26.0  | 47.0 | 45.8  | 621.0  |
| 1989 | 3.6  | 3.2   | 6.8   | 33.4 | 97.4  | 87.8    | 114.2 | 103.0 | 69.6  | 57.4  | 46.6 | 16.2  | 639.2  |
| 1990 | 3.0  | 12.6  | 0.0   | 49.4 | 22.2  | 122.0   | 93.2  | 101.2 | 46.0  | 44.8  | 14.6 | 50.4  | 559.4  |
| 1991 | 13.6 | 0.0   | 5.2   | 62.8 | 13.6  | 101.2   | 86.2  | 164.8 | 100.0 | 4.2   | 32.6 | 12.8  | 597.0  |
| 1992 | 8.0  | 17.2  | 75.8  | 50.8 | 64.6  | 60.0    | 71.0  | 153.0 | 160.6 | 86.4  | 91.4 | 167.4 | 1006.2 |
| 1993 | 34.8 | 6.6   | 20.8  | 0.0  | 33.6  | 50.0    | 110.2 | 67.6  | 70.8  | 53.8  | 26.0 | 48.6  | 522.8  |
| 1994 | 26.2 | 11.0  | 0.0   | 22.4 | 60.2  | 127.8   | 31.8  | 26.1  | 38.6  | 50.8  | 54.2 | 11.4  | 460.5  |
| 1995 | 26.2 | 24.4  | 12.0  | 44.2 | 75.2  | 101.2   | 212.0 | 35.2  | 33.5  | 47.6  | 21.8 | 14.6  | 647.9  |
| 1996 | 32.4 | 12.6  | 27.6  | 41.8 | 18.2  | 153.6   | 91.5  | 145.4 | 134.2 | 30.6  | 8.2  | 19.6  | 715.7  |
| 1997 | 22.8 | 16.8  | 5.0   | 5.8  | 45.2  | 39.2    | 30.8  | 102.6 | 71.0  | 68.8  | 51.6 | 27.8  | 487.4  |
| 1998 | 19.2 | 18.4  | 11.8  | 91.4 | 20.8  | 93.2    | 104.4 | 38.1  | 45.1  | 51.0  | 37.0 | 11.8  | 542.2  |
| 1999 | 18.6 | 3.2   | 75.0  | 6.0  | 85.2  | 75.6    |       | 44.2  | 85.6  | 46.9  | 48.4 | 41.8  |        |
| 2000 | 10.2 | 121.4 | 23.6  | 56.6 | 86.8  | 84.0    | 109.0 | 104.0 | 65.4  | 84.8  | 24.2 | 8.2   | 778.2  |
| 2001 | 7.2  | 9.6   | 40.6  | 38.8 | 92.6  | 77.8    | 52.6  | 96.2  | 113.0 | 84.4  | 61.8 | 35.2  | 709.8  |
| 2002 | 24.4 | 5.6   | 17.8  | 14.8 | 67.0  | 67.2    | 82.8  | 47.6  | 58.0  | 31.4  | 42.8 | 22.4  | 481.8  |
| 2003 | 11.0 | 44.0  | 10.2  | 38.0 | 104.8 | 115.2   | 77.8  | 128.4 | 70.0  | 66.2  | 12.2 | 37.4  | 715.2  |
| 2004 | 11.6 | 9.2   | 23.8  | 10.6 | 51.8  | 150.4   | 93.2  | 92.0  | 40.4  | 9.6   | 57.8 | 50.2  | 600.6  |
| 2005 | 22.0 | 36.4  | 11.2  | 8.4  | 6.8   | 172.4   | 48.6  |       | 76.2  | 108.6 | 78.8 | 43.8  |        |
| 2006 | 34.2 | 26.2  | 42.2  | 57.0 | 56.4  | 33.2    | 122.0 | 21.2  | 56.6  | 1.8   | 18.8 | 29.3  | 498.9  |
| 2007 | 32.6 | 5.0   | 29.8  | 94.8 | 68.4  | 81.6    | 96.4  | 27.4  | 42.6  | 32.4  | 32.8 | 40.2  | 584.0  |
| 2008 | 9.8  | 10.8  |       | 61.4 | 49.4  | 65.0    | 90.0  |       | 34.2  | 7.4   | 14.8 | 37.4  |        |
| 2009 | 0.2  | 1.0   | 31.0  | 70.2 | 52.6  | 84.4    | 154.4 | 93.2  | 85.2  | 52.6  | 50.0 | 21.9  | 696.7  |
| 2010 | 16.0 | 4.4   | 19.0  | 41.6 | 64.0  | 63.0    | 78.6  | 168.2 | 114.0 | 47.4  | 41.4 | 115.6 | 773.2  |
| 2011 | 16.6 | 72.4  | 78.0  | 13.0 | 59.0  | 71.8    | 90.0  | 59.4  | 72.8  | 36.8  | 20.6 | 37.8  | 628.2  |
| 2012 | 15.0 | 14.6  | 65.0  | 34.6 | 98.4  | 138.6   | 67.0  | 88.5  | 46.8  | 25.2  | 15.6 | 9.8   |        |
| 2013 | 14.2 | 15.2  | 10.4  | 30.2 | 38.6  | 151.0   | 148.8 | 91.2  | 70.4  | 46.2  | 26.4 | 20.6  |        |
| 2014 | 19.4 | 104.0 | 19.4  | 36.8 | 52.0  | 128.6   | 138.4 | 27.0  | 29.2  | 7.2   | 20.6 | 12.4  | 595.0  |
| 2015 | 51.0 | 1.8   | 7.6   | 87.6 | 87.0  | 26.4    | 74.0  | 64.0  | 39.0  | 11.2  | 19.2 | 12.0  |        |
| 2016 | 45.8 | 23.2  | 37.6  | 11.6 | 114.2 | ا د د د | 172.0 | 71.8  | 183.0 | 104.2 | 32.6 | 118.8 |        |
| 2017 | 35.4 | 33.0  | 19.0  | 52.4 | 33.4  | 16.4    | 157.6 | 184.2 | 71.2  | 28.2  | 54.2 | 38.0  |        |
| 2018 | 14.2 | 11.2  | 14.8  | 33.4 | 68.4  | 61.0    | 75.6  | 103.8 | 19.2  | 21.0  | 73.0 | 39.6  |        |
| 2019 | 0.6  | 11.2  | 5.8   | 4.8  | 99.2  | 66.0    | 93.6  | 83.0  | 46.2  | 18.2  | 20.8 | 5.0   | 454.4  |
| 2020 | 45.0 | 57.6  | 8.4   | 71.6 | 70.6  | 86.2    |       |       |       |       |      |       |        |

Quality control: 12.3 Done & acceptable, 12.3 Not completed or unknown



#### **NAIRNE**

Station Number: 023739 · State: SA · Opened: 1884 · Status: Open · Latitude: 35.04°S · Longitude: 138.91°E · Elevation: 370 m

## Statistics for this station calculated over all years of data

|                 | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   | Annual |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Mean            | 25.4  | 25.8  | 28.1  | 51.6  | 73.3  | 87.5  | 93.9  | 89.1  | 75.5  | 56.9  | 37.3  | 32.2  | 675.3  |
| Lowest          | 0.0   | 0.0   | 0.0   | 0.0   | 2.1   | 12.8  | 13.8  | 13.9  | 18.3  | 1.8   | 1.5   | 0.3   | 346.1  |
| 5th percentile  | 2.5   | 0.9   | 2.1   | 5.7   | 18.6  | 18.0  | 34.6  | 27.3  | 23.9  | 9.9   | 7.2   | 4.6   | 457.8  |
| 10th percentile | 3.8   | 2.1   | 4.2   | 12.4  | 26.3  | 27.8  | 46.4  | 39.1  | 32.0  | 18.6  | 10.1  | 7.2   | 500.8  |
| Median          | 18.6  | 15.3  | 19.2  | 42.6  | 65.6  | 84.2  | 89.2  | 85.4  | 70.2  | 53.0  | 33.0  | 25.3  | 657.2  |
| 90th percentile | 49.4  | 66.9  | 67.6  | 96.6  | 131.9 | 153.1 | 148.8 | 146.5 | 129.1 | 106.1 | 73.4  | 66.2  | 848.6  |
| 95th percentile | 78.9  | 80.1  | 78.7  | 129.7 | 154.8 | 177.3 | 162.7 | 168.7 | 148.7 | 116.1 | 84.7  | 80.0  | 910.5  |
| Highest         | 195.8 | 175.2 | 200.6 | 187.4 | 247.2 | 223.9 | 217.8 | 184.2 | 183.0 | 145.4 | 110.4 | 167.4 | 1087.7 |

## Statistics calculated over the period 1961-1990

|                 | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov  | Dec   | Annual |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|--------|
| Mean            | 27.3  | 24.9  | 28.8  | 57.6  | 70.8  | 73.1  | 96.8  | 91.6  | 72.3  | 58.1  | 34.0 | 33.9  | 669.2  |
| Lowest          | 3.0   | 0.0   | 0.0   | 1.8   | 18.7  | 16.4  | 28.5  | 21.2  | 23.4  | 9.1   | 1.5  | 0.3   | 346.1  |
| 5th Percentile  | 4.1   | 0.0   | 1.2   | 8.1   | 24.9  | 19.2  | 33.6  | 44.6  | 37.4  | 11.0  | 6.4  | 7.2   | 405.3  |
| 10th percentile | 5.4   | 0.4   | 2.7   | 13.3  | 28.8  | 23.5  | 42.8  | 51.7  | 43.7  | 13.6  | 9.9  | 10.1  | 495.3  |
| Median          | 15.9  | 12.8  | 26.0  | 52.0  | 66.2  | 64.9  | 95.9  | 85.5  | 67.7  | 46.2  | 35.4 | 25.0  | 654.3  |
| 90th percentile | 62.8  | 68.2  | 61.0  | 103.3 | 119.3 | 118.7 | 142.7 | 143.0 | 107.9 | 125.2 | 57.8 | 69.6  | 848.1  |
| 95th percentile | 77.4  | 75.9  | 78.5  | 127.8 | 130.8 | 121.1 | 174.4 | 165.1 | 129.1 | 129.9 | 67.7 | 79.1  | 916.8  |
| Highest         | 100.3 | 175.2 | 104.0 | 180.3 | 142.5 | 197.4 | 213.9 | 184.2 | 161.6 | 137.0 | 99.0 | 100.4 | 995.7  |

#### 1) Calculation of statistics

Summary statistics, other than the Highest and Lowest values, are only calculated if there are at least 20 years of data available.

#### 2) Gaps and missing data

Gaps may be caused by a damaged instrument, a temporary change to the site operation, or due to the absence or illness of an observer.

#### 3) Further information

http://www.bom.gov.au/climate/cdo/about/about-rain-data.shtml.



# **Appendix N** – Section 83A Notification

## Site contamination – Section 83A notification form



Site contamination that affects or threatens underground water notification form pursuant to section 83A of the Environment Protection Act 1993 **Notifier details** Name: Telephone: Company: Email: the site owner Address: the site occupier ☐ the site contamination consultant the site contamination auditor Site details Site or establishment name (if appropriate): Owner(s) (please include contact details where known): Occupier(s) (where different to owner): Street address(es) (include lot or street number): Certificate(s) of title (current): Location, nature and extent Has a potentially contaminating activity been undertaken at the site, please describe..... Does this notification relate to a change in the location, nature or extent of site contamination that has previously been notified to the EPA? ☐ Yes ☐ No If yes, please provide the date(s) of previous notification(s):..... Which group(s) do the chemical substance(s), identified as site contamination that affects or threatens groundwater, belong to? ☐ Non-metallic inorganics ☐ Organic alcohols/other organics ☐ Petroleum hydrocarbons ☐ Anilines ☐ Chlorinated alkanes

☐ Chlorinated benzenes

Phthalates

☐ Monocyclic aromatic compounds

Other (please specify):

☐ Polychlorinated biphenyls

☐ Polycyclic aromatic compounds

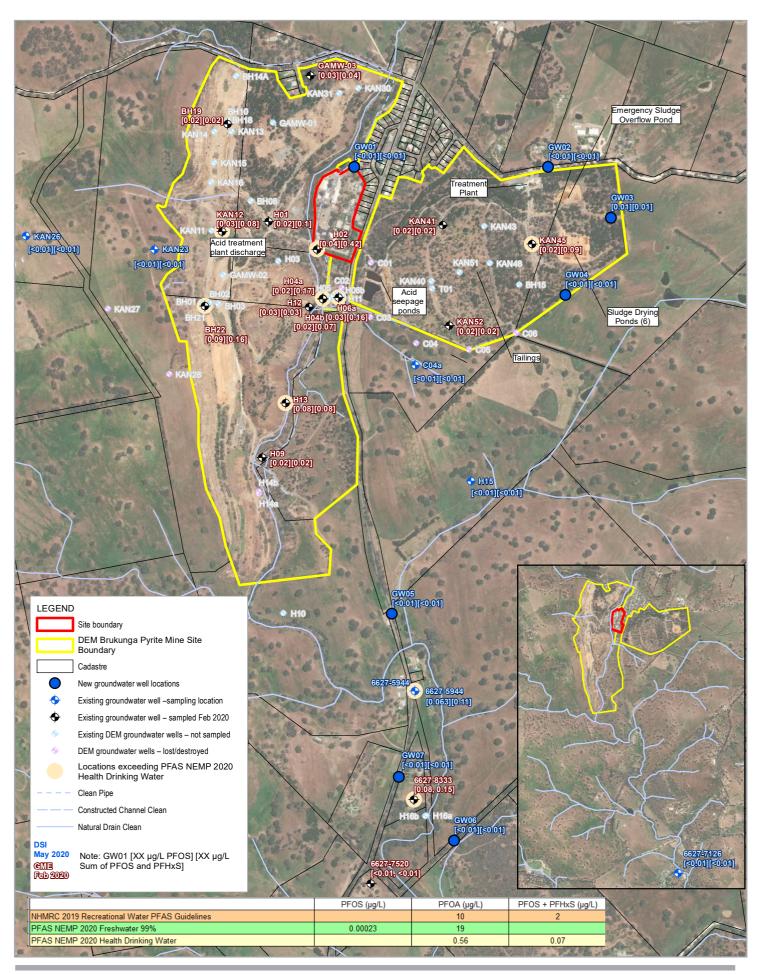
☐ Pesticides/herbicides/fungicides

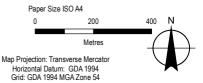
Chlorinated alkenes

☐ Phenols

Surfactants

Other chlorinated compounds


| Has an assessment of the environmental values of groundwater been undertaken? Yes                                                                                                                      | No    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| If yes, what is the TDS range in mg/L (lowest concentration for the site)?                                                                                                                             |       |
| What are the environmental values of groundwater for the site?                                                                                                                                         |       |
| ☐ Drinking water ☐ Primary industries (irrigation and general water uses)                                                                                                                              |       |
| ☐ Recreation and aesthetics                                                                                                                                                                            |       |
| ☐ Aquatic ecosystems (marine)                                                                                                                                                                          |       |
| ☐ Aquatic ecosystems (fresh)                                                                                                                                                                           |       |
| ☐ Primary industries (aquaculture)                                                                                                                                                                     |       |
| ☐ Primary industries (agriculture)                                                                                                                                                                     |       |
| Where has the site contamination that affects or threatens groundwater been identified?                                                                                                                |       |
| Soil/soil vapour Groundwater                                                                                                                                                                           |       |
| Maximum depth:m bgl Targeted aquifer(s):                                                                                                                                                               |       |
|                                                                                                                                                                                                        |       |
| What is the depth to groundwater (where known)?m bgl                                                                                                                                                   |       |
| Has a non-aqueous phase liquid been identified or inferred?                                                                                                                                            | No    |
| If yes, please provide details of measured thickness (in metres):                                                                                                                                      |       |
| Has site contamination that affects or threatens groundwater been identified offsite?                                                                                                                  | No    |
| If yes, please specify offsite certificate(s) of title or                                                                                                                                              |       |
| address(es):                                                                                                                                                                                           |       |
|                                                                                                                                                                                                        |       |
| An accurate scaled site plan showing sampling locations has been included.                                                                                                                             |       |
| This notification provides the following information to determine the existence of site contamination and the su notification of site contamination that affects or threatens groundwater at the site? | pport |
| ·                                                                                                                                                                                                      | No    |
|                                                                                                                                                                                                        | No    |
| '                                                                                                                                                                                                      | No    |
| Analytical laboratory data Yes No                                                                                                                                                                      |       |
| Quality assurance data Yes No                                                                                                                                                                          |       |
| Has the electronic data been assessed as reliable in meeting the objectives of the assessment? Yes                                                                                                     | No    |


Using direct evidence and not inferred information

Not required where electronic information has previously been provided to the EPA and the data has not changed

| Further assessment details                                                                                                                     |                                                                                                                                     |   |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|--|
| Have chemical substances been identified that may repre<br>If yes, will a background concentration <sup>3</sup> assessment be un               | -                                                                                                                                   |   |  |  |  |  |  |
| Is any further assessment being undertaken?  Preliminary site investigation  Detailed site investigation  Groundwater monitoring event  Other: | Is the site subject to a current site contamination audit?  Yes  No  If yes, please specify the EPA reference number for the audit: |   |  |  |  |  |  |
| Declaration                                                                                                                                    |                                                                                                                                     |   |  |  |  |  |  |
| It is an offence to provide false or misleading information to t<br>natural person, to \$60,000 for a body corporate, pursuant to              |                                                                                                                                     |   |  |  |  |  |  |
| I/We declare that the information provided in this form and ar material particular:                                                            | y accompanying documents is not false or misleading in an                                                                           | y |  |  |  |  |  |
| Name:                                                                                                                                          | Name:                                                                                                                               |   |  |  |  |  |  |
| Position:                                                                                                                                      | Position:                                                                                                                           |   |  |  |  |  |  |
| Signature:                                                                                                                                     | Signature:                                                                                                                          |   |  |  |  |  |  |
| Date:                                                                                                                                          | Date:                                                                                                                               |   |  |  |  |  |  |

<sup>&</sup>lt;sup>3</sup> Carried out in accordance with the EPA Guideline for the assessment of background concentrations (2018)







SA Country Fire Service CFS Brukunga State Training Centre DSI Project No. 12516828 Revision No. I

Date 28 Aug 2020

Groundwater concentrations plan

FIGURE 12a

< 0.01

< 0.02

< 0.01

< 0.01

< 0.01

|                    |                        |            | Inorganics             |                                          |                                         |                                  | PFAS in W                                | /aters Short                                 |                     |                          |                                      |
|--------------------|------------------------|------------|------------------------|------------------------------------------|-----------------------------------------|----------------------------------|------------------------------------------|----------------------------------------------|---------------------|--------------------------|--------------------------------------|
|                    |                        |            | Total Dissolved Solids | Perfluorohexane<br>sulfonic acid (PFHxS) | Perfluorooctane<br>sulfonic acid (PFOS) | Perfluorooctanoic acid<br>(PFOA) | 6:2 Fluorotelomer<br>Sulfonate (6:2 FTS) | 8:2 Fluorotelomer<br>sulfonic acid (8:2 FTS) | PFAS (Sum of Total) | Sum of PFHxS and<br>PFOS | Sum of US EPA PFAS<br>(PFOS + PFOA)* |
| EQL                |                        |            | mg/L<br>5              | μg/L<br>0.01                             | μg/L<br>0.01                            | μg/L<br>0.01                     | μg/L<br>0.01                             | μg/L<br>0.02                                 | μg/L<br>0.01        | μg/L<br>0.01             | μg/L<br>0.01                         |
|                    | ional Water PFAS Guide | lines      | <u> </u>               | 0.01                                     | 0.01                                    | 10                               | 0.01                                     | 0.02                                         | 0.01                | 2                        | 0.01                                 |
| PFAS NEMP 2020 Fre |                        |            |                        |                                          | 0.00023                                 | 19                               |                                          |                                              |                     | _                        |                                      |
| PFAS NEMP 2020 Hea | alth Drinking Water    |            |                        |                                          |                                         | 0.56                             |                                          |                                              |                     | 0.07                     |                                      |
|                    |                        |            | _                      |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      |
| Location Code      | Date                   | Field ID   |                        |                                          |                                         |                                  |                                          |                                              |                     |                          |                                      |
| 6627-5944          | 17/08/2020             | 6627-5944  |                        | 0.047 ^*                                 | 0.063 ^*                                | 0.050 ^*                         | 0.001 ^                                  | <0.005 ^*                                    | 0.15 ^*             | 0.110 ^*                 | 0.068 ^*                             |
| 6627-8333          | 12/02/2020             | 6627-8333  | 2,100                  | 0.07                                     | 0.08                                    | <0.01                            | <0.01                                    | <0.01                                        | 0.15                | 0.15                     | 0.08                                 |
| 6627-7126          | 19/06/2020             | Hawthorn 1 |                        | <0.01                                    | <0.01 #                                 | <0.01                            | <0.01                                    | <0.02                                        | <0.01               | <0.01                    | < 0.01                               |
| 6627-7520          | 10/03/2020             | 6627-7520  |                        | <0.01                                    | <0.01 #                                 | <0.01                            | <0.01                                    | <0.01                                        | <0.01               | <0.01                    | < 0.01                               |
| BH19               | 12/02/2020             | BH19       | 24,000                 | <0.01                                    | 0.02                                    | <0.01                            | <0.01                                    | <0.01                                        | 0.02                | 0.02                     | 0.02                                 |
| BH22               | 12/02/2020             | BH22       | 13,000                 | 0.07                                     | 0.09                                    | 0.1                              | <0.01                                    | <0.01                                        | 0.25                | 0.16                     | 0.18                                 |
| GAMW-03            | 12/02/2020             | GAMW-03    | 1,000                  | 0.02                                     | 0.03                                    | <0.01                            | 0.02                                     | < 0.01                                       | 0.06                | 0.04                     | 0.03                                 |
| H01                | 12/02/2020             | H01        |                        | 0.03                                     | 0.02                                    | <0.01                            | < 0.01                                   | < 0.01                                       | 0.05                | 0.05                     | 0.02                                 |
| H02                | 12/02/2020             | H02        | 5,600                  | 0.38                                     | 0.04                                    | 0.02                             | < 0.01                                   | < 0.01                                       | 0.44                | 0.42                     | 0.06                                 |
| H04a               | 12/02/2020             | H04a       | 18,000                 | 0.15                                     | 0.02                                    | 0.02                             | < 0.01                                   | < 0.01                                       | 0.19                | 0.17                     | 0.04                                 |
| H04b               | 12/02/2020             | H04b       | 7,600                  | 0.04                                     | 0.02                                    | <0.01                            | < 0.01                                   | < 0.01                                       | 0.07                | 0.07                     | 0.02                                 |
| H06a               | 12/02/2020             | H06a       | 17,000                 | 0.12                                     | 0.03                                    | 0.02                             | < 0.01                                   | < 0.01                                       | 0.17                | 0.16                     | 0.05                                 |
| H09                | 12/02/2020             | H09        | 4,700                  | < 0.01                                   | 0.02                                    | <0.01                            | < 0.01                                   | < 0.01                                       | 0.02                | 0.02                     | 0.02                                 |
| H12                | 12/02/2020             | H12        | 140,000                | < 0.01                                   | 0.03                                    | < 0.02                           | < 0.02                                   | < 0.01                                       | 0.03                | 0.03                     | 0.03                                 |
| H13                | 12/02/2020             | H13        | 150,000                | < 0.01                                   | 0.08                                    | < 0.02                           | < 0.02                                   | < 0.01                                       | 0.08                | 0.08                     | 0.08                                 |
| KAN12              | 12/02/2020             | KAN12      | 11,000                 | 0.05                                     | 0.03                                    | 0.04                             | < 0.01                                   | <0.01                                        | 0.12                | 0.08                     | 0.07                                 |
| KAN41              | 12/02/2020             | KAN41      | 18,000                 | < 0.01                                   | 0.02                                    | <0.01                            | 0.04                                     | <0.01                                        | 0.06                | 0.02                     | 0.02                                 |
| KAN45              | 12/02/2020             | KAN45      | 5,800                  | 0.06                                     | 0.02                                    | 0.02                             | < 0.01                                   | < 0.01                                       | 0.11                | 0.09                     | 0.05                                 |
| KAN52              | 12/02/2020             | KAN52      | 18,000                 | < 0.01                                   | 0.02                                    | < 0.01                           | < 0.01                                   | < 0.01                                       | 0.02                | 0.02                     | 0.02                                 |
| GW01               | 15/06/2020             | GW01       |                        | < 0.01                                   | <0.01 #                                 | < 0.01                           | < 0.01                                   | < 0.02                                       | < 0.01              | < 0.01                   | < 0.01                               |
| GW02               | 15/06/2020             | GW02       |                        | < 0.01                                   | <0.01 #                                 | < 0.01                           | < 0.01                                   | < 0.02                                       | < 0.01              | < 0.01                   | < 0.01                               |
| GW03               | 16/06/2020             | GW03       |                        | < 0.01                                   | 0.01                                    | < 0.01                           | < 0.01                                   | < 0.02                                       | 0.01                | 0.01                     | 0.01                                 |
| GW04               | 16/06/2020             | GW04       |                        | < 0.01                                   | <0.01 #                                 | < 0.01                           | < 0.01                                   | < 0.02                                       | < 0.01              | < 0.01                   | < 0.01                               |
| GW05               | 15/06/2020             | GW05       |                        | < 0.01                                   | <0.01 #                                 | < 0.01                           | < 0.01                                   | < 0.02                                       | < 0.01              | < 0.01                   | < 0.01                               |
| GW06               | 15/06/2020             | GW06       |                        | < 0.01                                   | <0.01 #                                 | < 0.01                           | < 0.01                                   | < 0.02                                       | < 0.01              | < 0.01                   | < 0.01                               |
| GW07               | 16/06/2020             | GW07       |                        | < 0.01                                   | <0.01 #                                 | < 0.01                           | < 0.01                                   | < 0.02                                       | < 0.01              | < 0.01                   | < 0.01                               |
| H15                | 16/06/2020             | H15        |                        | < 0.01                                   | <0.01 #                                 | < 0.01                           | < 0.01                                   | < 0.02                                       | < 0.01              | < 0.01                   | < 0.01                               |
| KAN23              | 15/06/2020             | KAN23      |                        | < 0.01                                   | <0.01 #                                 | <0.01                            | < 0.01                                   | <0.02                                        | < 0.01              | <0.01                    | < 0.01                               |
| C04a               | 16/06/2020             | C04a       |                        | <0.01                                    | <0.01 #                                 | <0.01                            | <0.01                                    | <0.02                                        | <0.01               | <0.01                    | < 0.01                               |
| KANDO              | 40/00/0000             | ICANICC    |                        | 10.04                                    | 0.04#                                   | 10.01                            | 10.04                                    | 40.00                                        | 10.04               | 10.04                    | 10.04                                |

<sup>^</sup> Trace level analysis; EQL =  $0.0002 \mu g/L$  for PFHxS, PFOS, PFOA and sums; EQL =  $0.0004 \mu g/L$  or  $0.005 \mu g/L$  for 6:2 FTS and 8:2 FTS

KAN26

19/06/2020

KAN26

<sup>\*</sup> Higher value adopted from QA/QC analysis

<sup>#</sup> PFOS concentration below the standard LOR (0.01 μg/L) may potentially exeed the PFAS NEMP 2020 freshwater 99% protection level of 0.00023 μg/L



**Envirolab Services Pty Ltd** 

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

## **CERTIFICATE OF ANALYSIS 249198**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | GHD Pty Ltd                      |
| Attention      | Sean Sparrow                     |
| Address        | GPO Box 2052, Adelaide, SA, 5001 |

| Sample Details                       |                     |
|--------------------------------------|---------------------|
| Your Reference                       | 12516828            |
| Number of Samples                    | 5 Water, 2 Sediment |
| Date samples received                | 18/08/2020          |
| Date completed instructions received | 18/08/2020          |

## **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                 |  |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| Date results requested by                                                             | 21/08/2020                                                      |  |  |  |  |
| Date of Issue                                                                         | 21/08/2020                                                      |  |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                 |  |  |  |  |
| Accredited for compliance with ISO/IE                                                 | C 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |  |

Results Approved By

Manju Dewendrage, Chemist

Phalak Inthakesone, Organics Development Manager, Sydney

**Authorised By** 

Nancy Zhang, Laboratory Manager



| PFAS in Water TRACE Short                          |       |            |            |            |            |            |
|----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                                      |       | 249198-1   | 249198-2   | 249198-4   | 249198-6   | 249198-7   |
| Your Reference                                     | UNITS | 6627-5944  | DC02A      | QC30       | TB09       | RB09       |
| Date Sampled                                       |       | 17/08/2020 | 17/08/2020 | 17/08/2020 | 17/08/2020 | 17/08/2020 |
| Type of sample                                     |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared                                      | -     | 19/08/2020 | 19/08/2020 | 19/08/2020 | 19/08/2020 | 19/08/2020 |
| Date analysed                                      | -     | 19/08/2020 | 19/08/2020 | 19/08/2020 | 19/08/2020 | 19/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L  | 0.037      | 0.070      | 0.039      | <0.0002    | <0.0002    |
| Perfluorooctanesulfonic acid PFOS                  | μg/L  | 0.049      | 0.058      | 0.043      | <0.0002    | <0.0002    |
| Perfluorooctanoic acid PFOA                        | μg/L  | 0.0046     | 0.0092     | 0.0047     | <0.0002    | <0.0002    |
| 6:2 FTS                                            | μg/L  | 0.001      | <0.0004    | 0.001      | <0.0004    | <0.0004    |
| 8:2 FTS                                            | μg/L  | <0.0004    | <0.0004    | <0.0004    | <0.0004    | <0.0004    |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 111        | 102        | 101        | 108        | 108        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 111        | 111        | 114        | 109        | 108        |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 126        | 126        | 128        | 129        | 135        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %     | 64         | 61         | 64         | 78         | 111        |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %     | 112        | 100        | 112        | 120        | 131        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %     | #          | #          | #          | 177        | 194        |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %     | 178        | #          | 189        | 118        | #          |
| Total Positive PFHxS & PFOS                        | μg/L  | 0.086      | 0.13       | 0.082      | <0.0002    | <0.0002    |
| Total Positive PFOS & PFOA                         | μg/L  | 0.054      | 0.067      | 0.047      | <0.0002    | <0.0002    |
| Total Positive PFAS                                | μg/L  | 0.092      | 0.14       | 0.088      | <0.0002    | <0.0002    |

| PFAS in Soils Short                                |       |            |            |
|----------------------------------------------------|-------|------------|------------|
| Our Reference                                      |       | 249198-3   | 249198-5   |
| Your Reference                                     | UNITS | DC02AS     | QC30S      |
| Date Sampled                                       |       | 17/08/2020 | 17/08/2020 |
| Type of sample                                     |       | Sediment   | Sediment   |
| Date prepared                                      | -     | 21/08/2020 | 21/08/2020 |
| Date analysed                                      | -     | 21/08/2020 | 21/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg | 1.2        | 1.0        |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg | 34         | 26         |
| Perfluorooctanoic acid PFOA                        | μg/kg | 0.2        | 0.2        |
| 6:2 FTS                                            | μg/kg | <0.1       | <0.1       |
| 8:2 FTS                                            | μg/kg | <0.2       | <0.2       |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %     | 98         | 108        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %     | 99         | 102        |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %     | 91         | 84         |
| Extracted ISTD 13 C4 PFOS                          | %     | 88         | 74         |
| Extracted ISTD 13 C4 PFOA                          | %     | 91         | 85         |
| Extracted ISTD 13 C2 6:2FTS                        | %     | 122        | 116        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %     | 188        | 162        |
| Total Positive PFHxS & PFOS                        | μg/kg | 35         | 27         |
| Total Positive PFOS & PFOA                         | μg/kg | 34         | 26         |
| Total Positive PFAS                                | μg/kg | 35         | 27         |

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference  |       | 249198-3   | 249198-5   |
| Your Reference | UNITS | DC02AS     | QC30S      |
| Date Sampled   |       | 17/08/2020 | 17/08/2020 |
| Type of sample |       | Sediment   | Sediment   |
| Date prepared  | -     | 21/08/2020 | 21/08/2020 |
| Date analysed  | -     | 24/08/2020 | 24/08/2020 |
| Moisture       | %     | 42         | 39         |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-008 | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Org-029   | Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. Analysis is undertaken with LC-MS/MS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | PFAS results include the sum of branched and linear isomers where applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.3 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components. |
|           | Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Envirolab Reference: 249198

| QUALITY CON                                        | TROL: PFAS | in Water | TRACE Short |            |   | Du         | plicate    |     | Spike Re   | covery %   |
|----------------------------------------------------|------------|----------|-------------|------------|---|------------|------------|-----|------------|------------|
| Test Description                                   | Units      | PQL      | Method      | Blank      | # | Base       | Dup.       | RPD | LCS-W1     | 249198-2   |
| Date prepared                                      | -          |          |             | 19/08/2020 | 1 | 19/08/2020 | 19/08/2020 |     | 19/08/2020 | 19/08/2020 |
| Date analysed                                      | -          |          |             | 19/08/2020 | 1 | 19/08/2020 | 19/08/2020 |     | 19/08/2020 | 19/08/2020 |
| Perfluorohexanesulfonic acid - PFHxS               | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | 0.037      | 0.039      | 5   | 86         | 87         |
| Perfluorooctanesulfonic acid PFOS                  | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | 0.049      | 0.043      | 13  | 96         | 76         |
| Perfluorooctanoic acid PFOA                        | μg/L       | 0.0002   | Org-029     | <0.0002    | 1 | 0.0046     | 0.0048     | 4   | 96         | 102        |
| 6:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 1 | 0.001      | 0.001      | 0   | 103        | 115        |
| 8:2 FTS                                            | μg/L       | 0.0004   | Org-029     | <0.0004    | 1 | <0.0004    | <0.0004    | 0   | 106        | 70         |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |          | Org-029     | 103        | 1 | 111        | 100        | 10  | 101        | 101        |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |          | Org-029     | 103        | 1 | 111        | 113        | 2   | 101        | 110        |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |          | Org-029     | 119        | 1 | 126        | 118        | 7   | 111        | 120        |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |          | Org-029     | 81         | 1 | 64         | 65         | 2   | 83         | 61         |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOA   | %          |          | Org-029     | 119        | 1 | 112        | 118        | 5   | 107        | 108        |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |          | Org-029     | 142        | 1 | #          | #          |     | 112        | #          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 8:2FTS | %          |          | Org-029     | 108        | 1 | 178        | 183        | 3   | 87         | #          |

| QUALITY (                                          | CONTROL: F | PFAS in S | oils Short |            |   | Du         | plicate    |     | Spike Re   | covery % |
|----------------------------------------------------|------------|-----------|------------|------------|---|------------|------------|-----|------------|----------|
| Test Description                                   | Units      | PQL       | Method     | Blank      | # | Base       | Dup.       | RPD | LCS-1      | [NT]     |
| Date prepared                                      | -          |           |            | 21/08/2020 | 3 | 21/08/2020 | 21/08/2020 |     | 21/08/2020 |          |
| Date analysed                                      | -          |           |            | 21/08/2020 | 3 | 21/08/2020 | 21/08/2020 |     | 21/08/2020 |          |
| Perfluorohexanesulfonic acid - PFHxS               | μg/kg      | 0.1       | Org-029    | <0.1       | 3 | 1.2        | 1.2        | 0   | 93         |          |
| Perfluorooctanesulfonic acid PFOS                  | μg/kg      | 0.1       | Org-029    | <0.1       | 3 | 34         | 39         | 14  | 91         |          |
| Perfluorooctanoic acid PFOA                        | μg/kg      | 0.1       | Org-029    | <0.1       | 3 | 0.2        | 0.2        | 0   | 97         |          |
| 6:2 FTS                                            | μg/kg      | 0.1       | Org-029    | <0.1       | 3 | <0.1       | <0.1       | 0   | 101        |          |
| 8:2 FTS                                            | μg/kg      | 0.2       | Org-029    | <0.2       | 3 | <0.2       | <0.2       | 0   | 95         |          |
| Surrogate <sup>13</sup> C <sub>8</sub> PFOS        | %          |           | Org-029    | 100        | 3 | 98         | 97         | 1   | 94         |          |
| Surrogate <sup>13</sup> C <sub>2</sub> PFOA        | %          |           | Org-029    | 105        | 3 | 99         | 104        | 5   | 103        |          |
| Extracted ISTD <sup>18</sup> O <sub>2</sub> PFHxS  | %          |           | Org-029    | 110        | 3 | 91         | 102        | 11  | 109        |          |
| Extracted ISTD <sup>13</sup> C <sub>4</sub> PFOS   | %          |           | Org-029    | 100        | 3 | 88         | 90         | 2   | 107        |          |
| Extracted ISTD 13 C <sub>4</sub> PFOA              | %          |           | Org-029    | 105        | 3 | 91         | 92         | 1   | 105        |          |
| Extracted ISTD <sup>13</sup> C <sub>2</sub> 6:2FTS | %          |           | Org-029    | 114        | 3 | 122        | 152        | 22  | 102        |          |
| Extracted ISTD 13 C <sub>2</sub> 8:2FTS            | %          |           | Org-029    | 128        | 3 | 188        | #          |     | 124        |          |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 249198

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 249198 Page | 9 of 10

# **Report Comments**

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Reference: 249198 Page | 10 of 10



## **CERTIFICATE OF ANALYSIS**

Work Order : **ES2028971** 

: GHD PTY LTD

Contact : GHD LAB REPORTS

Address : 2/11 VICTORIA SQUARE

ADELAIDE SA, AUSTRALIA 5000

Telephone : ---

Client

Project : 12516828 Order number : 12516828

C-O-C number : ----

Sampler : SEAN SPARROW

Site

Quote number : EN/005

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 5

Laboratory : Environmental Division Sydney

Contact : Angus Harding

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 18-Aug-2020 17:30

Date Analysis Commenced : 20-Aug-2020

Issue Date : 25-Aug-2020 12:06



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Franco Lentini LCMS Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

 Page
 : 2 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20ml or 125ml bottles have been tested in accordance with the QSM5.3 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP231X: Poor matrix spike recoveries due to matrix interferences.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS (Australian HEPA) and also conform to QSM 5.3 (US DoD) requirements.

 Page
 : 3 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Analytical Results

| Sub-Matrix: SOIL (Matrix: SOIL)              |                             | Clie   | ent sample ID | QC30AS            | <br> | <br> |
|----------------------------------------------|-----------------------------|--------|---------------|-------------------|------|------|
|                                              | Client sampling date / time |        |               | 17-Aug-2020 00:00 | <br> | <br> |
| Compound                                     | CAS Number                  | LOR    | Unit          | ES2028971-002     | <br> | <br> |
| ·                                            |                             |        |               | Result            | <br> | <br> |
| EA055: Moisture Content (Dried @ 10          | )5-110°C)                   |        |               |                   |      |      |
| Moisture Content                             |                             | 0.1    | %             | 66.4              | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acid         | ls                          |        |               |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5                    | 0.0002 | mg/kg         | <0.0002           | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4                    | 0.0002 | mg/kg         | 0.0018            | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1                   | 0.0002 | mg/kg         | 0.0403            | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic A          | cids                        |        |               |                   |      |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4                    | 0.001  | mg/kg         | <0.001            | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3                   | 0.0002 | mg/kg         | <0.0002           | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4                    | 0.0002 | mg/kg         | 0.0002            | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9                    | 0.0002 | mg/kg         | <0.0002           | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1                    | 0.0002 | mg/kg         | 0.0002            | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfoni          | c Acids                     |        |               |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4                 | 0.0005 | mg/kg         | <0.0005           | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2                  | 0.0005 | mg/kg         | <0.0005           | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4                  | 0.0005 | mg/kg         | <0.0005           | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0                 | 0.0005 | mg/kg         | <0.0005           | <br> | <br> |
| EP231P: PFAS Sums                            |                             |        |               |                   |      |      |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1      | 0.0002 | mg/kg         | 0.0421            | <br> | <br> |
| Sum of PFAS (WA DER List)                    |                             | 0.0002 | mg/kg         | 0.0425            | <br> | <br> |
| EP231S: PFAS Surrogate                       |                             |        |               |                   |      |      |
| 13C4-PFOS                                    |                             | 0.0002 | %             | 96.5              | <br> | <br> |
| 13C8-PFOA                                    |                             | 0.0002 | %             | 85.5              | <br> | <br> |

 Page
 : 4 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



# Analytical Results

| Sub-Matrix: WATER (Matrix: WATER)            |                        | Clie         | ent sample ID  | QC30A             | <br> | <br> |
|----------------------------------------------|------------------------|--------------|----------------|-------------------|------|------|
|                                              | C                      | lient sampli | ng date / time | 17-Aug-2020 00:00 | <br> | <br> |
| Compound                                     | CAS Number             | LOR          | Unit           | ES2028971-001     | <br> | <br> |
|                                              |                        |              |                | Result            | <br> | <br> |
| EP231A: Perfluoroalkyl Sulfonic Acids        |                        |              |                |                   |      |      |
| Perfluorobutane sulfonic acid (PFBS)         | 375-73-5               | 0.002        | μg/L           | 0.008             | <br> | <br> |
| Perfluorohexane sulfonic acid (PFHxS)        | 355-46-4               | 0.002        | μg/L           | 0.047             | <br> | <br> |
| Perfluorooctane sulfonic acid (PFOS)         | 1763-23-1              | 0.002        | μg/L           | 0.063             | <br> | <br> |
| EP231B: Perfluoroalkyl Carboxylic Ac         | cids                   |              |                |                   |      |      |
| Perfluorobutanoic acid (PFBA)                | 375-22-4               | 0.01         | μg/L           | <0.01             | <br> | <br> |
| Perfluoropentanoic acid (PFPeA)              | 2706-90-3              | 0.002        | μg/L           | 0.006             | <br> | <br> |
| Perfluorohexanoic acid (PFHxA)               | 307-24-4               | 0.002        | μg/L           | 0.019             | <br> | <br> |
| Perfluoroheptanoic acid (PFHpA)              | 375-85-9               | 0.002        | μg/L           | 0.002             | <br> | <br> |
| Perfluorooctanoic acid (PFOA)                | 335-67-1               | 0.002        | μg/L           | 0.005             | <br> | <br> |
| EP231D: (n:2) Fluorotelomer Sulfonic         | Acids                  |              |                |                   |      |      |
| 4:2 Fluorotelomer sulfonic acid (4:2 FTS)    | 757124-72-4            | 0.005        | μg/L           | <0.005            | <br> | <br> |
| 6:2 Fluorotelomer sulfonic acid<br>(6:2 FTS) | 27619-97-2             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| 8:2 Fluorotelomer sulfonic acid<br>(8:2 FTS) | 39108-34-4             | 0.005        | μg/L           | <0.005            | <br> | <br> |
| 10:2 Fluorotelomer sulfonic acid (10:2 FTS)  | 120226-60-0            | 0.005        | μg/L           | <0.005            | <br> | <br> |
| EP231P: PFAS Sums                            |                        |              |                |                   |      |      |
| Sum of PFHxS and PFOS                        | 355-46-4/1763-23-<br>1 | 0.002        | μg/L           | 0.110             | <br> | <br> |
| Sum of PFAS (WA DER List)                    |                        | 0.002        | μg/L           | 0.150             | <br> | <br> |
| EP231S: PFAS Surrogate                       |                        |              |                |                   |      |      |
| 13C4-PFOS                                    |                        | 0.002        | %              | 108               | <br> | <br> |
| 13C8-PFOA                                    |                        | 0.002        | %              | 103               | <br> | <br> |

 Page
 : 5 of 5

 Work Order
 : ES2028971

 Client
 : GHD PTY LTD

 Project
 : 12516828



# **Surrogate Control Limits**

| Sub-Matrix: SOIL       |            | Recovery Limits (%) |      |  |
|------------------------|------------|---------------------|------|--|
| Compound               | CAS Number | Low                 | High |  |
| EP231S: PFAS Surrogate |            |                     |      |  |
| 13C4-PFOS              |            | 60                  | 120  |  |
| 13C8-PFOA              |            | 60                  | 120  |  |
| Sub-Matrix: WATER      |            | Recovery Limits (%) |      |  |
| Compound               | CAS Number | Low                 | High |  |
| EP231S: PFAS Surrogate |            |                     |      |  |
| 13C4-PFOS              |            | 60                  | 120  |  |
| 13C8-PFOA              |            | 60                  | 120  |  |

# **Appendix O** – Quality Assurance and Quality Control

# Data quality objectives and quality assurance / quality control

# **Data quality objectives**

The data quality objectives (DQOs) and investigation strategy have been developed using the methodology discussed in the ASC NEPM Schedule B2 Guideline on Site Characterisation. The guideline nominates the implementation of the DQO process in Section 5 of AS4482.1-2005. The purpose of the DQO process is to ensure that the data collection activities are focused on collecting the information needed to make decisions, and answering the relevant questions leading up to such decisions.

The Data Quality Objectives (DQOs) establish a framework for contamination investigations which incorporates a seven stepped continuum that defines the problem at the site. A series of stages then optimises the design of the investigation. The seven steps are outlined below:

- Step 1: State the Problem
- Step 2: Identify the Principal Study Question
- Step 3: Inputs to the Decision
- Step 4: Boundaries of the Study
- Step 5: Decision Rules
- Step 6: Tolerable Limits on Decision Errors
- Step 7: Optimisation of the Data Collection Process

An overview of the DQOs for the investigation is presented below.

# Step 1: State the problem

The extent, nature and concentrations of PFAS in various media on- and off-site has not been determined.

# Step 2: Identify the principal study question

The objectives of this environmental investigation were to:

- To assess the nature and extent of PFAS impacts associated with historical site activities; on-site in groundwater, surface water, soil and on infrastructure (e.g. concrete slabs) as well as off-site in groundwater, surface water, sediment and sludge stockpiles.
- Identify and assess any potential risks to human health and the environment from PFAS site
  contamination arising from historical site activities, in the context of continued industrial use of the
  site and for relevant land uses for any affected off-site properties.
- Provide appropriate information to revise the conceptual site model (CSM) and to prepare a Remediation Options Assessment and Site Remediation Plan.

### Step 3: Inputs to the decision

The following inputs are required for the decision:

- Quantitative and qualitative data gained through groundwater, surface water, sediment, soil, infrastructure (e.g. concrete slabs) and sludge stockpile sampling, analytical works and observations during investigations.
- · Anecdotal information provided by CFS and DEM.

#### Step 4: Boundaries of the study

Spatial boundaries of this investigation were defined laterally by the extent of sampling locations as shown in Figure 4 to Figure 8 and vertically by the maximum depth of soil bores and groundwater wells. The temporal boundaries ranged from the date of acceptance of this work until the final day of fieldwork.

# Step 5: Decision rules

Analytical data were assessed against the criteria adopted from relevant guidance or developed based on reference site data as discussed in the report.

### Step 6: Tolerable limits on decision errors

Data generated as part of the Environmental Investigation must be appropriate to allow decisions to be made with confidence. Specific limits have been adopted in accordance with the appropriate guidance from the AS4482.1 which includes appropriate indicators of data quality. Data quality indicators (DQIs) were used to assess QA/QC and GHD's Standard Field Operating Procedures.

To assess the usability of the data prior to making decisions, the data were assessed against predetermined DQIs. The DQIs including precision, accuracy, representativeness, comparability and completeness, were reviewed at the completion of the Environmental Investigation to assess for the presence of decision errors.

The pre-determined DQIs established for the investigation are discussed below and shown in Table 1.

- Precision measures the reproducibility of measurements under a given set of conditions. The
  precision of the laboratory data and sampling techniques is assessed by calculating the Relative
  Percentage Difference (RPD) of duplicate samples
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that
  are generated during this investigation is a measure of the closeness of the analytical results
  obtained by a method to the 'true' (or standard) value. Accuracy is assessed by reference to the
  analytical results of laboratory control samples, laboratory spikes and analyses against reference
  standards
- Representativeness expresses the degree to which sample data accurately and precisely
  represent a characteristic of a population or an environmental condition. Representativeness is
  achieved by collecting samples on a representative basis across the site, and by using an
  adequate number of sample locations to characterise the site to the required accuracy
- Comparability expresses the confidence with which one data set can be compared with another.
   This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods
- Completeness is defined as the percentage of measurements made which are judged to be valid measurements.

 Table 1
 Summary of quality assurance /quality control criteria

| Data quality indicator            | Frequency    | Data quality acceptance criteria                                                                                                                                                                     |
|-----------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precision                         |              |                                                                                                                                                                                                      |
| Duplicates (Intra-<br>Laboratory) | 1/20 samples | The RPD values were compared to the 30–50% RPD acceptance criterion adopted from Australian                                                                                                          |
| Duplicates (Inter-<br>Laboratory) | 1/20 samples | Standard AS4482.1 (for non- and semi-volatiles).  RPDs for results less than the laboratory practical quantitation limits (PQL) and in instances where results were greater than the PQL for the one |

| Data quality indicator                                              | Frequency                                            | Data quality acceptance criteria                                                                                                                             |
|---------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                                                      | sample, but below the PQL for the corresponding primary or duplicate sample, RPDs were not calculated.                                                       |
| Accuracy                                                            |                                                      |                                                                                                                                                              |
| Laboratory (Method)<br>Blank                                        | One sample<br>per batch of<br>20 samples<br>or fewer | Less than detection limit or limit of reporting (LOR) of the method used.                                                                                    |
| Laboratory Duplicates                                               | One sample per batch of                              | Laboratory duplicate samples should have RPD's within the NEPM acceptance criteria of ±30%.                                                                  |
|                                                                     | 10 samples or fewer                                  | The laboratory RPDs have been assessed using the following ranges:                                                                                           |
|                                                                     |                                                      | Results <10 times LOR: no limits.                                                                                                                            |
|                                                                     |                                                      | Results between 10 and 20 times LOR 0% - 50%.                                                                                                                |
|                                                                     |                                                      | Results >20 times LOR: 0-20%.                                                                                                                                |
| Trip blank                                                          | One sample<br>per batch of<br>20 samples<br>or fewer | Less than detection limit or limit of reporting (LOR) of the method used.                                                                                    |
| Rinsate blank                                                       | One sample<br>per batch of<br>20 samples<br>or fewer | Less than detection limit or limit of reporting (LOR) of the method used.                                                                                    |
| Representativeness                                                  |                                                      |                                                                                                                                                              |
| Sampling appropriate for media and analytes                         | All samples                                          | -                                                                                                                                                            |
| Samples extracted and                                               | All samples                                          | Non PFAS organics (14 days)                                                                                                                                  |
| analysed within holding times                                       |                                                      | PFAS in water (14 days extraction for USEPA method and 28 days for AST Method) PFAS in soil (60 days extraction for USEPA method and 28 days for AST Method) |
|                                                                     |                                                      | Inorganics (6 months)                                                                                                                                        |
| LORs appropriate and consistent                                     | All samples                                          | All samples                                                                                                                                                  |
| Comparability                                                       | All samples                                          | All samples                                                                                                                                                  |
| Consistent field conditions, sampling staff and laboratory analysis | All samples                                          | All samples                                                                                                                                                  |

| Data quality indicator                                         | Frequency         | Data quality acceptance criteria |
|----------------------------------------------------------------|-------------------|----------------------------------|
| Standard operating procedures for sample collection & handling | All samples       | All samples                      |
| Standard analytical methods used for all analyses              | All samples       | All samples                      |
| Completeness                                                   |                   |                                  |
| Sample description and COCs completed and appropriate          | All samples       | All samples                      |
| Appropriate documentation                                      | All samples       | All samples                      |
| Satisfactory frequency<br>and result for QA/QC<br>samples      | All QA/QC samples | r                                |
| Data from critical samples is considered valid                 | -                 | Critical samples valid           |

Notes:

COC: Chain of Custody LOR: Limit of Reporting

QA/QC: Quality assurance / quality control

# Step 7: Optimisation of the data collection process

To optimise the design of the investigation, the sampling and analytical program was developed in discussion with CFS staff based on the historic use of PFAS containing firefighting foam on site. The sampling plan was based upon the Sampling and Analysis Quality Plan (GHD 2020c) in accordance with standard industry practices, the HEPA NEMP 2020, and SA EPA guidelines.

Results (including QA/QC results) were reviewed as they were received from the laboratory and any inconsistencies or unexpected data were further investigated with the laboratory.

# Field QA/QC

A series of QA/QC procedures were implemented for the field investigation works, which included:

- Collection of QC Samples
- Use of standard sampling procedures
- Use of standard field sampling forms, including Chain of Custodies (COCs)
- Documenting the calibration and use of field equipment

All field works were conducted by a GHD environmental scientist in accordance with GHD's *Standard Field Operating Procedures (SFOP)*.

#### QA/QC sampling

Field QA/QC samples were collected and analysed. Field QC sampling was conducted in reference to AS 4482.1:2005 and ASC NEPM 2013 Schedule B2 requirements and included the analyses of the following types of samples in Table 2.

Table 2 Field QA/QC sample details

| Field QA/QC sample type               | Details                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intra-Laboratory Duplicate (Blind)    | Comprise a single sample that is divided into two separate sampling containers. Both samples are sent anonymously to the primary project laboratory. Blind duplicates provide an indication of the analytical precision of the laboratory but are inherently influenced by other factors such as sampling techniques and sample media heterogeneity. |
| Inter-Laboratory<br>Duplicate (Split) | Inter-Laboratory Duplicate (Split) samples are two separate samples collected at the same location and analysed by two separate laboratories to determine the analytical proficiency of the primary laboratory.                                                                                                                                      |
| Rinsate                               | A sample of analyte free water poured over or through decontaminated field sampling equipment prior to the collection of environmental samples to assess the adequacy of the decontamination process.                                                                                                                                                |

GHD adopts the AS4482.1 acceptance criteria of 30% and 50% RPD for field duplicates of inorganics and organics, respectively. Blind duplicate and split samples should have RPDs less than the criteria in each instance. However, it is noted that the criteria will not always be achieved, particularly in heterogeneous materials, or at low analyte concentrations. RPD acceptance criteria were not applied where analyte concentrations were less than ten times the laboratory LOR.

In the instance where samples and their corresponding duplicates have concentrations of target analytes less than the laboratory LOR, no quantitative comparison can be carried out and therefore the RPD is undefined.

Duplicate, split, trip blank and rinsate sample results and Relative Percentage Difference (RPD) calculations are presented at the end of this report.

#### Sample handling and preservation

All samples were immediately placed in an insulated cooler containing ice for storage and were delivered by GHD Field Staff to the laboratory upon the completion of field work as promptly as possible.

All samples were received intact as per the Sample Receipt Notification.

#### Chain of custody

Unique Chain of Custody documentation and distinct batch numbers accompany all sample batches. This documentation is included in Appendix G.

# **Laboratory QA/QC**

The primary laboratory (Envirolab) and secondary laboratory (ALS) were both subcontracted by GHD to analyse samples are certified by the NATA for the required analysis. NATA certification provides for laboratory QA procedures to be in place and to be carried out on an on-going basis.

As part of the NATA requirements, the laboratories carried out and reported analysis of laboratory quality control samples, such as:

- Duplicate samples (the same sample analysed more than once)
- Blanks (containing none of the analytes to be analysed)
- Standard samples (samples containing known concentrations of the analytes also known as reference standards).

# **Laboratory QA/QC procedures**

As part of NATA requirements, the laboratories incorporated a range of QA methods to ensure accuracy of data. This includes the analyses of internal laboratory QC samples, details of which have been provided in Table 3.

 Table 3
 Laboratory QC sample details

| Laboratory<br>QA/QC sample   | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory<br>(Method) Blank | Usually an organic or aqueous solution that is as free as possible of analytes of interest to which is added all the reagents, in the same volume, as used in the preparation and subsequent analysis of the samples. The reagent blank is carried through the complete sample preparation procedure and contains the same reagent concentrations in the final solution as in the sample solution used for analysis. The reagent blank is used to correct for possible contamination resulting from the preparation or processing of the sample.                                 |
| Laboratory<br>Control Sample | A reference standard of known concentration is analysed along with a batch of samples. The Laboratory Control Sample provides an indication of the analytical accuracy and the precision of the test method and is used for inorganic analyses.                                                                                                                                                                                                                                                                                                                                  |
| Laboratory<br>Spike          | An authentic field sample is 'spiked' by adding an aliquot of known concentration of the target analyte(s) prior to sample extraction and analysis. A spike documents the effect of the sample matrix on the extraction and analytical techniques. Spiked samples will be analysed for each batch where samples are analysed for organic chemicals of concern.                                                                                                                                                                                                                   |
| Surrogate<br>Samples         | These are organic compounds which are similar to the analyte of interest in terms of chemical composition, extractability, and chromatographic conditions (retention time), but which are not normally found in environmental samples. These surrogate compounds are 'spiked' into blanks, standards and samples submitted for organic analyses by gaschromatographic techniques prior to sample extraction. Surrogate Standard / Spikes provide a means of checking that no gross errors have occurred during any stage of the test method leading to significant analyte loss. |

| Laboratory<br>QA/QC sample | Details                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory<br>Duplicates   | submitted for ar<br>analytical batch<br>analysed in a ba<br>precision and re<br>The precision of<br>calculation of th<br>based on a com<br>results represer<br>concentrations | aboratory collects duplicate sub samples from one sample nalytical testing at a rate equivalent to one in twenty samples per , or one sample per batch if less than twenty samples are atch. A laboratory duplicate provides data on the analytical eproducibility of the test result. If analysis performed by the laboratory is determined by the e relative percent difference (RPD). The RPD is calculated aparison of an intra-laboratory split of the sample material with inting the percent difference between the two sample for a specific contaminant. Equilated using the following formula: $\frac{-C_d}{+C_d} \times 200$ |
|                            | Where                                                                                                                                                                         | $C_0$ = Analyte concentration of original sample $C_d$ = Analyte concentration of duplicate sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

The laboratory is required to provide this information to GHD. The individual analytical laboratories conduct an assessment of the laboratory QC program internally; however, the results are also reviewed and assessed by GHD.

# **Field QC Results**

The field QC results analysis below considers all sample types collected as part of the environmental investigation.

# **Primary samples**

A total of 218 primary samples were collected, submitted and analysed as part of the environmental investigation. A total of 70 field QC samples were collected and analysed as part of the investigation. The target frequency for analysis of field QC samples is one replicate pair per 20 primary samples (10%). In this instance, the frequency was acceptable.

#### Water

A total of 11 RPD exceedances were observed for the water samples as summarized in Table 1 below:

**Table 1 – Summary of Water Sample RPD Exceedances** 

| Primary<br>Sample ID | Analyte                   | Primary<br>Sample<br>Value (µg/L) | QC Sample<br>ID | QC Sample<br>Value<br>(µg/L) | RPD        |
|----------------------|---------------------------|-----------------------------------|-----------------|------------------------------|------------|
| DC05                 | Sum of<br>PFHxS &<br>PFOS | 0.13                              | QC12<br>QC12    | 2.7<br>3.21                  | 182<br>184 |
|                      | PFAS (sum)                | 0.13                              | QC12            | 2.9                          | 183        |
| DC06                 | Sum of<br>PFHxS &<br>PFOS | 0.24                              | QA16            | 0.14                         | 53         |
|                      | PFAS (sum)                | 0.24                              | QA16            | 0.14                         | 53         |

| DC08     | Sum of<br>PFHxS &<br>PFOS | 0.14   | QA20A | 0.24   | 53 |
|----------|---------------------------|--------|-------|--------|----|
|          | PFAS (sum)                | 0.14   | QA20A | 0.28   | 67 |
| DC19     | PFAS (sum)                | 0.029  | QC29A | 0.049  | 51 |
| MBC02    | PFAS (sum)                | 0.0090 | QC28A | 0.0210 | 80 |
| DC17A    | PFHxS                     | 0.0064 | QC29A | 0.0120 | 61 |
| MBC01_2A | PFOS                      | 0.0041 | QC35A | 0.0070 | 52 |

The RPD non-conformances noted between the water primary and duplicate pairs were in most cases considered to be exaggerated by the low concentrations of PFAS being assesses. As such, the calculated RPD values are not considered to indicate integrity issues.

Where an RPD non-conformance was identified the highest results was adopted for the purpose of this assessment.

#### Sediment

A total of 23 RPD exceedances were observed for the sediment samples as summarized in Table 2 below:

**Table 2 – Summary of Sediment Sample RPD Exceedances** 

| Analyte | Primary<br>Sample ID | Primary<br>Sample<br>Value (µg/kg) | QC Sample<br>ID | QC Sample<br>Value (µg/kg) | RPD |
|---------|----------------------|------------------------------------|-----------------|----------------------------|-----|
| PFHxS   | DC09S                | 1.3                                | QA25AS          | 0.0005                     | 200 |
| PFOS    | DC05                 | 7                                  | QC11            | 3.5                        | 67  |
|         | DC05                 | 7                                  | QC11A           | 4.3                        | 48  |
|         | Creek_6              | 160                                | QC13            | 290                        | 58  |
|         | Creek_6              | 160                                | QC13A           | 500                        | 103 |
|         | DC09S                | 22                                 | QA25S           | 37                         | 51  |
|         | DC09S                | 22                                 | QA25AS          | 0.0142                     | 200 |
| PFOA    | Creek_6              | 3.2                                | QC13            | 5.1                        | 46  |
|         | Creek_6              | 3.2                                | QC13A           | 5.5                        | 53  |
| PFOS    | DC05                 | 7.3                                | QC11            | 3.5                        | 70  |
|         | DC05                 | 7.3                                | QC11A           | 4.3                        | 52  |
|         | Creek_6              | 210                                | QC13            | 340                        | 47  |
|         | Creek_6              | 210                                | QC13A           | 540                        | 88  |
|         | DC09S                | 23                                 | QA25S           | 38                         | 49  |

|        | DC09A   | 23  | QA25AS | 0.0147 | 200 |
|--------|---------|-----|--------|--------|-----|
| PFOS + | DC05    | 7.0 | QC11   | 3.5    | 67  |
| PFOA   | Creek_6 | 160 | QC13   | 300    | 61  |
|        | Creek_6 | 160 | QC13A  | 510    | 104 |
|        | DC09S   | 22  | QA25S  | 37     | 51  |
| PFAS   | DC05    | 7.3 | QC11   | 3.5    | 70  |
|        | Creek_6 | 210 | QC13   | 350    | 50  |
|        | Creek_6 | 210 | QC13A  | 540    | 88  |
|        | DC09S   | 24  | QA25S  | 39     | 48  |

For the majority of the sediment exceedances the discrepancies are considered to be due to the heterogeneous nature of the samples. Where RPD exceedances are derived from values which are low this is due to the low concentrations of the reported analytes exaggerating the RPD. As such, the calculated RPD values are not considered an indicator of poor integrity of results.

Where an RPD non-conformance was identified the highest results was adopted for the purpose of this assessment.

#### Soil

A total of 8 RPD exceedances were observed for the soil samples as summarized in Table 3 below:

**Table 3 - Summary of Soil Sample RPD Exceedances** 

| Analyte        | Primary<br>Sample ID | Primary<br>Sample<br>Value (µg/kg) | QC Sample<br>ID | QC Sample<br>Value (μg/kg) | RPD |
|----------------|----------------------|------------------------------------|-----------------|----------------------------|-----|
| PFOS           | SB04_0-0.2           | 19                                 | QA05            | 13                         | 38  |
|                | SB04_0-0.2           | 19                                 | QA05A           | 28                         | 38  |
| PFOA           | SB04_0-0.2           | 2                                  | QA05A           | 3.1                        | 43  |
| 8:2 FTS        | SB04_0-0.2           | 2.9                                | QA05A           | 10.8                       | 115 |
| PFHxS +        | SB04_0-0.2           | 24                                 | QA05            | 15                         | 46  |
| PFOS           | SB04_0-0.2           | 24                                 | QA05A           | 32.4                       | 30  |
| PFOS +<br>PFOA | SB04_0-0.2           | 21                                 | QA05            | 14                         | 40  |
| PFAS           | SB04_0-0.2           | 29                                 | QA05            | 18                         | 47  |

All of the soil RPD exceedances are between the same parent sample and two QC samples. The RPD discrepancies are considered to be due to the heterogeneous nature of the sample. Where a higher value was reported for a QC result, this was adopted for reporting purposes. These exceedances are therefore not considered to impact the integrity of the results.

Where an RPD non-conformance was identified the highest results was adopted for the purpose of this assessment.

#### Rinsate

Nineteen rinsate samples were analysed as part of this investigation. No sample exceeded the laboratory LOR for the analytes tested, therefore indicating that there was no evidence of cross contamination during sample collection.

#### Field Blank

Eight (8) field blank samples were analysed as part of this investigation. No sample exceeded the laboratory LOR for the analytes tested, therefore indicating that there was no evidence of cross contamination during sample collection.

#### **Trip Blank**

Ten (10) trip blank samples were analysed as part of this investigation. No sample exceeded the laboratory LOR for the analytes tested, therefore indicating that there was no evidence of cross contamination during sample collection.

# Recommended holding times (RHT) compliance

RHT acceptance criteria are specified in Table 1. Based on the review of laboratory reports and QA/QC data evaluation, all samples were extracted and analysed within RHTs except for the two non-compliances reported by ALS for analysis of the interlaboratory duplicate samples:

- extraction for moisture content of soil sample QC02a exceeded holding times of 14 days
- extraction for pH analysis of water sample QA21a exceeded holding times of one day.

The above exceedances are not considered to be significant to impact the integrity of the analytical results.

# **Laboratory program**

The NATA certified laboratories utilised for this assessment (Envirolab and ALS) undertook their own internal quality assurance and quality control procedures for sample analysis. GHD has reviewed the internal laboratory control data provided within the laboratory reports, which are provided in Appendix K. This data has met specified requirements for this investigation.

#### **Overall Assessment of Data Quality**

GHD QAQC parameters were within the specified requirements, therefore the data is considered to be valid and of sufficient quality for the purposes of this investigation.



GHD

Level 4, 211 Victoria Square Adelaide SA 5000

T: 61 8 8111 6600 F: 61 8 8111 6699 E: adlmail@ghd.com

#### © GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

12516828-85391-

85/https://projectsportal.ghd.com/sites/pp13\_03/cfsbrukungastatetrai/ProjectDocs/12516828\_R EP\_CFS\_DSI\_RevC\_backup.docx

# **Document Status**

| Revision | Author         | Reviewer |           | Approved for Issue |           |            |
|----------|----------------|----------|-----------|--------------------|-----------|------------|
|          |                | Name     | Signature | Name               | Signature | Date       |
| RevA     | V<br>Biermann  | D Valiff |           | J Howard           |           | 24/12/20   |
|          | R Webb         |          |           |                    |           |            |
|          | M Herbertt     |          |           |                    |           |            |
|          | S Sparrow      |          |           |                    |           |            |
| RevB     | V<br>Biermann  | D Valiff |           | J Howard           |           | 5/03/2021  |
|          | P Ndere        |          |           |                    |           |            |
|          | R Webb         |          |           |                    |           |            |
|          | S Sparrow      |          |           |                    |           |            |
| RevC     | V.<br>Biermann | D Valiff | 2008      | J Howard           | Afras     | 22/03/2021 |
|          | S Sparrow      |          |           |                    |           |            |

www.ghd.com

